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QCD @ hadron colliders

Prakash Mathews

Saha Institute of Nuclear Physics

• Brief History of Strong Interaction
• Essential features of QCD

◦ Factorisation
◦ Universality of IR behaviour
◦ Cancellation of IR singularities
◦ IR safe observables

• Precision QCD at Hadrons collider
• Diphoton production at the LHC in TeV scale gravity models
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High Energy Accelerators

• Accelerators are tools to study the structure of matter and i nteractions at very short
distances

• Uses stable particles (and their antiparticle) eg: Protons and electrons

• Mostly circular machines to use the beams for longer duratio n

• Proton: limited by bending power of dipoles magnets in the ri ng

• Electron: limited by synchrotron radiation= energy loss pe r revolution
δE ∼ ( E

m
)4( 1

R
)

• Present machines

Machine Year Beams Energy(
√

s)

Tevatron 1987 pp̄ 1.96 TeV
RHIC 2000 pp(AA) 200-500 GeV
LHC 2009 pp(AA) 10 → 14 TeV

Advantage of a PP machine to search for new physics is
◦ A prior we neither know the mass nor do we know if they exist
◦ Hadronic CM energy S = 14 TeV, partonic cm energy s = x1x2S is the energy
available for discovery M2

new ∼ s = x1x2S, implies Mnew ∼ 0.2
√

S ∼ 3 TeV
◦ Hadron machine is a natural scanner and good to exploring new physics while a e+e−

machine is good to study the properties of known physics
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CERN Site
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Strong Interaction

• Binds quarks and gluons inside hadron and is the strongest of the four
fundamental forces in nature

• About 100 times em force, a factor 1014 stronger then Weak interaction and
a stunning factor of 1040 stronger than the Gravitational force

• But experience in the macroscopic world is dominated by grav itational and
the em force as the strong and weak are short ranged

• Restriction of the strong force to subatomic distances is a c onsequence of
two features: confinement and asymptotic freedom

• Confinement is a necessary requirement to explain the fact th at no isolated
quarks have ever been observed in any experiment, although s ymmetry
arguments and scattering experiments in the 1960’s establi shed quarks with
-1/3 and +2/3 electric charge units and newly introduced qua ntum property
called colour charge
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Historical Developments

• Gell-Mann and Zweig realised in 1964 that the whole spectros copy of hadron could be
explained by a small number of quarks if baryons are made out o f 3 quarks and meson
out of one quark and antiquark

• quarks must hence have 1/3 or 2/3 elementary electric charge units and spin 1/2

• By end of 1960s static picture of quarks as the constituents o f hadrons was confirmed
through dynamics observed at high e P scattering experiments at SLAC

• Instead of decreasing with increasing momentum transfer as expected for elastic
scattering of electrons at protons as a whole, the cross sect ion showed a scaling
behaviour as it should occur if the electrons scatter on quas i-free, point like and nearly
massless constituents inside the proton

• quark model was very successful in describing the propertie s, multitude and dynamic
behaviour of hadrons, it had severe short comings

◦ Violation of the Pauli-principle
◦ Prediction of neutral pion lifetime was off by a factor nine
◦ No particle of elementary electric charge 1/3 or 2/3 observe d in colliders
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DIS then and now

• SLAC (1969): sub structure of nucleon— Nobel 1990: Limited r ange of x and Q2 in
fixed-target lepton-nucleon scattering experiments, prev ented unambiguous test of QCD
scaling violations and running of αs
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• HERA (2005): extended the range of Q2 by more than 2 orders of magnitude and the
range in x by more then 3 orders of magnitude— precise test of scaling vi olations and
running coupling were achieved
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Chromodynamics

• 3 different colour quantum states for each quark species was introduced and
solved the spin-statistics, saved Pauli-principle and exp lained the missing
factor of nine (= 32) of the pion lifetime

M Y Han and Y Nambu (1965)

• Notion that hadrons consist either of 3 quarks (baryons) or a quark and an
anti quark (meson) arranged such that the net colour charge o f hadron would
vanish— could account for the fact that the strong force is sh ort-ranged

• Finally, in early 1970’s a field theory of the strong force, Qu antum
Chromodynamics (QCD), was introduced. Coloured spin-1 par ticles called
gluons, which couple to colour charges of quarks and also to c oloured gluons
themselves

H Fritzsch and M Gell-Mann (1972)
H Fritzsch, M Gell-Mann and H Leutwyler (1973)

• Chromo-Statics turned into Chromo-Dynamics
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Asymptotically Freedom

• Symanzik demonstrated (1970) in model theories that charge s may change their
effective size when they are probed in scattering experimen ts, at large and at small
distances— quantified through Symanzik’s β-function

• SLAC data on approximate scaling and the notion of free quark s and gluons inside the
proton required a -ive β-function. All field theories probed during that time had a +i ve
β-function

• Crucial question in the early 1970s was therefore whether QF T was compatible with
ultraviolet stability (asymptotic freedom)?

