
A Very Short tour of C++

High-level Programming languages

Closeness to human languages

Conciseness

Maintainability

Portability

 C++ is a high-level language: when you write a program in it, the short-hands are sufficiently

expressive that you don‟t need to worry about the details of processor instructions. Just like its

predecessor C, C++does give access to some lower-level functionality than other languages (e.g.

memory addresses).

C++ is immensely popular, particularly for applications that require speed and/or access to some

low-level features. It was created in 1979 by Bjarne Stroustrup, at first as a set of extensions to

the C programming language. C++ extends C; our first few lectures will basically be on the C

parts of the language.

Compilation and execution process

Object files are intermediate files that represent an incomplete copy of the program: eachsource

file only expresses a piece of the program, so when it is compiled into an object file,the object

file has some markers indicating which missing pieces it depends on. The linker takes those

object files and the compiled libraries of predefined code that they rely on, fills in all the gaps,

and spits out the final program, which can then be run by the operating system(OS).

The compiler and linker are just regular programs. The step in the compilation process in which

the compiler reads the file is called parsing.

In C++, all these steps are performed ahead of time, before you start running a program. In some

languages, they are done during the execution process, which takes time. This is one of the

reasons C++ code runs far faster than code in many more recent languages.
C++ actually adds an extra step to the compilation process: the code is run through a preprocessor,
which applies some modifications to the source code, before being fed to the compiler. Thus, the

modified diagram is:

Please note that everything in C++ is case sensitive: someName is not the same as SomeName.

Let us begin with the ritualistic first code that writes “Hello, World!” on the terminal

// Hello, world

#include <iostream>

int main(void)

{

std::cout << “Hello, world!\n”;

return 0;

}

Tokens used

Tokens are the smallest components of a program that have meaning to the compiler – the

smallest meaningful symbols in the language.

Keywords: int, double, for, auto

Identifiers: cout, std, x, myFunction

Literals: “Hello, world!”, 24.3, 0, „c‟

Operators: +, -, &&, %, <<

Punctuations / separators: { } () , ;

Whitespace: spaces, tabs, newlines, comments

Preprocessor command

A line beginning with a #. #include tells the preprocessor to dump in the contents of another file,

here the iostream file, which declares the functions for input / output.

Comments

Example
/* Old style comment goes till the next */

// new style comment till the end of line

Thus, the newline character „\n‟ has a significance in the new style of comments

The old style of commenting is allowed /* your text here */

Multiple line comments might as well be done using the older method

A complete code

Example
// Hello, world

#include <iostream>

int main(void)

{

std::cout << “Hello, world!\n”;

return 0;

}

Must have a main function which is called by the OS when a command is executed

Arguments and return value

Each function contains {} and whatever is in between

Statement and expression

Non-standard suffixes in C++ (at times, depends on the compiler being used)

A code with simple maths
#include <iostream>

using namespace std;

int main(void)

{

int x; // declaration

x = 4 + 2; // initialization

cout << x/3 << „ „ << x*2;

return 0;

}

Note the cout statement that now has a sequence of values to be printed.

Declaration and initialization could have been combined.

A code with input and output
#include <iostream>

using namespace std;

int main(void)

{

int x; // declaration

cin >> x; // initialization

cout << x/3 << „ „ << x*2;

return 0;

}

We can also have multiple inputs using a single cin, just as cout is used to print a sequence

of values.

Input and Output

Example
#include <iostream> // preprocessor command

using namespace std;

int main()

{

// Read and print three floating point numbers

float a, b, c;

cin >> a >> b >> c; // input

// output

cout << a << ", " << b << ", " << c << endl;

return 0;

}

Points to be noted:
namespace

iostream

float variables

cin reads in from stdin

cout prints out to stdout

endl is a special variable (same as \n); Unlike fortran

A detour on namespaces

cout << : This is the syntax for outputting some piece of text to the screen.

Namespaces: In C++, identifiers can be defined within a context – sort of a directory of names –

called a namespace. When we want to access an identifier defined in a namespace, we tell the

compiler to look for it in that namespace using the scope resolution operator (::). Here, we‟re

telling the compiler to look for cout in the std namespace, in which many standard C++

identifiers are defined.

