
A Very Short tour of C++ 
 

Day 2 

 

Problems are hardly ever posed directly in terms of computer intrinsic types – int, float 

etc. Instead we talk about tracks, lines, points, detectors, and so on. 

In a detector’s tracking code, for example, the problem is posed in terms of 

• tracks 

• points 

• list of points 

• chamber 

• cylinders 

• layers 

 

C++ with its mechanism of classes allows defining new types and the operations on these types. 

This makes the approach lot more intuitive and appealing. In addition, formalisms in C++ allows 

convenient handling of large codes, developed by a number of developers. 

 

When we do object-oriented programming with C++ we will be writing and using classes 

 

Object-Oriented Programming: 

Classic “procedural” programming languages before C++ (such as C) often focused on the 

question “What should the program do next?” The way you structure a program in these 

languages is:  

Split it up into a set of tasks and subtasks  

Make functions for the tasks  

Instruct the computer to perform them in sequence  

 

With large amounts of data and / or large numbers of tasks, this approach leads to complex 

programs that are difficult to maintain. 

Consider the task of modeling the operation of a car. Such a program would have lots of separate 

variables storing information on various car parts, and there’d be no way to group together all the 

code that relates to, say, the wheels. You can have number of variables grouped together in 

structures, but there is no way to group the functionalities related to these data. It’s hard to 

keep all these variables and the connections between all the functions in mind.  

 

To manage this complexity, it’s nicer to package up self-sufficient, modular pieces of code. 

People think of the world in terms of interacting objects: we’d talk about interactions between 

the steering wheel, the pedals, the wheels, etc. OOP allows programmers to pack away details 

into neat, self-contained boxes (objects) so that they can think of the objects more abstractly and 

focus on the interactions between them.  



There are lots of definitions for OOP, but 3 primary features of it are:  

 

Encapsulation: grouping related data and functions together as objects and defining an interface 
to those objects 

 

Inheritance: allowing code to be reused between related types 

 

Polymorphism: allowing a value to be one of several types, and determining at runtime which 

functions to call on it based on its type. 

 

One way to think about what happens in an object-oriented program is that we define what 

objects exist and what each one knows, and then the objects send messages to each other (by 

calling each other’s methods) to exchange information and tell each other what to do. 

 

Encapsulation just refers to packaging related stuff together. We’ll shortly see how to package 

up data and the operations it supports in C++: with classes.  

If someone hands us a class, we do not need to know how it actually works to use it; all we need 

to know about is its public methods/data – its interface. This is often compared to operating a 

car: when you drive, you don’t care how the steering wheel makes the wheels turn; you just care 

that the interface the car presents (the steering wheel) allows you to accomplish your goal. If you 

think of the analogy about objects being boxes with buttons you can push, you can also think of 

the interface of a class as the set of buttons each instance of that class makes available. Interfaces 

abstract away the details of how all the operations are actually performed, allowing the 

programmer to focus on how objects will use each other’s interfaces – how they interact.  

This is why C++ makes you specify public and private access specifiers: by default, it 

assumes that the things you define in a class are internal details which someone using your code 

should not have to worry about. The practice of hiding away these details from client code is 

called “data hiding,” or making your class a “black box.”  

 

Inheritance allows us to define hierarchies of related classes.  

Imagine we’re writing an inventory program for vehicles, including cars and trucks. We could 

write one class for representing cars and an unrelated one for representing trucks, but we’d have 

to duplicate the functionality that all vehicles have in common. Instead, C++ allows us to specify 

the common code in a Vehicle class, and then specify that the Car and Truck classes 

share this code.  

The Vehicle class can be as follows: 
class Vehicle 

{ 

protected: 

  string license ; 

  int year; 

public: 

  Vehicle( const string &myLicense, const int myYear) 

  :license(myLicense), year(myYear) {} 

  const string getDesc() const 

  {return license + " from " + stringify(year);} 

  const string &getLicense() const {return license;} 

  const int getYear() const {return year;} 

}; 



A few notes on this code:  

1) The standard string class was briefly touched upon in yesterday’s class. Recall that 

strings can be appended to each other with the + operator (similar to the strcat function). 

protected is largely equivalent to private. We’ll discuss the differences shortly.  