• Majority view was expressed by Zee (1973); conjecturing tha t "there are no
asymptotically free quantum field theories in 4-dim"

• Coleman and Gross set out to prove that conjecture, their gra duate students Politzer
and Wilczek (with Gross) tried to close a loophole: β-function for nonabelian gauge
theories— still unpublished and probably unknown to everyb ody except t’Hooft

• Politzer and Gross & Wilczek finally demonstrated in 1973 tha t Chromo-Dynamics,
with coloured quarks and gluons, obeying SUc(3) symmetry, generated a -ive
β-function— the quarks and gluons are asymptotically free

Nobel prize 2004
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Asymptotically Freedom

• Explained the approximate scaling in the SLAC data at high en ergies, and at the same
time an increase of coupling strength at low energies lead to confinement

• An important consequence of asymptotic freedom is that the s trong coupling αs is
small enough, at sufficiently high energies to allow applica tion of perturbation theory in
order to provide quantitative predictions of physical proc esses

• Quantum Chromodynamics now started its triumphal processi on as being the field
theory of the strong interaction. Many refined calculations theoretical predictions and
experimental verifications were ventured

• Asymptotic freedom and or equivalently the existence of col our charged gluons had to
be tested, quantified and proven experimentally. The strong coupling parameter,
αs(Q2) had to be determined and its energy dependence verified to be c ompatible with
asymptotic freedom
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Quantum Chromodynamics (QCD)

• QCD is the gauge field theory of the strong interaction and des cribes the interaction of
quarks through the exchange of massless vector gauge bosons

LQCD = −1

4
Ga

µν Gµν
a +

nf
X

f=1

qf (i 6D − mf )qf

Gµν
a = ∂µGν

a − ∂ν Gµ
a − gsfabcG

µ
b Gν

c

(Dµ)ij = δij∂µ − i gs

8
X

a=1

Gµ
a Ta

ij

• QCD Lagrangian is invariant under the local SUc(3) transformation

qi −→ q′
i = Uij(εa)qj Uij = exp{−iTa

ijεa}

Gµ −→ G′
µ = U(ε)GµU†(ε) +

i

gs
(∂µU(ε)) U†(ε) G

µ
ij = Gµ

a (Ta)ij

• QCD does not predict the actual value of αs = g2
s /4π, however it definitely predicts

the functional form of its energy dependence
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QCD Feynman rules

Coupling: gs gs g2
s

Colour: (TF
a )ij (TA

a )bc = −ifabc fabcfabc

Lorentz: γµ V µνρ Wµνρσ

• A theory formulated in terms of quarks and gluons at the Lagra ngian level but
observed in nature as hadrons

• Hadrons can carry definite flavour quantum number and hence th e hadronic wave
functions are non-singlets under the falvour symmetry SU(nf ) while hadrons do not
carry any colour quantum number and hence transform as singl et under SUc(3)

transformation

◦ Baryons 1√
6

P

ijk ǫijkq
f1

i q
f2

j q
f3

k

◦ Mesons 1√
3

P

ij δijq
f1

i q̄
f2

j



- p. 12/57

Experimental Group Theory

• Can experimentalists measure all the information containe d in the vertices
• Vertices are determined by quark and gluon representation m atrices TF

a and TA
a

(general symmetry group). Combination that appear in measu rable quantities are the
following traces and sums:

tr(TR
a TR

a ) = TRδab

X

a

(TR
a )ij(T

R
a )jk = CRδij (R = F, A)

• At LEP, data statistics and precision allowed to actually de termine experimentally
values of CA (number of colour charge) and CF

SU(3) LEP

CF
4
3

1.30 ± 0.01 (stat) ± 0.09 (sys)

CA 3 2.89 ± 0.03 (stat) ± 0.21 (sys)

◦ Excludes theories exhibiting symmetries
other than SU(3)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

U(1)3

SU(1)

SU(2)

SU(4)

SU(5)Combined result

SU(3) QCD

ALEPH 4-jet

OPAL 4-jet

Event Shape

OPAL Ngg

DELPHI FF

CF

CA

86% CL error ellipses



- p. 13/57

Energy dependence of strong coupling

• QCD β function calculated up to 4-loops in the MS scheme

∂as

∂ ln µ2
= β(as) = −β0a2

s − β1a3
s − β2a4

s − β3a5
s + O(a6

s)

as = αs/4π = g2
s /16π2, gs = gs(µ2)