A cleaner alternative is to add the following line below line 2:
using namespace std;

This line tells the compiler that it should look in the std namespace for any identifier we

haven‟t defined. If we do this, we can omit the std:: prefix when writing cout. This is the

recommended practice.

Use of the math library
#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

float angle; // Angle, in degrees

cin >> angle;

cout << cos(angle * M_PI / 180.0) << endl;

// M_PI is from <cmath>

return 0;

}

Declaration and definition

A declaration tells compilers about the name and type of an object, function, class, or template,

but it omits certain details. These are declarations:
extern int x; // object declaration

int numDigits(int number); // function declaration

class Clock; // class declaration

template<class T>

class SmartPointer; // template declaration

A definition, on the other hand, provides compilers with the details. For an object, the definition

is where compilers allocate memory for the object. For a function or a function template, the

definition provides the code body. For a class or a class template, the definition lists the members

of the class or template:
int x; // object definition

int numDigits(int number) // function definition

{ // (this function returns

 int digitsSoFar = 1; // the number of digits in

 // its parameter)

 if (number < 0) {

 number = -number;

 ++digitsSoFar;

 }

 while (number /= 10) ++digitsSoFar;

 return digitsSoFar;

}

class Clock { // class definition

public:

 Clock();

 ~Clock();

 int hour() const;

 int minute() const;

 int second() const;

 ...

};

template<class T>

class SmartPointer { // template definition

public:

 SmartPointer(T *p = 0);

 ~SmartPointer();

 T * operator->() const;

 T& operator*() const;

 ...

};

Declaration of types and initializing

Example
int i = 3;

float x = 10.0;

i = i + 1;

int j = i;

Type declaration is mandatory and must be done before first use

Usually the type declaration is done just before first use, so that chance of not initializing a

variable is minimized and unnecessary variables are not declared

Variable names start with a letter or “_”, and are case sensitive

Initialization can occur on the same line

Multiple declarations are allowed
int x, y; float i, j;

limits.h gives valid range of integer types, float.h gives valid range, precision

bool type is supported in C++

Characters

Escape sequences

const declaration; once initialized, cannot be changed
const float pi 3.14159

#define is obsolete, which is nothing more than string substitution

Expressions and operators

For relational operators, zero is false, non-zero is true

Remember difference between relational and assignment operators! Do not mix up = and ==

C has a condition operator:
y = (x < 0) ? -x : x; // y = abs(x)

Logical operators (Boolean operands)

Example

Bit-wise operators, including shifts

Table

Assignment operators

Many in C/C++

Scope resolution operator

Operator precedence

Left to right or right to left, as defined

Don‟t make clever use of precedence, rather use parentheses

Flow Control

If else if example
#include <iostream>

using namespace std;

int main(void)

{

int x, y;

cout << “Supply values of two integers to be compared: “;

cin >> x >> y;

if(x > y)

cout << “x is greater than y” << endl;

else if(y > x)

cout << “y is greater than x\n”;

else

cout << “x and y are equal” << endl;

return 0;

}

Possible pitfalls in if
if (x < 0)

x = -x; // abs(x)

y = -y; // always executed

Orphans

Assignment vs relational operators

Common styles of coding

switch case example
#include <iostream>

using namespace std;

int main(void)

{

int x = 6;

switch(x)

{

case 1:

cout << “x is 1\n”;

break;

case 2:

case 3:

cout << "x is 2 or 3";

break;

default:

cout << "x is not 1, 2, or 3";

}

return 0;

}

Goto

Example

Pit-falls of using goto

Loop statements

While

Example with terminal end-of-file (Ctrl-d) character (part 3, slide 9)

Loop can take place zero or more times

Do-while

Example (Newton‟s method, slide 2, lecture 4)

Loop can take place once or more times

For

Example (nested loops, two running indices, slide 4, part 4)

Loop can take place zero or more times

Break and continue statements

Examples (avoid using goto!)