2) The code demonstrates member initializer syntax. When defining a constructor, you 

sometimes want to initialize certain members, particularly const members, even before the 

constructor body. You simply put a colon before the function body, followed by a comma-

separated list of items of the form dataMember(initialValue).  

3) Assumes the existence of some function stringify for converting numbers to strings 

(something like sprintf in C).  

 

Now we want to specify that Car will inherit the Vehicle code, but with some additions. 

This is accomplished in line 1 below: 
class Car : public Vehicle 

{ // Makes Car inherit from Vehicle 

string style; 

 

public : 

  Car( const string &myLicense, const int myYear, const string &myStyle) 

  : Vehicle(myLicense, myYear), style(myStyle) {} 

  const string &getStyle() {return style;} 

}; 

 

Now class Car has all the data members and methods of Vehicle, as well as a style data 

member and a getStyle method.  

Class Car inherits from class Vehicle. This is equivalent to saying that Car is a derived 

class, while Vehicle is its base class. You may also hear the terms subclass and superclass 
instead.  

Notes on the code: 

1) Don’t worry for now about why we stuck the public keyword in there.  

2) Note how we use member initializer syntax to call the base-class constructor. We need to have 

a complete Vehicle object constructed before we construct the components added in the Car. 

3) If you do not explicitly call a base-class constructor using this syntax, the default base-class 

constructor will be called. 
 

Similarly, we could make a Truck class that inherits from Vehicle and shares its code. This 

would give a class hierarchy like the following: 

 
 
Class hierarchies are generally drawn with arrows pointing from derived classes to base classes. 

 



Is-a vs. Has-a: 

There are two ways we could describe some class A as depending on some other class B:  

Every A object has a B object. For instance, every Vehicle has a string 

object(called license).  

Every instance of A is a B instance. For instance, every Car is a Vehicle, as well.  

 

Inheritance allows us to define “is-a” relationships, but it should not be used to implement “has-

a” relationships. It would be a design error to make Vehicle inherit from string because 

every Vehicle has a license; a Vehicle is not a string. “has-a” relationships should be 

implemented by declaring data members, not by inheritance. 

 

Overriding Methods: 

We might want to generate the description for Cars in a different way from generic Vehicles. 

To accomplish this, we can simply redefine the getDesc method in Car, as below. Then, 

when we call getDesc on a Car object, it will use the redefined function. Redefining in this 

manner is called overriding the function. 
class Car : public Vehicle  

{ 

string style ;  

public : 

  Car( const string &myLicense, const int myYear, const string &myStyle) 

  : Vehicle(myLicense, myYear), style(myStyle) {} 

 

  const string getDesc() // Overriding this member function 

  { 

  return stringify(year) + ’ ’ + style + ": " + license; 

} 

 

  const string &getStyle() {return style;} 

}; 

 

Programming by Difference: 

In defining derived classes, we only need to specify what’s different about them from their base 

classes. This powerful technique is called programming by difference. 

Inheritance allows only overriding methods and adding new members and methods. We cannot 

remove functionality that was present in the base class.  

 
Access Modifiers and Inheritance: 

If we’d declared year and license as private in Vehicle, we wouldn’t be able to 

access them even from a derived class like Car. To allow derived classes but not outside code to 

access data members and member functions, we must declare them as protected. 

 

The public keyword used in specifying a base class (e.g., class Car : public 

Vehicle {...})gives a limit for the visibility of the inherited methods in the derived class. 

Normally you should just use public here, which means that inherited methods declared as 

public are still public in the derived class. Specifying protected would make 

inherited methods, even those declared public, have at most protected visibility. 

 



Polymorphism: 

Polymorphism means “many shapes.” It refers to the ability of one object to have many types. If 

we have a function that expects a Vehicle object, we can safely pass it a Car object, because 

every Car is also a Vehicle. Likewise for references and pointers: anywhere you can use a 

Vehicle *, you can use a Car *. 

 

virtual Functions: 

There is still a problem. Take the following example: 
Car c(“Vanity”, 2003); 

Vehicle *vPtr = &c; 

Cout << vPtr->getDesc(); 

 

(The -> notation on line 3 just dereferences and gets a member. ptr->member is equivalent 

to (*ptr).member.)  

