
Gaurav SaxenaGaurav Saxena

Scientific Officer

VECC, Kolkata

Contents

21/05/2011 2VECC, Kolkata

An Example
� 1 # reads in the text file whose name is specified on the command line,
� 2 # and reports the number of lines and words
� 3
� 4 import sys
� 5
� 6 def checkline():
� 7 global l7 global l
� 8 global wordcount
� 9 w = l.split()
� 10 wordcount += len(w)
� 11
� 12 wordcount = 0
� 13 f = open(sys.argv[1])
� 14 flines = f.readlines()
� 15 linecount = len(flines)
� 16 for l in flines:
� 17 checkline()
� 18 print linecount, wordcount

21/05/2011 VECC, Kolkata 3

An Example
� File is x with the contents

This is an
Example of anExample of an
text file.

� Output is

$python example.py x
5 8

21/05/2011 VECC, Kolkata 4

Command-Line Arguments
� “import sys” includes a module (i.e. library) named

sys.

� Need to explicitly load sys.

� List argv is member variable of sys. � List argv is member variable of sys.

� Analogous to argv in C/C++

� sys.argv[1] will be the string ‘x’

� To convert the argument into int or float we use int()
and float() respectively.

21/05/2011 VECC, Kolkata 5

Introduction to File Manipulation
� The function open() is similar to the one in C/C++.

� f = open(sys.argv[1]) , created an object of file
class, and assigned it to f

� The readlines() function of the file class returns a list � The readlines() function of the file class returns a list
consisting of the lines in the file.

� Each line is a string, and that string is one element of
the list.

� In this case
[’’,’This is an’,’example of a’,’text file’,’’]

21/05/2011 VECC, Kolkata 6

Lack of Declaration
� Variables are not declared in Python.

� A variable is created when the first assignment to it is
executed.

� the variable flines does not exist until the statement � the variable flines does not exist until the statement
flines = f.readlines() is executes

21/05/2011 VECC, Kolkata 7

Locals Vs. Globals
� Python does not really have global variables in the

sense of C/C++.

� But for now, for a single source file, its pretty much
similar to that of C/C++.similar to that of C/C++.

� Python tries to infer the scope of a variable from its
position in the code.

� If a function includes any code which assigns to a
variable, then that variable is assumed to be local.

� In the example, Python would assume that l and
wordcount are local to checkline() if we don’t inform
it otherwise.

21/05/2011 VECC, Kolkata 8

Built-In Functions
� len()

� Returns the number of elements in a list.

� readlines()

Returns a list in which each element consisted of one � Returns a list in which each element consisted of one
line of the file

� split()

� splits a string into a list of words

21/05/2011 VECC, Kolkata 9

Keyboard Input
� name = raw_input(’enter a name: ’) #input() in case of python 3

>>> name = input('Enter your name:')
Enter your name:Gaurav Saxena
>>> name
' Gaurav Saxena \ r’' Gaurav Saxena \ r’

� Alternatively
>>> import sys
>>> z = sys.stdin.readlines()
abc
de
f
>>> z
[’abc\n’, ’de\n’, ’f\n’]

21/05/2011 VECC, Kolkata 10

Object-Oriented Programming:

Overview
� Class: A user-defined prototype for an object that defines a set

of attributes that characterize any object of the class. The
attributes are data members (class variables and instance
variables) and methods, accessed via dot notation.

� Class variable: A variable that is shared by all instances of a
class. Class variables are defined within a class but outside any of class. Class variables are defined within a class but outside any of
the class's methods. Class variables aren't used as frequently as
instance variables are.

� Data member: A class variable or instance variable that holds
data associated with a class and its objects.

� Function overloading: The assignment of more than one
behavior to a particular function. The operation performed
varies by the types of objects (arguments) involved.

� Instance variable: A variable that is defined inside a method
and belongs only to the current instance of a class.

21/05/2011 VECC, Kolkata 11

Object-Oriented Programming:

Overview
� Inheritance : The transfer of the characteristics of a class to

other classes that are derived from it.

� Instance: An individual object of a certain class. An object obj
that belongs to a class Circle, for example, is an instance of the
class Circle.class Circle.

� Instantiation : The creation of an instance of a class.

� Method : A special kind of function that is defined in a class
definition.

� Object : A unique instance of a data structure that's defined by
its class. An object comprises both data members (class variables
and instance variables) and methods.

� Operator overloading: The assignment of more than one
function to a particular operator.

21/05/2011 VECC, Kolkata 12

Creating Classes
class Employee:

'Common base class for all employees‘
empCount = 0
def __init__(self, name, salary):

self.name = name self.name = name
self.salary = salary
Employee.empCount += 1

def displayCount(self):
print "Total Employee %d" %

Employee.empCount
def displayEmployee(self):

print "Name : ", self.name, ", Salary: ",
self.salary

21/05/2011 VECC, Kolkata 13

Creating instance objects:
emp1 = Employee("Zara", 2000)

emp2 = Employee("Manni", 5000)

21/05/2011 VECC, Kolkata 14

Accessing attributes:
emp1.displayEmployee()

emp2.displayEmployee()

print "Total Employee %d" %
Employee.empCountEmployee.empCount

� add, remove, or modify attributes of classes and
objects at any time:

emp1.age = 7 # Add an 'age' attribute.

emp1.age = 8 # Modify 'age' attribute.

del emp1.age # Delete 'age' attribute.