• 4-loops β function for Nc = 3

β0 = 11 − 2
3

Nf β1 = 102 − 38
3

Nf β2 = 2857
2

− 5033
18

Nf + 325
54

N2
f

β3 =
`

149753
6

+ 3564ζ3
´

−
`

1078361
162

+ 6503
27

ζ3
´

Nf +
`

50065
162

+ 6472
81

ζ3
´

N2
f + 1093

729
N3

f

Ritbergen, Vermaseren, Larin Phys. Lett. B400 (1997) 379

• Strong coupling gs of QCD is characterized by two important features:
◦ asymptotic freedom gs → 0 UV
◦ confinement gs → ∞ IR

• These properties are strongly dependent on Nf or Nc
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Asymptotic freedom in QCD

• Solution of β-function equation to 1-loop

αs(Q
2) =

αs(µ2)

1 + αs(µ2)β0 ln
“

Q2

µ2

” ≡ 1

β0 ln(Q2/Λ2)

For Nf < 17, αs(Q2) will asymptotically decrease to zero for Q2 → ∞

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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• Summary of measurements of αs as a
function of the respective energy scale Q

• Curves are QCD predictions for the com-
bined world average of αs(MZ), in 4-loop
approximation and using 3-loop threshold
matching at the heavy quark pole masses
• Λ

(5)

MS
= (213 ± 9)MeV

• At high energies asymptotic freedom en-
sures application of perturbation theory
(but αs >> αQED)
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Perturbative QCD at colliders

• Basic prerequisite for the application of perturbative QCD at colliders is
factorisation for hard-scattering process

µ µ

p
fi

i

pj

fj

Q

X

Dk

k

• Hadronic cross section for production of a final state X factorises into
products of PDFs f i

P
and partonic cross sections σ̂ij→X

σP P −>X (s; αs, µF , µR) =

X

ij

Z 1

0

dx1dx2f i
P

(x1, αs, µF )f j
P

(x2, αs, µF )σ̂ij→X (sx1x2; αs, µF , µR)

i, j = q, q̄, q are partons carrying a fraction x1,2 of the proton momentum
• Truncating the cross section at a given order in perturbatio n theory induces
dependence on factorisation scale µF and renormalisation scale µR
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Parton luminosity at hadron colliders

• PDFs fi(x, µ2) are indispensable ingredients of hard scattering process i nvolving
initial state hadrons— not calculable in perturbative QCD

• Universality allows for the determination of PDFs in global fits to experimental data—
a non perturbative input

• Independence of any physical observable on scale µ gives rise to evolution equation
for PDFs, which is a system of coupled integro-differential equations corresponding to
different possible parton splittings

d

d ln µ2

0

@

fqi
(x, µ2)

fg(x,µ2)

1

A =
X

j

1
Z

x

dz

z

0

@

Pqiqj
(z) Pqig(z)

Pgqj
(z) Pgg(z)

1

A

0

@

fqj
(x/z, µ2)

fg(x/z, µ2)

1

A

• Splitting functions Pij are universal quantities and are calculated in perturbativ e QCD
and has an expansion is αs

P = αsP (0) + α2
sP (1) + α3

sP (2) + · · ·

• Currently splitting functions are known to NNLO
Moch, Vermaseren, Vogt 2004; Vogt, Moch, Vermaseren 2004
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Parton evolution

• Given an input distribution at low scale ( Q2 = 10 GeV) determined in a
global fit to data, the evolution equations can be used to pred ict the PDFs at
LHC energies ( Q2 = 104 GeV)

x f(x,Q2) at Q2 = 10 GeV
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• PDFs are extracted from experiments in some factorisation s cheme, to a
particular order, by various groups performing global fits t o available data on
DIS, DY and other hadronic process
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Partonic cross section

• Partonic cross section perturbatively calculable order by order in αs

σ̂i j→X (αs, µF , µR) = αs(µR)nα

n
σ̂(0) +

αs

2π
σ̂(1)(µF , µR)

+
“ αs

2π

”2

σ(2)(µF , µR) + O(α3
s)

o

typically if µR = 100 GeV, αs(µR) ∼ 0.1, then LO term in the expansion σ̂(0)

would suffice to get a 10 % uncertainty

• However in hadron collider corrections from NLO σ̂(1) can increase the
cross section by 30 % to 80 %.