Array

Collection of elements of the same type

Declaration

Initialization (automatic dimension)

Elements appear row-wise in C/C++ (while in Fortran, it is column-wise)

Example code (with row-wise and column-wise multiplications)

Functions

Must be declared, and declared correctly, before use

Name of the function

Return value

Arguments (names don‟t matter, but the order does)
#include <iostream>

using namespace std;

int raiseToPower(int base, int exponent) // function declaration

{ // function definition begins

int result = 1;

for (int i = 0; i < exponent; i = i + 1)

{

result = result * base;

}

return result;

} // function definition ends

int main(void)

{

int threeExpFour = raiseToPower(3, 4); // function invocation

cout << "3^4 is " << threeExpFour << endl;

return 0;

}

Use of header files (MIT notes)

Function prototypes are generally put into separate header files

– Separates specification (declaration) of the function from its implementation (definition)

// myLib.h – header file

// contains prototypes / declaration

int square(int);

int cube (int);

// myLib.cpp – definition / implementation file

#include "myLib.h"

int cube(int x)

{

return x*square(x);

}

int square(int x)

{

return x*x;

}

Body of the function

Extern functions

Static function (static keyword means local in scope of file, Paul implies it keeps a function local

to a file)

Explanation of header files, possibility of multiple inclusion of header files: examples (slide 1,

tutorial 6)

Scope of variables, external variables, local, auto, file scope, static data is explained correctly,

good example on slide 9, part 5

Default function arguments: It is possible to specify the value of the arguments not given in the

call of a function, strong typing advantages
#include <math.h>

extern double log_of(double x, double base = M_E);

// M_E in <math.h>

Can be used as follows:

x = log_of(y); // base e

z = log_of(y, 10); // base 10

Limitations of assumptions in C compilation: importance of –Wall

Use of libraries

Libraries are generally distributed as the header file containing the prototypes, and a binary

.dll/.so file containing the (compiled) implementation

– Don‟t need to share your .cpp code
// myLib.h – header

// contains prototypes

double squareRoot(double num);

Library user only needs to know the function prototypes (in the header file), not the

implementation source code (in the .cpp file)

– The Linker (part of the compiler) takes care of locating the implementation of functions in the

.dll file at compile time
// myLib.h – header

// contains prototypes

double squareRoot(double num);

// libraryUser.cpp – some other guy‟s code

#include "myLib.h"

double fourthRoot(double num)

{

return squareRoot(squareRoot(num));

}

You don‟t actually need to implement raiseToPower and squareRoot yourself; cmath

(part of the standard library) contains functions pow and sqrt
#include <cmath>

double fourthRoot(double num)

{

return sqrt(sqrt(num));

}

Recursion is allowed except for the main function

Pointer

Ideas and Explanations
 When you declare a variable, the computer associates the variable name with a particular location in

memory and stores a value there.
Pointers ar ejust variables storing integers – but those integers happen to be memory addresses,

usually addresses of other variables. A pointer that stores the address of some variable x is said to

point to x. We can access the value of x by dereferencing the pointer.

In the following figure, the dot-arrow notation indicates that ptr “pointsto” x – that is, the value

stored in ptr is12314, x‟s memory address.

Pointer is an object that refers to another object (or, stores the address of another variable; self

pointing pointers?)

Simple example
#include <iostream>

using namespace std;

int main(void)

{

int* p;

int j = 4;

p = &j;

cout << *p << endl;

*p = 5;

cout << *p << " " << j << endl;

if (p != 0)

{

cout << "Pointer p points at " << *p << endl;

}

return 0;

}

Type of the variable a pointer is pointing to is important since that allows correct dereferencing.

I prefer declaration of pointers with the idea that when I dereference this pointer gives a float

or int value, etc. The pointer itself is of pointer data type.

Null pointer: Never use an uninitialized pointer. Dereferencing a null pointer causes a core

dump.

Arrays and pointers

Name of an array is the address of the first array element.

Consider
float x[5];

In computer memory the variables are placed as shown below:

In C/C++, x is a pointer to the first element

*x and x[0] are the same

x and &x[0] are the same

Elements of an array can be accessed either way, i.e., by using the array operator, or pointer

operation.

x is a label to an array of object, not a pointer Object

Intro to pointer arithmetic, slide 4, lecture 6

float x[5];

float *y = &x[0];

y is a pointer to x[0]

y+1 is pointer to x[1]

Thus *(y+1) and x[1] access the same object

y[1] is shorthand for *(y+1)
Integer add, subtract and relational operators are allowed on pointers

Summing an array C++ style
float x[5];

// type in your code to fill x

float *y = x;

double sum = 0.0;

for (int i = 0; i < 5; i++)

{

sum += *y++;

}

It takes some time to get use to writing in this style

Be prepared to read code written by others in this style

We are not worrying about performance issues, as yet.