Because vPtr is declared as a Vehicle *, this will call the Vehicle version of 

getDesc, even though the object pointed to is actually a Car. Usually we’d want the program 

to select the correct function at runtime based on which kind of object is pointed to. We can get 

this behavior by adding the keyword virtual before the method definition: 
class Vehicle 

{ 

... 

  virtual const string getDesc() 

  { 

  ... 

  } 

}; 

 

With this definition, the code above would correctly select the Car version of getDesc.  

Selecting the correct function at runtime is called dynamic dispatch. This matches the whole 

OOP idea – we’re sending a message to the object and letting it figure out for itself what actions 

that message actually means it should take.  

Because references are implicitly using pointers, the same issues apply to references: 
Car c(“Vanity”, 2003); 

Vehicle &v = c; 

cout << v.getDesc(); 

 

This will only call the Car version of getDesc if getDesc is declared as virtual.  

Once a method is declared virtual in some class C, it is virtual in every derived class of C, 

even if not explicitly declared as such. However, it is a good idea to declare it as virtual in 

the derived classes anyway for clarity. 

 

Pure virtual Functions: 

Arguably, there is no reasonable way to define getDesc for a generic Vehicle –only 

derived classes really need a definition of it, since there is no such thing as a generic vehicle that 

isn’t also a car, truck, or the like. Still, we do want to require every derived class of Vehicle 

to have this function. 

We can omit the definition of getDesc from Vehicle by making the function pure virtual via 

the following odd syntax: 



class Vehicle { 

... 

virtual const string getDesc() = 0; // Pure virtual 

}; 

The =0 indicates that no definition will be given. This implies that one can no longer create an 

instance of Vehicle; one can only create instances of Cars, Trucks, and other derived classes 

which do implement the getDesc method. Vehicle is then an abstract class – one which 

defines only an interface, but doesn’t actually implement it, and therefore cannot be instantiated. 

 

Multiple Inheritance: 
Unlike many object-oriented languages, C++ allows a class to have multiple base classes: 
class Car : public Vehicle , public InsuredItem 

{ 

... 

}; 

This specifies that Car should have all the members of both the Vehicle and the 

InsuredItem classes.  

Multiple inheritance is tricky and potentially dangerous:  

If both Vehicle and InsuredItem define a member x, you must remember to 

disambiguate which one you’re referring to by saying Vehicle::x or InsuredItem::x.  

If both Vehicle and InsuredItem inherited from the same base class, you’d end up with 

two instances of the base class within each Car (a “dreaded diamond” class hierarchy). There 

are ways to solve this problem, but it can get messy.  

 

In general, avoid multiple inheritance unless you know exactly what you’re doing. 

 



Consider a two-dimensional vector 

• In the context of geometry, a vector consists of 2 points: a start and a finish 

• Each point itself has an x and y coordinate 

 
Structures in C 
typedef struct 

  { 

  double x; 

  double y; 

  } Point2D; 

 

 
typedef struct 

  { 

  Point2D Start; 

  Point2D End; 

  } Vector2D; 

 

Classes in C++ 

A user-defined datatype which groups together related pieces of information. 
class Point2D 

  { 

  public: 

    double x; 

    double y; 

  }; 

 

class Vector2D 

  { 

  public: 

    Point2D Start, End; 

  }; 

This indicates that the new data-types we’re defining are called Point2D and Vector2D 

Fields indicate what related pieces of information our data-type consists of – another word for 

field is member 

 

Unlike in an array, different member of a class / structure can be of different type. 
class SchoolStudent 



  { 

  public: 

    char *name; 

    int ID; 

    float Score; 

  }; 

 

An instance is an occurrence of a class. 

Different instances can have their own set of values in their fields. 