LO qualitative

NLO quantitative

NNLO few percent precision

• Any residual scale dependence is a measure of the quality of a given
calculation in finite perturbative order
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QCD improved Parton Model

Hadronic cross section in terms of partonic cross sections c onvoluted with
appropriate PDF:

2S dσP1P2
`
τ, Q2´

=
X

ab

Z 1

τ

dx

x
Φab (x, µF ) 2ŝ dσ̂ab

“τ

x
, Q2, µF

”

• Partonic cross section perturbatively calculable:

dσ̂ab `
z, Q2, µF

´
=

∞X

i=0

„
αs(µ

2
R)

4π

«i

dσ̂ab,(i) `
z, Q2, µF , µR

´

• Non-perturbative partonic flux:

Φab(x, µF ) =

Z 1

x

dz

z
fa (z, µF ) fb

“x

z
, µF

”

• fP1

a (x, µF ) are Parton distribution functions, x is the partonic momentum
fraction

◦ µR is the Renormalisation scale ◦ µF is the Factorisation scale
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Source of Uncertainties: Theoretical & Experimental

Theoretical Uncertainties:

• Renormalisation scale: Due to UV divergence at beyond Leadi ng Order

αs → αs(µ
2
R)

• Factorisation scale: Originate from light quarks and massl ess gluon. Parton
distribution functions are renormalised at the factorisat ion scale µF

fa(x) → fa(x, µ2
F ) a = q, q̄, g

• Observables should be "free" of µR and µF , but "Fixed order" perturbative results
depend on µR and µF

• Can in principle give large uncertainties

Experimental Uncertainties (PDFs):

Not calculable but extracted from experiments in some facto risation scheme by various
groups by global fits to available data on DIS, DY and other had ronic process

IMPORTANT FOR NEW PHYSICS SEARCHES TO HAVE BETTER CONTROL OV ER THE
THEORETICAL UNCERTAINTIES
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Mass Factorisation

Divergent NLO correction involve loop and phase space integ rals— regularised using
dimensional regularisation n = 4 + ǫ

• IR divergences:
IR divergences appears when |k| → 0, cancels between virtual and real diagrams
(Bloch-Nordsieck Theorem )

• Collinear divergences:
• Final state collinear: singularities cancel if we consider a final state inclusive
process summing over all experimentally indistinguishabl e final states ( KLM Theorem )
• Initial state collinear: singularities left over— leads to mass factorisation

Mass Factorisation Theorem:

• Collinear divergences can be factored out of the sub process cross section

• Mass singularities encountered in QCD are process independ ent

Universality of the collinear singularities enables a proc ess independent way to absorb
them into parton distributions

Politzer NPB 129 (1977) 310 · · ·
· · · Collins, Sopper, Sterman
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@ the LHC

• The challenge is to solve master equation

new physics = data − Standard Model

• New physics searches require the understanding of SM backgr ound

• LHC explores the energy frontier, theory has to match or exce ed accuracy of
LHC data

• LHC is a QCD machine, perturbative QCD is an essential and est ablished
part of the toolkit

• Asymptotic freedom, factorisation and evolution are the in struments we use
to analyse QCD processes at colliders
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Di-photon Process

P1(p1) + P2(p2) → γ(k1) + γ(k2) + X

Leading Order

q

q

γ

γ

q

q

γ

γ

SM
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Di-photon Process

P1(p1) + P2(p2) → γ(k1) + γ(k2) + X

Leading Order

q

q

γ

γ

q

q

γ

γ
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q

q
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γ
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Di-photon Process

P1(p1) + P2(p2) → γ(k1) + γ(k2) + X

Leading Order

q

q

γ

γ

q

q

γ

γ

SM

q

q

G∗
γ

γ

g

g

G∗
γ

γ

Gravity
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Di-photon Process

• Prompt photons with large transverse momenta at hadron colliders is an
interesting laboratory of the short distance dynamics of quarks and gluons and is an

important channel for Higgs searches in the mass range 80 GeV ≤ mH ≤ 140 GeV
and various BSM studies

• "Prompt photons" means they do not come from decay of hadron (π0, η etc).
Photon are faked by hadron, for eg: π0s at large pT could go into two nearly

collinear photons which are difficult to distinguish from a single photon

• Prompt photon could be classified as (a) direct, both photons are not as a result of

fragmentation and (b) fragmentation, atleast one of the photon is as a result of
fragmentation

D γ
q
(z) D γ

g
(z)

• At colliders secondary photons coming from the decay of hadron overwhelms the
prompt photons signal but secondary photons can be rejected by experimental

selection of prompt photons using isolation cuts
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Contributing Subprocess to digamma production

Leading Order:

Standard Model KK-Modes

q + q̄ → γγ q + q̄ → G
g + g → G

Next-to-Leading Order:

Standard Model KK-Modes

q + q̄ → γγ + g, q + q̄ → γγ + one loop q + q̄ → G + g, q + q̄ → G + one loop

q + g → γγ + q, q̄ + g → γγ + q̄ q + g → G + q, q̄ + g → G + q̄

g + g → G + g, g + g → G + one loop

Phys. Lett. B 672 (2009) 45; Nucl. Phys. B818 (2009) 28, with MC Kumar, V Ravindran & A Tripathi
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Virtual Contributions q q̄ → γ γ