Dynamic allocation of arrays: new and delete in C++, malloc and free in C

Examples
float* x = new float[n];

new is an operator that returns a pointer to the newly created array

Note use of n; a variable

In C, one does
float *x = (float *)malloc(n*sizeof(float));

In C++, to delete a dynamically allocated array one uses the delete operator
delete [] x;

in C one uses the free() function
free(x);

Line fit example
#include <iostream>

using namespace std;

void linefit(void)

{

// Create arrays with the desired number of elements

int n;

cin >> n;

float* x = new float[n];

float* y = new float[n];

// Read the data points

for (int i = 0; i < n; i++)

{

cin >> x[i] >> y[i];

}

// Accumulate sums Sx and Sy in double precision

double sx = 0.0;

double sy = 0.0;

for (int i = 0; i < n; i++)

{

sx += x[i];

sy += y[i];

}

// Compute coefficients

double sx_over_n = sx / n;

double stt = 0.0;

double b = 0.0;

for (i = 0; i < n; i++)

{

double ti = x[i] - sx_over_n;

stt += ti * ti;

b += ti * y[i];

}

b /= stt;

double a = (sy - sx * b) / n;

delete [] x;

delete [] y;

cout << a << " " << b << endl;

}

int main(void)

{

linefit();

return 0;

}

Discussion on memory leak: Remember to free the dynamically allocated memory at the correct

place. If not done correctly, this can either lead to memory leak, or can lead to attempts to access

memory areas that have already been freed.

What happens if we forget to put the [] in using delete? – it deletes only the first objet.

Character arrays

Why that „\0‟ at the end; example of walking through arrays

Here is an example to illustrate the cctype library:

#include <iostream>

#include <cctype>

using namespace std;

int main(void)

{

char messyString[] = "t6H0I9s6.iS.999a9.STRING";

char current = messyString[0];

for(int i = 0; current != '\0'; current = messyString[++i])

{

if(isalpha(current))

cout << (char)(isupper(current) ? tolower(current) : current);

else if(ispunct(current))

cout << ' ';

}

cout << endl;

return 0;

}

This example uses the isalpha, isupper, ispunct, and tolower functions from the

cctype library. The is-functions check whether a given character is an alphabetic character, an

uppercase letter, or a punctuation character, respectively. These functions return a Boolean value

of either true or false. The tolower function converts a given character to lowercase.

The for loop takes each successive character from messyString until it reaches the null

character. On each iteration, if the current character is alphabetic and uppercase, it is converted

to lowercase and then displayed. If it is already lowercase it is simply displayed. If the character

is a punctuation mark, a space is displayed. All other characters are ignored. The resulting output

is this is a string.

The notable character / string manipulation functions are available through the use of:

cctype (ctype.h): character handling

cstdio (stdio.h): input/output operations

cstdlib (stdlib.h): general utilities

cstring (string.h): string manipulation

What is(char)?

Old and new ways of type casting:

C++ is a strong-typed language. Many conversions, specially those that imply a different

interpretation of the value, require an explicit conversion. We have already seen two notations

for explicit type conversion: functional and c-like casting:

1

2

3

4

short a=2000;

int b;

b = (int) a; // c-like cast notation

b = int (a); // functional notation

The functionality of these explicit conversion operators is enough for most needs with

fundamental data types. However, these operators can be applied indiscriminately on classes and

pointers to classes, which can lead to code that while being syntactically correct can cause

runtime errors. For example, the following code is syntactically correct:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

// class type-casting

#include <iostream>

using namespace std;

class CDummy {

 float i,j;

};

class CAddition {

 int x,y;

 public:

 CAddition (int a, int b) { x=a;

y=b; }

 int result() { return x+y;}

};

int main () {

 CDummy d;

 CAddition * padd;

 padd = (CAddition*) &d;

 cout << padd->result();

 return 0;

}

The program declares a pointer to CAddition, but then it assigns to it a reference to an object of

another incompatible type using explicit type-casting:

 padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type,

independently of the types they point to. The subsequent call to member result will produce

either a run-time error or a unexpected result.