 

If you wanted to represent 2 different students (who can have different names and IDs), you 

would use 2 instances of SchoolStudent 
int main(void) 

{ 

SchoolStudent student1; 

SchoolStudent student2; 

} 

 

Note that the two instances have only been declared, but not defined, i.e., we have not spelt out 

the details of student1 and student2 

To access fields of instances, use variable.fieldName 

 
int main(void) 

{ 

SchoolStudent student1; 

SchoolStudent student2; 

 

student1.name = "YourName"; student1.ID = 1; student1.Score = 100.0; 

student2.name = "YourFriendsName"; student2.ID = 2; student2.Score = 100.0; 

cout << "student1 name is" << student1.name << endl; 

cout << "student1 id is" << student1.ID << endl; 

cout << "student1 score is" << student1.Score << endl; 

cout << "student2 name is" << student2.name << endl; 

cout << "student2 id is" << student2. ID << endl; 

cout << "student2 score is" << student2.Score << endl; 

} 
 

Going back to the vectors, we can have the following: 

 
int main(void) 

{ 

Vector vec1; 

vec1.Start.x = 3.0; 

vec1.Start.y = 4.0; 

vec1.End.x = 5.0; 

vec1.End.y = 6.0; 

 

Vector vec2; 

vec2.Start = vec1.Start;// Assign one instance to another to copy all fields 

vec2.Start.x = 7.0; 

} 

 



Classes, naturally, can be passed to functions. As discussed yesterday, passing by value passes a 

copy of the class instance to the function and changes aren’t preserved. If you want to reflect the 

changes made in the called function in the original calling function, you need to use references: 
class Point2D 

{ 

public: double x, y; 

}; 

 

class Vector2D 

{ 

public: Point2D start, end; 

}; 

 

void offsetVector(Vector &v, double offsetX, double offsetY) 

{ 

v.start.x += offsetX; 

v.end.x += offsetX; 

v.start.y += offsetY; 

v.end.y += offsetY; 

} 

 

void printVector(Vector v) 

{ 

cout << "(" << v.start.x << "," << v.start.y << ") -> (" << v.end.x << 

"," << v.end.y << ")" << endl; 

} 

 

int main(void) 

{ 

Vector2D vec; 

 

vec.start.x = 1.2; vec.end.x = 2.0; vec.start.y = 0.4; vec.end.y = 1.6; 

offsetVector(vec, 1.0, 1.5); 

printVector(vec); // (2.2,1.9) -> (3.8,4.3) 

} 

 

Observe how some functions are closely associated with a particular class. This leads us to 

methods: functions which are part of a class. As an analogy, we can say that methods are 

“buttons” on each box (instance), which do things when pressed 
Vector2D vec1, vec2; 

vec1.start.x = 1.2; vec1.end.x = 2.0; 

vec1.start.y = 0.4; vec1.end.y = 1.6; 

vec1.start.x = 1.2; vec1.end.x = 2.0; 

vec1.start.y = 0.4; vec1.end.y = 1.6; 

 

vec1.print(); // which instance (box), which method (button) 

vec2.offset(1.0, 1.5); // instance called vec2, methods called offset 

 
Methods implicitly pass the current instance. 

 

An example implementation can be as follows: 
class Vector2D 

{ 

public: 



  Point2D start, end; 

  void offset(double offsetX, double offsetY) 

    { 

    start.offset(offsetX, offsetY); 

    end.offset(offsetX, offsetY); 

    } 

  void print() 

    { 

    start.print(); 

    cout << " -> "; 

    end.print(); 

    cout << endl; 

    } 

}; 

class Point2D 

{ 

public: 

  double x, y; 

  void offset(double offsetX, double offsetY) 

  { 

  x += offsetX; y += offsetY; 

  } 

  void print() 

  { 

  cout << "(" << x << "," << y << ")"; 

  } 

}; 

 

A better implementation would be splitting the declarations and definitions separate. First, the 

header file: 
// vector.h - header file 

class Point2D 

{ 

public: 

  double x, y; 

  void offset(double offsetX, double offsetY); 

  void print(); 

}; 

class Vector2D 

{ 

public: 

  Point2D start, end; 

  void offset(double offsetX, double offsetY); 

  void print(); 

}; 

 

Then, the source code containing implementation of methods: 
#include "vector.h" 

// vector.cpp - method implementation 

void Point2D::offset(double offsetX, double offsetY) 

{ 

x += offsetX; y += offsetY; 

} 

void Point2D::print() 

{ 

cout << "(" << x << "," << y << ")"; 



} 

void Vector2D::offset(double offsetX, double offsetY) 

{ 

start.offset(offsetX, offsetY); 

end.offset(offsetX, offsetY); 

} 

void Vector2D::print() 

{ 

start.print(); 

cout << " -> "; 

end.print(); 

cout << endl; 

} 

 



As you can expect, manually initializing the fields can be extremely tedious. Here comes the role 

of constructors. 