O(αs) virtual corrections comes from the interference between the virtual graphs of the (SM +
BSM) and the (SM + BSM) Born graphs

• O
“

g2
s (e4

q + e2
qκ2 + κ4)

”
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Virtual contributions g g → γ γ

• O
“

g2
s κ4

”

• SM gluon fusion via quark loop O
“

g2
s e2

qκ2
”
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Real Contributions q q̄ → γ γ g
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Real Contributions q g → q γ γ
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Real Contributions g g → g γ γ
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Phase-space slicing method with two cutoffs

• Isolating 3-body phase space regions where soft and collinear singularities

occur— impose arbitrary boundaries by introducing small cut-off parameters δs, δc

soft hard
z }| {
0 ≤ Eg ≤ δs

√
sab

2
Eg > δs

√
sab

2

dσreal
ab = dσreal

ab (δs) + dσreal
ab (δs)

dσreal
ab = dσreal

ab (δs) + dσreal
ab (δs, δc) + dσreal

ab,fin(δs, δc)

0 ≤ tij ≤ δcsab tij > δcsab

hard collinear hard non collinear

• Phase space integration on the mutually exclusive soft and collinear region are
performed not on the full matrix element but in the leading pole approximation of soft

and collinear region

• Now only the logarithms of the cut-off parameters are retained and all positive

powers of the cut-off parameters are set to zero
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Dependence on the cutoff parameters δs and δc

• Performing the phase space integrals in 4 + ǫ dimensions, the soft and collinear

poles are exposed. Adding the virtual contributions, all double and single poles of
soft (IR) origin automatically cancel

• Remaining collinear poles are then factorised in the parton distribution or
fragmentation function as the case may be at some scale and some specific

factorisation scheme

• Now we are left with

dσreal
ab = dσreal

ab (δs) + dσreal
ab (δs, δc) + dσreal

ab,fin(δs, δc)

2-body PS 3-body PS

• 2-body part which depend explicitly on ln δs and ln δc

• 3-body part which when integrated over the phase space using Monte Carlo
technique, have an implicit dependence on the same logarithms with opposite signs

• Physical cross sections are hence independent of these arbitrary cut-off δs and δc
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Virtual Corrections

• For diphoton production including gravity there are no UV singularities—
◦ electromagnetic coupling does not receive QCD corrections

◦ KK modes couple to SM energy momentum tensor which is a conserved quantity

• Performing the loop integrals the virtual contributions

dσV = as(µ
2
R) dx1 dx2 K(ǫ, µ2

R , s)
n

CF

h“
− 16

ǫ2
+

12

ǫ

”
dσ0

qq̄(ǫ) + dσfin
qq̄

i
Φqq̄(x1, x2)

+CA

hn
− 16

ǫ2
+

4

ǫ

1

CA

“11

3
CA − 4

3
nf TF

”o
dσ0

gg(ǫ) + dσfin
gg

i
Φgg(x1, x2)

o

K =
Γ(1 + ǫ

2
)

Γ(1 + ǫ)

„
s

4πµ2
R

« ǫ
2

as(µ
2
R) =

αs(µ
2
R)

4π

• SM gluon fusion diagram via quark loop would interfere with the LO gravity

mediated diagram, but this is a finite contribution

• SM gluon fusion contribution, though at O(α2
s) is comparable to LO for small

diphoton invariant mass, but falls of rapidly for larger invariant mass
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Real Emission: Leading pole approximation (soft gluon limi t)

• Matrix element M soft
3 = −gsµ−ǫ/2ǫσ(p5)T

a
ij

“
pσ
2

p2.p5
− pσ

1

p1.p5

”
M2

• Phase Space (p5 → 0)

dΓsoft
3 = dΓ2

“ 4π

s12

”−ǫ/2 Γ(1 + ǫ/2)

Γ(1 + ǫ)

1

2(2π)2
dS

• Performing both E5 and angular integral over the Eikonal current

dS 2p1.p2

p1.p5 p2.p5
=

8

ǫ

“1

ǫ
+ ln δs +

ǫ

2
ln2 δs

”

dσsoft = as(µ
2
R)dx1dx2K(ǫ, µ2

R , s)
“16

ǫ2
+

16 ln δs

ǫ
+ 8 ln2 δs

”

h
CF dσ0

qq̄(x1, x2, ǫ)Φqq̄(x1, x2) + CAdσ0
gg(x1, x2, ǫ)Φgg(x1, x2)

i

• Pole of order 2 corresponds to soft and collinear gluons and cancels with virtual
contributions, while the ǫ−1 pole with coefficient ln δs still remains
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Real Emission: Leading pole approximation (Collinear regi on)

p1

p2

p3

p4

p1

p2

p5

p3

p4

+

• Matrix element in the collinear limit pt → 0 p1 − p5 ≃ zp1

˛

˛

˛Mcol
3

`

q(p1) q̄(p2) → γγg
´

˛

˛

˛

2
= − 2

zt15
Pqq(z, ǫ)