Opt for casting forms static_cast, const_cast, dynamic_cast, and reinterpret_cast.

Conventional C-style casts look like this: ¤ EC++ Intro, P41

http://docs.online.bg/PROGRAMMING/effective_c++/EC/EIINTDIR.HTM#dingp41

(type) expression // cast expression to be of

 // type type

The new casts look like this: ¤ EC++ Intro, P42

static_cast<type>(expression) // cast expression to be of

 // type type

const_cast<type>(expression)

dynamic_cast<type>(expression) <type>

reinterpret_cast<type>(expression) <type>

These different casting forms serve different purposes: ¤ EC++ Intro, P43

 const_cast is designed to cast away the constness of objects and pointers. This type of

casting manipulates the constness of an object, either to be set or to be removed. For

example, in order to pass a const argument to a function that expects a non-constant

parameter

 dynamic_cast is used to perform "safe downcasting," The dynamic_cast can be used

only with pointers and references to objects. Its purpose is to ensure that the result of the

type conversion is a valid complete object of the requested class. Therefore,

dynamic_cast is always successful when we cast a class to one of its base classes.

 reinterpret_cast is engineered for casts that yield implementation-dependent results,

e.g., casting between function pointer types. Itconverts any pointer type to any other

pointer type, even of unrelated classes. The operation result is a simple binary copy of the

value from one pointer to the other. All pointer conversions are allowed: neither the

content pointed nor the pointer type itself is checked.

 static_cast is sort of the catch-all cast. It's what you use when none of the other casts

is appropriate. It's the closest in meaning to the conventional C-style casts. It can perform

conversions between pointers to related classes, not only from the derived class to its

base, but also from a base class to its derived. This ensures that at least the classes are

compatible if the proper object is converted, but no safety check is performed during

runtime to check if the object being converted is in fact a full object of the destination

type. Therefore, it is up to the programmer to ensure that the conversion is safe. On the

other side, the overhead of the type-safety checks of dynamic_cast is avoided.

Conventional casts continue to be legal, but the new casting forms are preferable. They're much

easier to identify in code (both for humans and for tools like grep), and the more narrowly

specified purpose of each casting form makes it possible for compilers to diagnose usage errors.

For example, only const_cast can be used to cast away the constness of something. If you try

to cast away an object's or a pointer's constness using one of the other new casts, your cast

expression won't compile.

Strings in C++
String class
String objects are a special type of container, specifically designed to operate with sequences of

characters.

http://docs.online.bg/PROGRAMMING/effective_c++/EC/EIINTDIR.HTM#dingp42
http://docs.online.bg/PROGRAMMING/effective_c++/EC/EIINTDIR.HTM#dingp43

Unlike traditional c-strings, which are mere sequences of characters in a memory array, C++

string objects belong to a class with many built-in features to operate with strings in a more

intuitive way and with some additional useful features common to C++ containers.

The string class is an instantiation of the basic_string class template, defined in <string>

as:
typedef basic_string<char> string;

Member functions

(constructor) Construct string object (constructor member)

operator= String assignment (public member function)

Iterators:

begin Return iterator to beginning (public member function)

end Return iterator to end (public member function)

rbegin Return reverse iterator to reverse beginning (public member function)

rend Return reverse iterator to reverse end (public member function)

Capacity:

size Return length of string (public member function)

length Return length of string (public member function)

max_size Return maximum size of string (public member function)

resize Resize string (public member function)

capacity Return size of allocated storage (public member function)

reserve Request a change in capacity (public member function)

clear Clear string (public member function)

empty Test if string is empty (public member function)

Element access:

operator[] Get character in string (public member function)

at Get character in string (public member function)

Modifiers:

operator+= Append to string (public member function)

append Append to string (public member function)

push_back Append character to string (public member function)

assign Assign content to string (public member function)

insert Insert into string (public member function)

erase Erase characters from string (public member function)

replace Replace part of string (public member function)

swap Swap contents with another string (public member function)

