#### Tracking/Vertex Detector (I)

#### Suchandra Dutta Saha Institute of Nuclear Physics

VIII th SERC School on Experimental High Energy Phycics VECC, Kolkata 20<sup>th</sup> June to 10<sup>th</sup> July 2011

## Outline

- Introduction
- Silicon Detectors
  - Working Principle
  - Characteristics
  - Radiation Damages
- Design Consideration of Silicon Tracker
- Reconstruction in Tracking Detector

# **Tracking of Charged Particle**

- Tracking : measurement of the charged particle trajectory (track) i.e the direction and magnitude of it's momentum
- How Tracking is done?
  - Charged particles leave trails in detector active layers due to its interaction with matter
  - Such trails are "reconstructed" as "Hits"
  - "Hits" are connected together (pattern recognition) to find the trajectory of charged particle (track)
  - Point from where tracks are originated, reconstructed as vertex
- Momentum of track is measured from its curvature in the magnetic field

#### What do we measure

Momentum in\_magnetic field





At 2T magnetic field •  $P_{\perp} = 1$ GeV R = 1.67m •  $P_{\perp} = 10$  GeV R = 16.7cm

Assuming a track of length 1 m

• 
$$P_{\perp} = 1 \text{GeV}$$
 s = 7.4 cm  
•  $P_{\perp} = 10 \text{ GeV}$  s = 0.74 cm

The sign of the charge from the bending in the magnetic field



## Why Silicon in Tracking System (I)

#### High Energy Physics in mid 70's

- New quarks (c, b) and leptons ( $\tau$ )
- Life time  $10^{-13}$  s <=  $c\tau$  <=  $10^{-12}$  s



- Standard Tracking Detectors (wire chambers) resolution of 100-200 μm became less sensitive to measure such distances
- A new tracking device with of spatial resolution of 10-20µm became very important

## Why Silicon Detector (II)

• The Idea : the array of silicon diodes can be used as tracking detector (1978-1980)



Silicon Microstrip Detector



- Gain : 10<sup>4</sup>
- Ionisation Energy : 30 eV
- Spatial Resolution : 100-200 μm
- Response Time : 100 ns

• Size :

Not compact

None (ionisation μ thickness) 3.6 eV 10-50 μm (density) 10-50 ns

Compact

## **Working Principle**

- The device should be free of charge carriers for efficient signal collection
- Reversed bias p-n junction
  - Depletion at the junction extends in the bulk
  - Behaves like a resistor drawing no currents under applied voltage
- Depleted junction acts as detector for particle trajectory
  - Charge (e-h pair) created due to passage of charged particle and collected at the junction
- Very low ionisation energy (3.6eV) and large energy loss by minimum ionizing particles...
  - large (~24k) e-h pairs created in a 300 $\mu$ m silicon







## The Layout

- p<sup>+</sup> micro-strips on n-type silicon bulk
  - Bias voltage applied at the back side
  - Charge collected from p+ strips, electronics AC coupled
  - n+ implant at the back and at the cutting edge
- The pitch of the strips defines spatial resolution in ideal case



## The Signal

- Ionization produced in the depleted region by minimum ionizing particles
- Large energy loss due to low ionization energy
  - Landau distribution
- Fluctuations due to knock on electro
  - $(dE/dx)_{most prob} = 0.26 \text{ KeV}/\mu m$
  - (E<sub>Loss</sub>)<sub>most-prob</sub>~72 e-h pairs
  - <E<sub>loss</sub> ><sub>mean</sub> ~ 108 e-h pairs
  - 300µm thickness => 24K electrons
- Full depletion needed to collect the created charge efficiently



## The Noise

#### Possible sources

- Leakage current : drift of thermally generated minority carriers
  - $I_{leak} = 0.5 \text{ q W } (n/\tau_0)$  [W depletion depth,  $\tau_0$  life time of charges]
  - No direct temperature term but enters through charge density n
- Capacitive coupling to the electronics

 $ENC = A + B C_{tot}$  $C_{tot} = C_{bulk} + 2 (C_{1n} + C_{2n} + ....)$ 

- Ctot  $\mu$  strip width/strip pitch
- Bias resistors



## Characteristics

- Working point of a detector is define by the Signal to Noise (S/N) ratio of a detector
  - The most probable value of the landau fit to the distribution is defined as the Signal (S)
  - Noise is the fluctuation of charge in absence of signal
    - Mean of the Gaussian distribution



➡ Signal/Noise (S/N) defines working point of the detector

## **Spatial Resolution**

t=1

t=2

- Physical process:
  - Fluctuation in energy loss
  - Diffusion of charge  $(r \propto \sqrt{Dt})[*]$
- External parameters
  - Strip pitch
  - Electronic noise
  - Charge sharing with neighbouring strips
    - 100-200 $\mu$ n pitch :  $\sigma$  = 10-20  $\mu$ m
    - 25 $\mu$ m pitch :  $\sigma$  = 2-3  $\mu$ m