˛

˛

˛M2
`

q(zp1)q̄(p2) → γγg
´

˛

˛

˛

2
g2

s µ
−ǫ
R

• Phase space in the collinear limit

dΓ3 = dΓ2
(4π)−ǫ/2

16π2Γ(1 + ǫ/2)
dzdt15(−(1 − z)t15)

ǫ/2

• Performing dt15 integral in the limit 0 < −t15 < δcs12

dσcol = as(µ
2
R)K(ǫ,µ2

R , s12) dσ̂0
qq̄(s12, t13, t14) f q

P1

` x1

z

´

dx1 f q̄
P2

(x2)dx2

1

ǫ
Pqq(z, ǫ)

“

δc
1 − z

z

” ǫ
2 dz

z
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Hard Collinear region

• z → 1 is the soft region. Hard region E5 > δs

√
s12

2
translates to 0 < z < 1 − δs

for process where soft singularities exist, otherwise there is no restriction on z

dσHC =
as(µ

2
R)

ǫ
K(ǫ, µ2

R , s)dx1dx2

"
dσ̂qq

0 (x1, x2, ǫ)

n Z 1−δs

x1

dz

z
H(z, ǫ, δc)Pqq(z, ǫ)fqi

(x1/z)fqi
(x2)

+

Z 1−δs

x2

dz

z
H(z, ǫ, δc)Pqq(z, ǫ)fqi

(x1)fqi
(x2/z) + x1 ↔ x2

o

qq

H(z, ǫ, δc) =
“
δc

1 − z

z

”ǫ/2
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Hard Collinear region

+ dσ̂qq
0

Z 1

x2

dz

z
H(z, ǫ, δc)

n

Pqg(z, ǫ)fqi
(x1)fg(x2/z) + Pqg(z, ǫ)fqi

(x1)fg(x2/z) + x1 ↔ x2

o

qg

+ dσ̂gg
0

Z 1

x1

dz

z
H(z, ǫ, δc)

n

Pgq(z, ǫ)fqi
(x1/z)fg(x2) + Pgq(z, ǫ)fqi

(x1/z)fg(x2) + x1 ↔ x2

o

qg

• Particle emitted in the final state is a fermion— no soft singularities
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Hard Collinear region

+ dσ̂gg
0 (x1, x2, ǫ)

Z 1−δs

x1

dz

z
H(z, ǫ, δc)Pgg(z, ǫ)

n
fg(x1/z)fg(x2) + x1 ↔ x2

o

gg

#
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Renormalised parton distributions MS scheme

fq(x) = fq(x, µF ) −
as(µ

2
R)

ǫ

Γ(1 + ǫ/2)

Γ(1 + ǫ)

„
µ2

F

4πµ2
R

« ǫ

2
Z 1

x

dz

z

h
Pqq(z)fq

`x

z

´
+ Pqg(z)fg

`x

z

´i

fg(x) = fg(x, µF ) −
as(µ

2
R)

ǫ
K(ǫ, µ2

R, s)

„
µ2

F

s

« ǫ

2

Z 1

x

dz

z

h
Pgg(z)fg(x/z) + Pgq(z)

`
fq(x/z) + fq(x/z)

´i

• Counter terms to cancel the collinear singularities are obtained by substituting the

renormalised PDFs in LO cross section— mass factorisation

dσ0 = dx1 dx2 dσ̂qq
0 (x1, x2, ǫ)

X

i

h
fqi

(x1)fqi
(x2) + fqi

(x1)fqi
(x2)

i

+ dx1 dx2 dσ̂gg
0 (x1, x2, ǫ)fg(x1)fg(x2)
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Cancellation of collinear singularities

• dσHC for dσ̂qq
0 (x1, x2, ǫ) hard process to O(as)

1

ǫ
K(ǫ, µ2

R, s)fq(x1)

Z 1−δs

x2

dz

z
H(z, ǫ, δc)Pqq(z, ǫ)fq(x2/z)

• Corresponding counter term

−
1

ǫ
K(ǫ, µ2

R, s)fq(x1, µF )
“µ2

F

s

” ǫ
2

Z 1

x2

Pqq(z)fq(x2/z)

• Cancellation of collinear singularities in the hard collinear region dσHC are not

complete when the counter terms dσCT is added— as the phase space is separated
into soft and hard regions

1

2
fq(x1, µF )

Z 1−δs

x2

dz

z

n
Pqq(z) ln

h
δc

1 − z

z

s

µ2
F

i
− P ′

qq(z)
o

fq(x2/z)