String operations:

c_str Get C string equivalent (public member function)

http://www.cplusplus.com/reference/string/string/string/
http://www.cplusplus.com/reference/string/string/operator=/
http://www.cplusplus.com/reference/string/string/begin/
http://www.cplusplus.com/reference/string/string/end/
http://www.cplusplus.com/reference/string/string/rbegin/
http://www.cplusplus.com/reference/string/string/rend/
http://www.cplusplus.com/reference/string/string/size/
http://www.cplusplus.com/reference/string/string/length/
http://www.cplusplus.com/reference/string/string/max_size/
http://www.cplusplus.com/reference/string/string/resize/
http://www.cplusplus.com/reference/string/string/capacity/
http://www.cplusplus.com/reference/string/string/reserve/
http://www.cplusplus.com/reference/string/string/clear/
http://www.cplusplus.com/reference/string/string/empty/
http://www.cplusplus.com/reference/string/string/operator%5b%5d/
http://www.cplusplus.com/reference/string/string/at/
http://www.cplusplus.com/reference/string/string/operator+=/
http://www.cplusplus.com/reference/string/string/append/
http://www.cplusplus.com/reference/string/string/push_back/
http://www.cplusplus.com/reference/string/string/assign/
http://www.cplusplus.com/reference/string/string/insert/
http://www.cplusplus.com/reference/string/string/erase/
http://www.cplusplus.com/reference/string/string/replace/
http://www.cplusplus.com/reference/string/string/swap/
http://www.cplusplus.com/reference/string/string/c_str/

data Get string data (public member function)

get_allocator Get allocator (public member function)

copy Copy sequence of characters from string (public member function)

find Find content in string (public member function)

rfind Find last occurrence of content in string (public member function)

find_first_of Find character in string (public member function)

find_last_of Find character in string from the end (public member function)

find_first_not_of Find absence of character in string

find_last_not_of Find absence of character in string from the end (public member function)

substr Generate substring (public member function)

compare Compare strings (public member function)

Example:
#include <iostream>

#include <string>

using namespace std;

int main ()

{

 char *line = "short line for testing";

 // with no arguments

 string s1;

 s1 = "Anatoliy";

 cout << "s1 is: " << s1 << endl;

 // copy constructor

 string s2 (s1);

 cout << "s2 is: " << s2 << endl;

 // one argumen

 string s3 (line);

 cout << "s3 is: " << s3 << endl;

 // first argumen C string

 // second number of characters

 string s4 (line,10);

 cout << "s4 is: " << s4 << endl;

 // 1 - C++ string

 // 2 - start position

 // 3 - number of characters

 string s5 (s3,6,4); // copy word 'line' from s3

 cout << "s5 is: " << s5 << endl;

 // 1 - number characters

 // 2 - character itself

 string s6 (15,'*');

 cout << "s6 is: " << s6 << endl;

 // 1 - start iterator

http://www.cplusplus.com/reference/string/string/data/
http://www.cplusplus.com/reference/string/string/get_allocator/
http://www.cplusplus.com/reference/string/string/copy/
http://www.cplusplus.com/reference/string/string/find/
http://www.cplusplus.com/reference/string/string/rfind/
http://www.cplusplus.com/reference/string/string/find_first_of/
http://www.cplusplus.com/reference/string/string/find_last_of/
http://www.cplusplus.com/reference/string/string/find_first_not_of/
http://www.cplusplus.com/reference/string/string/find_last_not_of/
http://www.cplusplus.com/reference/string/string/substr/
http://www.cplusplus.com/reference/string/string/compare/

 // 2 - end iterator

 string s7 (s3.begin(),s3.end()-5);

 cout << "s7 is: " << s7 << endl;

 // you can instantiate string with assignment

 string s8 = "Anatoliy";

 cout << "s8 is: " << s8 << endl;

 return 0;

}

OUTPUT:

// s1 is: Anatoliy

// s2 is: Anatoliy

// s3 is: short line for testing

// s4 is: short line

// s5 is: line

// s6 is: ***************

// s7 is: short line for te

// s8 is: Anatoliy

Variable scope, initialization and lifetime

Every pair of {} defines a new scope

Even a pair with if, for, etc defines a new scope.