 

Constructors: 

Methods that are called automatically when an instance of a class is created. 
class Point2D 

{ 

public: 

  double x, y; 

  Point2D() 

  { 

  x = 0.0; y = 0.0; cout << "Point instance created" << endl; 

  } 

}; 

 

int main(void) 

{ 

Point2D p; // Point instance created 

// p.x is 0.0, p.y is 0.0 

} 

 

Constructors can also accept parameters: 
class Point2D 

{ 

public: 

  double x, y; 

  Point2D(double nx, double ny) 

  { 

  x = nx; y = ny; cout << "2-parameter constructor" << endl; 

  } 

}; 

 

int main(void) 

{ 

Point2D p(2.0, 3.0); // 2-parameter constructor 

// p.x is 2.0, p.y is 3.0 

} 

 

Naturally, with the blessings of Function Name Overloading, we can have multiple constructors 

in a given class (in fact, we almost always have): 
class Point2D 

{ 

public: 

  double x, y; 

  Point2D() 

  { 

  x = 0.0; y = 0.0; cout << "default constructor" << endl; 

  } 

  Point2D(double nx, double ny) 

  { 

  x = nx; y = ny; cout << "2-parameter constructor" << endl; 

  } 

}; 

 

int main(void) 



{ 

Point2D p; // default constructor 

// p.x is 0.0, p.y is 0.0) 

Point2D q(2.0, 3.0); // 2-parameter constructor 

// q.x is 2.0, q.y is 3.0) 

} 

 

We have unknowingly used another constructor that is provided by the compiler as soon as a 

class is created – the default copy constructor that assigns the state of source instance onto the 

destination instance by copying all fields: 
class Point2D 

{ 

public: 

  double x, y; 

  Point2D() 

  { 

  x = 0.0; y = 0.0; cout << "default constructor" << endl; 

  } 

  Point2D(double nx, double ny) 

  { 

  x = nx; y = ny; cout << "2-parameter constructor" << endl; 

  } 

}; 

 

int main(void) 

{ 

Point2D q(1.0, 2.0); // 2-parameter constructor 

Point2D r = q; // r.x is 1.0, r.y is 2.0) 

} 

 

If for some reason, you do not want all the fields to be copied onto the destination instance, you 

can write your own copy constructor (which is possible with the default constructor, as well, in 

case you want to change the default behavior, or have a default despite having constructors with 

arguments). Consider the following amusing snippet: 
class SchoolStudent 

{ 

public: 

  int studentID; 

  char *name; 

  SchoolStudent() 

  { 

  studentID = 0; 

  name = ""; 

  } 

}; 

 

int main(void) 

{ 

SchoolStudent student1; 

student1.studentID = 98; 

char n[] = "foo"; 

student1.name = n; 

 

SchoolStudent student2 = student1; 

student2.name[0] = 'b'; 



 

cout << student1.name; // boo 

} 

 

As a remedy, we can write our own copy constructor: 
class SchoolStudent 

{ 

public: 

  int studentID; 

  char *name; 

  SchoolStudent() 

  { 

  studentID = 0; 

  name = ""; 

  } 

  SchoolStudent(SchoolStudent &o) 

  { 

  studentID = o.studentID; 

  name = strdup(o.name);// try “man strdup” to see what is the big difference 

  } 

}; 

 

An example involving two-dimensional points could be as follows (which, however, is 

equivalent to the default copy constructor, with an announcement) 
class Point2D 

{ 

public: 

  double x, y; 

  Point2D(double nx, double ny) 

  { 

  x = nx; y = ny; cout << "2-parameter constructor" << endl; 

  } 

  Point2D(Point &o) 

  { 

  x = o.x; y = o.y; cout << "custom copy constructor" << endl; 

  } 

}; 

 

int main(void) 

{ 

Point2D q(1.0, 2.0); // 2-parameter constructor 

Point2D r = q; // custom copy constructor 

// r.x is 1, r.y is 2 

} 

 

Copy constructors are examples where we pass arguments by reference. 