+
h
−

1

ǫ
+

1

2
ln

“ s

µ2
F

”i
fq(x1, µF )

Z 1

1−δs

dz

z
Pqq(z)fq(x2/z)



- p. 41/57

Cancellation of collinear singularities

dσHC+CT = as(µ
2
R) dx1 dx2 K(ǫ, µ2

R, s)

dσ̂0
ab

n1

2

“
fa(x1, µF ) efb(x2, µF ) + efa(x1, µF ) fb(x2, µF )

”

+2
“
−

1

ǫ
+

1

2
ln

s

µ2
F

”
Aa→b+c fa(x1, µF ) fb(x2, µF ) + x1 ↔ x2

o

efq(x1, µF ) =

Z 1−δs

x

dz

z
ePqq(z)fq

“x

z
, µF

”
+

Z 1

x

dz

z
ePqg(z)fg(x/z, µF )

efg(x1, µF ) =

Z 1

x

dz

z
ePgq(z)fq

“x

z
, µF

”
+

Z 1−δs

x

dz

z
ePgg(z)fg(x/z, µF )

Aa→b+c ≡

Z 1

1−δs

dz

z
Pab(z) =

0
B@

8CF ln δs| {z } +6CF 0

0 22
3

CA −
8
3
nfTF + 8CA ln δs| {z }

1
CA

• All +ive powers of δs → 0
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Cancellation of collinear singularities

• Now all poles of soft and collinear origin automatically cancel and is left with a

finite 2-body process explicitly dependent on ln δs and ln δc

dσ2−body(δs, δc) = dσvirt + dσreal(δs) + dσHC+CT (δs, δc)

• This when added to the finite hard non-collinear 3-body contribution and on

performing the phase space integration using a Mote Carlo techniques have implicit
dependence on the same logarithms with opposite signs

dσ = dσ2−body(δs, δc) + dσ3−body(δs, δc)

• For a reasonable range where δs and δc are small, the results are stable,

providing a check on the calculation

• The combined analytic and Monte Carlo method is flexible enough to

accommodate various experimental cuts and compute different observables that are
infrared and collinear safe
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Stability plot for dσ/dQ (SM+ADD)
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• Numerical results least sensitive to slicing parameters over a wide range
• Choose a particular value for δs,c (stable region) for numerical predictions
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Di-photon signal

• Prompt photons:

◦ Direct: Both photons originating from the hard partonic interaction

◦ Fragmentation: At least one photon produced in the hadronisation of a parton

• Fragmentation photon would be accompanied by hadronic activity in its vicinity

• Final state quark-photon collinear singularity appears in the calculation of the
subprocess gq → qγγ.

• These singularities can be factorised and absorbed into the fragmentation
functions Dγ/a(z, µF ) where a = q, q, g, to all orders in αs — additional non

perturbative input
Binoth et.al arXiv:hep-ph/9911340

• We adopt an alternate smooth cone isolation criterion proposed by Frixione which
ensures that the fragmentation contribution are suppressed with out affecting the

cancellation of any of the singularities discussed earlier.
Frixione arXiv:hep-ph/9801442
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Frixione’s algorithm for the isolation of photons

• Method to define an isolated photon is to draw a circle of radius r0 in the
(η, φ) plane, centered on the photon candidate

γ(pγ)

jet(p5)

Jet accepted

modification needed

• Demanding no hadronic activity in the region r < r0 would not only
remove the fragmentation contribution but also gluons from that region of
phase space— event not IR safe

• Fragmentation mechanism is a collinear phenomenon, to eliminate its
contribution— sufficient to veto only collinear configurations
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Smooth cone isolation prescription

• Define a continuous set of circles with r < r0 and demand total transverse
energy of hadronic activity permitted inside r, ET (r) decreases to zero as
r → 0

•
∑

i ET,i ≤ Eiso
T

(

1−cos(r)
1−cos(r0)

)n

• Energy of parton emitted exactly
collinear to the photon must vanish

• Contribution of fragmentation is re-

stricted to D γ

q,g
(z)

∣

∣

∣

z=1
= 0

Isolation algorithm

H(R)

Events to be

Discarded

Allowed

E
T
 (

Je
t)

R

0

2.5

5

7.5

10

12.5

15

17.5

0 0.1 0.2 0.3 0.4

• No region of phase space is forbidden to radiation and at the same time
has the virtue of entirely suppressing the poorly known non perturbative
fragmentation contribution
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Dependence of photon isolation criteria Eiso
T and n