21/05/2011 VECC, Kolkata 15

Accessing attributes:
hasattr(emp1, 'age') # Returns true if 'age'

attribute exists

getattr (emp1, 'age') # Returns value of getattr (emp1, 'age') # Returns value of
'age' attribute

setattr(emp1, 'age', 8) # Set attribute
'age' at 8

delattr(empl, 'age') # Delete attribute
'age'

21/05/2011 VECC, Kolkata 16

Built-In Class Attributes:
� __dict__ : Dictionary containing the class's

namespace.

� __doc__ : Class documentation string, or None if
undefined.undefined.

� __name__: Class name.

� __module__: Module name in which the class is
defined. This attribute is "__main__" in interactive
mode.

� __bases__ : A possibly empty tuple containing the base
classes, in the order of their occurrence in the base
class list.

21/05/2011 VECC, Kolkata 17

Built-In Class Attributes:

Employee.__doc__: Common base class for all
employees

Employee.__name__: Employee
Employee .__module __: __main __Employee .__module __: __main __
Employee.__bases__: ()
Employee.__dict__: {'__module__':

'__main__', 'displayCount': <function
isplayCount at 0xb7c84994>, 'empCount': 2,
'displayEmployee': <function
displayEmployee at 0xb7c8441c>, '__doc__':
'Common base class for all employees',
'__init__': <function __init__ at
0xb7c846bc>}

21/05/2011 VECC, Kolkata 18

Destructors
class Point:

def __init(self, x=0, y=0):
self.x = x
self.y = y

def __del__(self):
class_name = self.__class__.__name __ class_name = self.__class__.__name __
print class_name, "destroyed"

pt1 = Point()
pt2 = pt1
pt3 = pt1
print id(pt1), id(pt2), id(pt3) # prints the ids of the

objects
del pt1
del pt2
del pt3

21/05/2011 VECC, Kolkata 19

Destructors
3083401324 3083401324 3083401324

Point destroyed

� When an object's reference count reaches zero, Python
collects it automaticallycollects it automatically

21/05/2011 VECC, Kolkata 20

Class Inheritance:
class SubClassName (ParentClass1[,

ParentClass2, ...]):

'Optional class documentation string'

class_suiteclass_suite

21/05/2011 VECC, Kolkata 21

Class Inheritance:
class Parent: # define parent class

parentAttr = 100

def __init__(self):

print "Calling parent constructor" print "Calling parent constructor"

def parentMethod(self):

print 'Calling parent method'

def setAttr(self, attr):

Parent.parentAttr = attr

def getAttr(self):

print "Parent attribute :", Parent.parentAttr

21/05/2011 VECC, Kolkata 22

Class Inheritance:
class Child(Parent): # define child

class

def __init__(self):

print "Calling child constructor" print "Calling child constructor"
def childMethod(self):

print 'Calling child method'

21/05/2011 VECC, Kolkata 23

Class Inheritance:
c = Child() # instance of child
c.childMethod() # child calls its method
c.parentMethod() # calls parent's method
c.setAttr(200) # again call parent's method
c.getAttr () # again call parent's methodc.getAttr () # again call parent's method

� Output
Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

21/05/2011 VECC, Kolkata 24

21/05/2011 VECC, Kolkata 25

Base Overloading Methods:

21/05/2011 VECC, Kolkata 26

Overloading Operators:

� Output

Vector(7,8)

21/05/2011 VECC, Kolkata 27

Data Hiding:

� Output

21/05/2011 VECC, Kolkata 28

Data Hiding:
� Python protects those members by internally changing

the name to include the class name

� We can access such attributes
as object._className__attrNameas object._className__attrName

� Ex.

print counter._JustCounter__secretCount

2

21/05/2011 VECC, Kolkata 29

21/05/2011 VECC, Kolkata 30

Example
� Output

python tfe.py

the number of text files opened is 2

here is some information about them
(name, lines, words):

x 5 8

y 2 5

example of a

21/05/2011 VECC, Kolkata 31

Files I/O
� Reading Keyboard Input:

� The input Function:

str = input("Enter your input: ");

print "Received input is : ", strprint "Received input is : ", str

� Output

Enter your input: [x*5 for x in
range(2,10,2)]

Recieved input is : [10, 20, 30, 40]

21/05/2011 VECC, Kolkata 32

Files I/O
� Opening and Closing Files:

� The open Function:

file object = open(file_name [, access_mode][, buffering])

� file_name: The file_name argument is a string value � file_name: The file_name argument is a string value
that contains the name of the file that you want to
access.

� access_mode: The access_mode determines the mode
in which the file has to be opened ie. read, write append
etc

� buffering: For buffering.

� r, rb, r+, rb+, w, wb, w+, wb+, a, ab, a+, ab+

21/05/2011 VECC, Kolkata 33

Files I/O
� The file object atrributes:

� The close() Method:

fileObject.close();

21/05/2011 VECC, Kolkata 34

Files I/O
� Reading and Writing Files:

� The write() Method:

Open a file

fo = open("foo.txt", " wb") fo = open("foo.txt", " wb")

fo.write("Python is a great
language.\nYeah its great!!\n");

Close opend file

fo.close()

� The read() Method:

str = fo.read(10);

21/05/2011 VECC, Kolkata 35

Files I/O
� Renaming and Deleting Files:

� The rename() Method:

import os # Rename a file from test1.txt
to test2.txtto test2.txt

os.rename("test1.txt", "test2.txt")

� The delete() Method:

os.delete(file_name)

21/05/2011 VECC, Kolkata 36