 

 

 

When making a class instance, the default constructor of its fields are invoked  
 

class Integer 

{  

public:  

  int val;  



  Integer() 

  {  

  val = 0; cout << "Integer default constructor" << endl;  

  }  

};  

class IntegerWrapper 

{  

public:  

  Integer val;  

  IntegerWrapper() 

  {  

  cout << "IntegerWrapper default constructor" << endl;  

  }  

};  

int main() 

{  

IntegerWrapper q;  

} 

 

The output will be as follows: 

 
Integer default constructor 

IntegerWrapper default constructor 

 

If a constructor with parameters is defined, the default constructor is no longer available. That 

can be very inconvenient while declaring arrays. The way out is to (i) create a separate 0-

argument constructor, or, (ii) use default arguments  
 

class Integer 

{  

public:  

  int val;  

  Integer(int v = 0) 

  {  

  val = v;  

  }  

};  

int main() 

{  

Integer i; // ok  

Integer j(3); // ok  

} 

 

If a method and an argument in a class have the same name, we need to use this, which is a 

pointer to the current instance (this is of type pointer to the relevant class). 
 

class Integer 

{ 

public: 

  int val; 

  Integer(int val = 0) 

  { 

  this->val = val; 

  } 



  void setVal(int val) 

  { 

  this->val = val; 

  } 

}; 

 

One copy of the code class is shared by all instances of the class and, thus, only one copy of the 

member functions is available. So, how does the correct method for a given object gets invoked? 

Once again, the hidden argument this takes care. It translates as a call to the member function 

of the class in question with the first argument as pointer to the specific object  

 



Access modifiers: 

Define where your fields/methods can be accessed from 

public: can be accessed from anywhere 

private: can only be accessed within the class 

Use getters and setters to allow read and write accesses to private fields 
class Point2D 

{ 

private: 

  double x, y; 

public: 

  Point(double nx, double ny) 

  { 

  x = nx; y = ny; 

  } 

  double getX() { return x; } 

  double setX(double a) {x = a;} 

  double getY() { return y; } 

  double setY(double b) {y = b}; 

}; 

 

int main(void) 

{ 

Point2D p(2.0,3.0); 

 

// p.x = 5.0; // not allowed 

p.setX(5.0); // ok 

 

// cout << p.x << endl; // not allowed 

 

cout << p.getX() << endl; // allowed 

} 

 

struct: public by default 

class: private by default 

 



Allocation of memory 

We have already discussed ways of allocating memory through declaration of variables. Here is 

a little more detail: 

 

Whenever we declare a new variable (int x), memory is allocated  

When can this memory be freed up (so it can be used to store other variables)? The memory is 

freed when the variable goes out of scope. Thus, when a variable goes out of scope, that memory 

is no longer guaranteed to store the variable’s value  

 

 
The new operator  

Another way to allocate memory, where the memory will remain allocated until you manually 

de-allocate it. The new operator returns a pointer to the newly allocated memory 
int *x = new int; 

 

Terminology note:  

–If using int x; the allocation occurs on a region of memory called the stack  

–If using new int; the allocation occurs on a region of memory called the heap  

 

 

The delete operator de-allocates memory that was previously allocated using new. It takes a 

pointer to the memory location as the argument. 
 

int *x = new int; // use memory allocated by new; x is a pointer to int! 

delete x; // delete memory allocated by new 

 

As discussed before, allocating arrays of variable sizes and freeing them can be very 

conveniently done with these operators: 

If we use new[] to allocate arrays, they can have variable size, and we can de-allocate such 

arrays with delete[]  
int numItems; 

cout << "how many items?"; 

cin >> numItems; 

 

int *arr = new int[numItems]; 

… 

 

delete[] arr; 

 

It is important to note that new can be used to create new instances of a class. It invokes the 

appropriate constructors. On the other hand, delete can be used to free the memory allocated 

by new. 
 