• ADD Default choice Eiso
T = 15 GeV, n = 2, r0 = 0.4

Invariant mass distribution LHC

dσ/dQ (pb/GeV)
Ms = 2 TeV

d = 3

δs = 10 - 3

δc = 10 -5

SM Eiso = 5 GeV

SM Eiso = 30 GeV

SM + GR Eiso = 5 GeV

SM + GR Eiso = 30 GeV

Q
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Invariant mass distribution LHC

dσ/dQ (pb/GeV)
Ms = 2 TeV

d = 3

δs = 10 - 3

δc = 10 -5

SM n = 1

SM n = 2

SM + GR n = 1
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Q
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10
-2
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Effects of varying the cone size r0

Cone variations ADD model

dσNLO / dQ (pb/GeV) LHC

Ms = 2 TeV

d = 3

SM r0 = 0.4

SM r0 = 0.5

SM r0 = 1.0

SM + ADD  r0 = 0.4
SM + ADD  r0 = 0.5

SM + ADD  r0 = 1.0

Q
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10
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10
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300 400 500 600 700 800 900 1000
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Numerical Results

• Phase space slicing parameters δs = 10−3 and δc = 10−5

• Photon isolation criteria Eiso
T = 15 GeV, n = 2, r0 = 0.4

• Parton Distribution Functions:
◦ LO CTEQ6L
◦ NLO CTEQ6M

nf = 5 light quark flavours and µF = µR = Q

• ADD parameters Ms = 2 TeV, d = 3

• RS parameters M1 = 1.5 TeV, c0 = 0.01

• Kinematical cuts: (ATLAS & CMS)
◦ pγ

T > 40(25) GeV for harder (softer) photons
◦ |yγ | < 2.5 for each photon
◦ rγγ = 0.4 minimum separation between two photons in (η, φ) plain
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Invariant mass distribution of the diphoton dσ/dQ (ADD)

Invariant mass distribution LHC

dσNLO / dQ (pb/GeV) Ms = 2 TeV

d = 3

δs = 10 - 3

δc = 10 - 5

SM LO
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SM + ADD  NLO
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Invariant mass distribution LHC

dσ/dQ (pb/GeV) Ms = 2 TeV
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• SM gg-fusion process through quark loop (O(α2
s)), is comparable to LO in

the lower invariant mass Q region but falls of rapidly in the region of interest
to large extra dim models
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Factoriasation scale dependence of dσ/dY

µF variation in the rapidity distribution LHC

dσSM+ADD / dY (pb)

600 < Q < 1100 GeV

Μs = 2 TeV
d = 3
δs = 10-3
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Y

0.1

0.2

0.3

0.4

0.5
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• NLO results show significant improvement on the factorisation scale
uncertainty entering thorough the PDFs at LO
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Invariant mass distribution of the diphoton dσ/dQ (RS)

Invariant mass distribution RS model
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Summary

• Asymptotic freedom, factorisation and evolution the instr uments
needed to analyse QCD processes at colliders

• Perturbative QCD is an essential and established part of the tool kit
and has attained sufficient precision to search for new physi cs

• Di-photon signal to NLO using the semi analytical phase spac e
slicing method is flexile enough to accommodate various
experimental cuts and compute different observables that a re
infrared and collinear safe

• Quantitative impact of the QCD corrections for searches of e xtra
dimension at hadron colliders
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Natural question

• Is this leading order result stable in the perturbation theo ry?

• Why should we ask this question at all here?

• Because we are dealing with partons such as quark and gluons a t the initial
state which are sensitive to Factorisation scale even at LO

dσP P `
x, Q2´

=
X

ab

Z 1

x

dz

z
Φ

(0)
ab

`
z, Q2, µ2

F

´
σ

(0)
ab

“x

z
, Q2, M2

S

”
+ · · ·

Leading Partonic cross section is "independent" of µF

• Uncertainty can come from Factorisation scale µF through the LO flux
Φ

(0)
ab (z, µF )

• How serious is it?
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Scale Variation of Flux at LHC

ΦI
ab(τ, µF ) =

Z 1

τ

dz

z
fa (z, µF ) fb

“ τ

z
, µF

”

I = LO, NLO

µ0 = 0.7 TeV τ =
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S

√
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Scale Variation of Flux at Tevatron

ΦI
ab(τ, µF ) =

Z 1

τ

dz

z
fa (z, µF ) fb

“ τ

z
, µF

”

I = LO, NLO
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Flux at LHC and Tevatron

Φab(τ, µF ) =

Z 1

τ

dz

z
fa (z, µF ) fb

“ τ

z
, µF

”

τ =
Q2

S

τ = Q2/S

Φab (τ)
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• Gluon flux dominates at LHC

τ = Q2 / S

Φab (τ)
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TEVATRON
MRST
µF = 1.5 TeV
µR = 1.5 TeV
αs = 0.08

qqb_LO
gg_LO
αs (qgNLO+qbgNLO)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 2

0.1 0.2 0.3

• q q̄ flux is largest at Tevatron
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