Variables declared in a scope are deleted when execution leaves scope
int main(void)

{

float temp = 1.1;

int a;

int b;

cout << “Supply two integers: “;

cin >> a >> b;

if (a < b)

{

int temp = a; // This "temp" hides other one

cout << 2 * temp << endl;

}// Block ends; local "temp" deleted.

else

{

int temp = b; // Another "temp" hides other one

cout << 3 * temp << endl;

}

{ // my block

int a;

cout << “Supply value of a in my block: “;

cin >> a;

cout << “a in my block: “ << a << endl;

}

cout << “a outside my block: “ << a << endl;

cout << a * b + temp << endl;

return 0;

}

Passing arguments by value

Stack and heap:

Stack frames for different functions

Address, pointer, reference

References are the most confusing issue in C++

Ampersand here is not the address

When we write void f(int &x) {...} and call f(y), the reference variable x becomes

another name – an alias – for the value of y in memory. We can declare a reference variable

locally, as well:
int y;

int &x = y; // Makes x a reference to, or alias of, y

Consider the following example:
float x = 12.1;

float& a = x;

float &b = x;

a, b, and x all represent the same object

Don‟t confuse a reference and a pointer
int i = 3; // data object

int &j = i; // reference to i

int *p = &i; // pointer to i

Example of the use of reference:
void swap(int &a, int &b)

{

int t = a;

a = b;

b = t;

}

int main(void)

{

int q = 3;

int r = 5;

swap(q, r);

cout << "q " << q << endl; // q 5

cout << "r " << r << endl; // r 3

}

C does not have reference; instead you have to write
extern void swap(int *a, int *b);

swap(&q, &r);

Returning Multiple values

The return statement only allows you to return 1 value. Passing output variables by reference

overcomes this limitation.

int divide(int numerator, int denominator, int &remainder)

{

remainder = numerator % denominator;

return numerator / denominator;

}

int main(void)

{

int num = 14;

int den = 4;

int rem;

int result = divide(num, den, rem);

cout << result << "*" << den << "+" << rem << "=" << num << endl;

// 3*4+2=12

}

Better examples will come with classes

Recursion

A function can call itself. Write two functions- one to compute the Fibonacci sequence and the

other two compute factorials. Can the main function call itself?

Constant pointer
const float pi = 3.1415;

float pdq = 1.2345;

const float *p = π

float* const d = π // WRONG

float* const q = &pdq;

const float *const r = π

*p = 3.0; // WRONG

p = &pdq; // OK

*p = 3.0; // still WRONG

*q = 3.0; // OK

q = &pdq; // WRONG

*r = 3.0; // WRONG

r = &pdq; // WRONG AGAIN

const qualifier can refer to what is pointed at (frequent usage)

const qualifier can refer to pointer itself (rare usage)

const qualifier can refer to both (infrequent usage)

Usefulness?

Now, we have a way of maintaining the original array elements despite passing the array to the

function – very useful! Implementation of client / server applications becomes lot easier.

void f(int i, float x, const float *a) {

i = 100;

x = 101.0*a[0]; // OK

a[0] = 0.0; // WRONG!

}

int j = 1;

int k = 2;

float y[] = {3.0, 4.0, 5.0};

f(j, k, y);

A const argument tells user of function that his data wouldn‟t be changed

The const is enforced when attempting to compile function.

First aspect of spirit of client/server interface

Function Name Overloading

Allowed for both for library and user functions
void printOnNewLine(int x)

{

cout << "Integer: " << x << endl;

}

void printOnNewLine(char *x)

{

cout << "String: " << x << endl;

}

void printOnNewLine(int x, int y)

{

cout << "2 Integers: " << x << " and " << y << endl;

}

• Many functions with the same name, but different arguments

• The function called is the one whose arguments match the invocation

So, in C++ one can have
int sqr(int i);

float sqr(float x);

double sqr(double x);

Separate functions with same name

Functions distinguished by their name, and the number and type of arguments

Name mangling occurs to create the external symbol seen by the linker

nm command gives all symbol name of an object code or a library