class Point 

{ 

public: 

  int x, y; 

  Point(int nx, int ny) 

  { 



  x = nx; 

  y = ny; 

  cout << "2-arg constructor" << endl; 

  } 

}; 

 

int main() 

{ 

Point *p = new Point(2, 4); 

 

delete p; 

} 

 

The output will be as follows: 
2-arg constructor 
 



Destructors 

Destructor is called when the class instance gets de-allocated  

(1) If stack-allocated, when it goes out of scope  
class Point 

{  

public:  

  int x, y;  

  Point() 

  {  

  cout << "constructor invoked" << endl;  

  }  

  ~Point() 

  {  

  cout << "destructor invoked" << endl;  

  }  

};  

 

int main() 

{  

if (true) 

  {  

  Point p;  

  }  

 

cout << "p out of scope" << endl;  

} 

Output: 
constructor invoked  

destructor invoked  

p out of scope 

 

(2) If allocated with new, when delete is called  
class Point 

{  

public:  

  int x, y;  

  Point() 

  {  

  cout << "constructor invoked" << endl;  

  }  

  ~Point() 

  {  

  cout << "destructor invoked" << endl;  

  }  

}; 

 

int main() 

{  

Point *p = new Point;  

delete p;  

} 

Output: 
constructor invoked 

destructor invoked 

 



Let us now consider the Three Vector Class available in the Class Library for High Energy 

Physics (CLHEP) in bits and pieces. 

 

The declaration (simplified) of this class is as follows: 
class Hep3Vector 

{ 

public: 

  Hep3Vector(); 

  Hep3Vector(double x, double y, double z); 

  Hep3Vector(const Hep3Vector &v); 

  double x(); 

  double y(); 

  double z(); 

  double phi(); 

  double cosTheta(); 

  double mag(); 

// much more not shown 

private: 

  double dx, dy, dz; 

}; 

 

As you can see, there are three constructors. They are implemented as follows: 
Hep3Vector::Hep3Vector(double x, double y, double z) { 

dx = x; 

dy = y; 

dz = z; 

} 

Hep3Vector::Hep3Vector(const Hep3Vector &vec) { 

dx = vec.dx; 

dy = vec.dy; 

dz = vec.dz; 

} 

Hep3Vector::Hep3Vector(){ 

} 

 

Note that 

• Foo::bar() says that bar() is a member function of the class Foo 

• :: is the scope resolution operator 

• Copy constructor uses a const reference 



Inline: 

 

In the Hep3Vector class, the data members dx, dy, dz are private and we need getters 

and setters, as dicussed above. Usually, small functions such as these getters and 

setters are made inline and put in the header file declaring the class. Consider the 

following declaration: 
class Hep3Vector 

{ 

public: 

  double x(); 

  double y(); 

  double z(); 

  // much more not shown 

private: 

  double dx, dy, dz; 

}; 

 

The implementation for the methods could be: 
double Hep3Vector::x() 

{ 

return dx; 

} 

double Hep3Vector::y() 

{ 

return dy; 

} 

double Hep3Vector::z() 

{ 

return dz; 

} 

 

This approach, however, is inefficient. The following is preferred in which the declaration itself 

is modified: 
inline double Hep3Vector::x() 

{ 

return dx; 

} 

inline double Hep3Vector::y() 

{ 

return dy; 

} 

inline double Hep3Vector::z() 

{ 

return dz; 

} 

 

Points to be noted: 

• can be used when execution of function body is shorter than time to call and return from 

function 

• any decent compiler should produce inline code instead of function call for above 

• inline keyword is just a hint, however 

• data hiding is preserved 



• implementation needs to be in the header file 

• program could be faster 

• program could be larger 

 

Member initializers: 

There are a couple of approaches: 

The constructor can be implemented like any other member function… 
Hep3Vector::Hep3Vector(double x, double y, double z 

{ 

dx = x; 

dy = y; 

dz = z; 

} 

• but data members need to be constructed before assignment 

• for Hep3Vector the custom constructor would be called 

 

An alternate form is use of member initializers 
Hep3Vector::Hep3Vector(double x, double y, double z) : 

dx(x), dy(y), dz(z){} 

 

• note the : preceding the opening {. You can use the semicolon to initialize a member when 

a method is called. It is usually used to initialize constants in the constructor. You can use the 

semicolon to initialize a member when a method is called. This makes sure that all members 

have a correct value assigned to them, in the most efficient way. They allow better exception 

handling too. It is advisable to use them, and initialize all your member variables explicitly this 

way. 