(\*) r = radius of charge cloud

- D = diffusion constant
- t = elapsed time



t=4

#### Effect of Harsh Radiation Environment

- Secondaries from p-p interaction and their products
- Back scattered neutrons from calorimeter produce
  - Irreversible damage in silicon
    - Increase in leakage current
    - Increase in depletion voltage
    - Deterioration of spatial resolution
- Recovery through annealing not enough
  - Short term beneficial annealing
  - Long term reverse annealing (changes Depletion Voltage)

Substantially degrades performance affecting both aspects : charge collection and spatial resolution

## **Radiation Damage in Silicon**

- Surface damage
  - Decrease in interstrip isolation
- Possible increase in interstrip After Heavy Irradiation **Before Irradiation** capacitance (Type Inversion) p+ strip Signal Spread and Higher Noise p+ strip Bulk damage p-bulk n-bulk Increase in leakage current n+ implant n+ implant •  $\Delta J_{\mu} = \alpha \phi$ Depletion p+ strip p+ strip Decrease in charge collection Ballistic deficit n-bulk p-bulk Change in doping concentration n+ implant n+ implant Vbias<Vd Vbias<Vd
  - Type inversion

## **Radiation Resistant Silicon**

- Radiation hardness of silicon sensor depends on
  - Initial dopant concentration, resistivity
  - Crystal orientation
  - Processing purity/quality

It required years of R&D in collaboration with silicon industry

- Low temperature operation (-10<sup>o</sup>C) to
  - reduce leakage current
  - control reverse annealing
  - improve charge collection
- High Voltage Operation for
  - effective charge collection

to finally develop radiation hard silicon sensors that can work efficiently for ~ 10 years in extreme LHC conditions

## **Detector Design Optimization**

- Physics performance
- Experiment specific condition
  - Track density, affecting occupancy
  - Occupancy (# of fired strips)
    - Number of strips
    - Pitch (separation)
    - Number of readout channel
  - Trigger rate, available time for signal processing
  - Data size
- Best available industrial facilities
- Mechanical constraint considering overall detector design
- Efficient cooling
- As light as possible for efficient tracking
- Finally, the cost !!



## Pixel Detectors (I)

Trcking/vertexing is needed to extend a close as possible to the interaction point

- In very dense environment like LHC, strip detectors are not suitable for this purpose
  - Instead of strips, rectangular pixels used
- Highly segmented detectors
  - Greatly helps in pattern recognition
  - Provides true (3D) high resolution space points
- Readout chips integrated directly on the sensor by bump bonding
  - The pixel size is influenced by the area needed by frond-end chip





## Pixel Detector(II)

- Design consideration
  - Distance of the layers from the interaction region
  - Hit Resolution
  - Material budget
  - Extremely high power density requires efficient cooling
  - Radiation environment
  - Size of the signal charge
  - Incident angle of tracks

## The Generic Tracking Detector

- Overall detector geometry very much experiment specific
  - But almost in all cases :
    - a few layers of pixel detectors used close to the interaction point
    - Followed by layers of Strip detectors

Pixel : Vertex, IP, angle

Strip: Momentum (range depends on the length of the tracker)

## Hit Reconstruction

- Charged Particle traversal through silicon sensor
  - Charge Collection
    - measure S/N
    - particle identification (dE/dx)
  - Hit position
    - 3-threshold Clustering algorithm
    - weighted average of strip position and corresponding charges
- Once hits are found in different layers of the tracker we can proceed with the track reconstruction



## **Track Reconstruction**

- Define an initial track segment using a few hits (seed)
- Follow a track candidate picking up hits iteratively
- Use track model to extrapolated to the next layer
- Consider material to be traversed to define search and measurement error
  - Multiple scattering
    - $\Theta_{MS}$  = 0.9 mrad in 300 µm silicon
- Include hits inside the search window
  - If more hits, create separate branches
- Consider detector inefficiencies
  - If no hits found, in a layer, move to at least next layer
  - All known efficiencies should be considered
  - Track candidate missing hits in several layers do not consider the





### **Track Reconstruction**



## Vertex Reconstruction (I)

Classification of reconstructed tracks in an event such that all tracks associated with a candidate originate at the vertex

- In collider and fixed target experiments interaction vertex is called "primary vertex"
- If particles are created due to decay of unstable particles, the decay vertex is called "secondary vertex"
- If the particles are produced due to interaction with detector material, it is "secondary interaction vertex"
- Different techniques and algorithms used to reconstruct vertices
  - Primary vertex finding relatively easier than secondary vertex finding

### Vertex Reconstruction (II)

- Primary vertex
  - Very high multiplicity
  - Needed as reference many other reconstruction steps apriori
- Secondary vertex
  - Needed for reconstruction of long lived particle
  - Low multiplicity
  - Track association and vertex separation is a challenging





# Steps in Primary Vertex finding (III)

- Find approximate vertex position first
  - Crossing point for each track pair
  - Define weight of each track proportoinal to the distance of the tracks
  - Mode of crossing points
- Weight tracks according to their standardized distance wrt vertex
- Apply specified algorithms to clean the vertex removing non compatible tracks
- Discarded tracks re-clustered to find new vertex
- Iterate over last three steps
- Stop the procedure when distance between different vertexes are smaller than a predefined value after N iterations