• dx(x) notation calls a constructor directly 

• which constructor depends on argument matching 

• in the above case, it is the copy constructor 

• the function body is required, even if empty 



Operator Overloading: 

An operator function in Hep3Vector 
class Hep3Vector { 

public: 

inline Hep3Vector& operator +=(const Hep3Vector &); 

// more not shown 

• the name of the function is the word operator followed by the operator symbol 

• this function is called when 
Hep3Vector p, q; 

// 

q += p; 

 

• the function is invoked on q ; the left-hand side 

• the argument will be p ; the right-hand side 

• q += p; is shorthand for q.operator+=(p); 

• the function returns a Hep3Vector reference for consistency with built-in types 
Hep3Vector p, q, r; 

// 

r = q += p; 

// r.operator=( q.operator+=(p) ) 

 

Implementation 
inline Hep3Vector& Hep3Vector::operator+=(const Hep3Vector& p) 

{ 

dx += p.x(); // could have been dx += p.dx 

dy += p.y(); 

dz += p.z(); 

return *this; 

} 

• does the accumulation as one would expect 

• this is a hidden argument that is a pointer to the object’s own self 

• this->dx is thus equivalent to dx 

• remember: use -> instead of . when you have a pointer 

• or dx is shorthand for this->dx 
• recall that Hep3Vector::x() is an in-line function itself 

• return *this returns the address of the object, thus the reference 

 

Essentially all operators can be used for user defined types except “.” , “.*” , “::” , 

“sizeof” and “?:”. However, it is not possible to overload operators for built-in types. 

 



The Complete List: 

 

Constructors 
Hep3Vector(double x=0.0, double y=0.0, double z=0.0); 

Hep3Vector(const Hep3Vector &); 

• also contains conversion constructor 

Destructor 
~Hep3Vector(); 

• invoked when object is deleted 

 

Accessor-like functions 
inline double x() const; 

inline double y() const; 

inline double z() const; 

inline double mag() const; 

inline double mag2() const; 

inline double perp() const; 

inline double perp2() const; 

inline double phi() const; 

inline double cosTheta() const; 

inline double theta() const; 

inline double angle(const Hep3Vector &) const; 

inline double perp(const Hep3Vector &) const; 

inline double perp2(const Hep3Vector &) const; 

 

Manipulators 
void rotateX(double); 

void rotateY(double); 

void rotateZ(double); 

void rotate(double angle, const Hep3Vector & axis); 

Hep3Vector & operator *= (const HepRotation &); 

Hep3Vector & transform(const HepRotation &); 

 

Set functions 
inline void setX(double); 

inline void setY(double); 

inline void setZ(double); 

inline void setMag(double); 

inline void setTheta(double); 

inline void setPhi(double); 

 

Output function 
ostream & operator << (ostream &, const Hep3Vector &); 

 

• allows 
Hep3Vector x(1.0); 

// ... 

cout << x << endl; 

 

Vector algebra member functions 
inline double dot(const Hep3Vector &) const; 

inline Hep3Vector cross(const Hep3Vector &) const; 

inline Hep3Vector unit() const; 



inline Hep3Vector operator - () const; 

 

Vector algebra non-member functions 
Hep3Vector operator+(const Hep3Vector&, const Hep3Vector&); 

Hep3Vector operator-(const Hep3Vector&, const Hep3Vector&); 

double operator * (const Hep3Vector &, const Hep3Vector &); 

Hep3Vector operator * (const Hep3Vector &, double a); 

Hep3Vector operator * (double a, const Hep3Vector &); 

 

Assignment operators 
inline Hep3Vector & operator = (const Hep3Vector &); 

inline Hep3Vector & operator += (const Hep3Vector &); 

inline Hep3Vector & operator -= (const Hep3Vector &); 

inline Hep3Vector & operator *= (double); 


