Lattice Quantum Chromo Dynamics

Rajiv V. Gavai T. I. F. R., Mumbai

Introduction: Why & How

Scalar Fields

Quarks on lattice

Bringing in Interactions

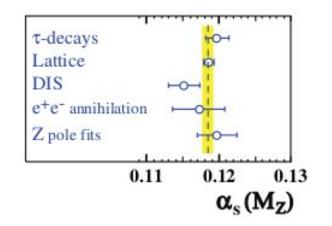
Continuum Limit

Introduction : Quantum Chromo Dynamics (QCD)

- Gauge theory of interactions of quarks & gluons. Similar in structure to theory of electrons & photons (QED).
- Many more "photons" (Eight) which carry colour charge & hence interact amongst themselves.

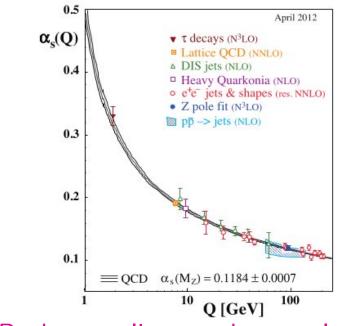
Introduction : Quantum Chromo Dynamics (QCD)

- Gauge theory of interactions of quarks & gluons. Similar in structure to theory of electrons & photons (QED).
- Many more "photons" (Eight) which carry colour charge & hence interact amongst themselves.
- Asymptotic Freedom : Coupling α_s small for large momentum transfer. (Nobel Prize 2004).



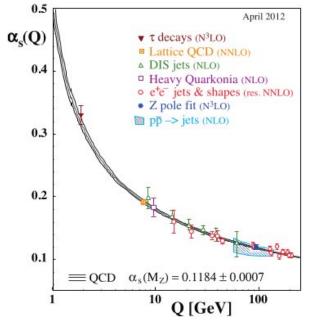
From Particle Data Group 2012

• From Particle Data Group 2012



• Unlike QED, the coupling can be very large.

• From Particle Data Group 2012



- Unlike QED, the coupling can be very large.
- Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..
- $M_{Proton} \gg (2m_u + m_d)$, by a factor of $100 \rightarrow$ Understanding it is knowing where the Visible mass of Universe comes from.

• Spin 1/2 particle of mass $m \Rightarrow S_z = \pm 1/2$. Let z-axis be along its momentum \vec{P}

• Spin 1/2 particle of mass $m \Rightarrow S_z = \pm 1/2$. Let z-axis be along its momentum \vec{P} : A) $[S_z \rightarrow]$ along the momentum $[\vec{P} \Longrightarrow]$ OR B) Opposite to it, *i. e.*, $[S_z \leftarrow]$ along $[\vec{P} \Longrightarrow] \equiv [S_z \rightarrow]$ along $[\vec{P} \Leftarrow]$.

- Spin 1/2 particle of mass m ⇒ S_z = ±1/2. Let z-axis be along its momentum P
 : A) [S_z →] along the momentum [P
 ⇒]
 OR
 B) Opposite to it, i. e., [S_z ←] along [P
 ⇒] ≡ [S_z →] along [P
 ←].
- Particle in state A can be transformed to state B by a Lorentz transformation along z-axis.
- The particle must come to rest in between : $m \neq 0$.

- Spin 1/2 particle of mass m ⇒ S_z = ±1/2. Let z-axis be along its momentum P
 : A) [S_z →] along the momentum [P
 ⇒]
 OR
 B) Opposite to it, i. e., [S_z ←] along [P
 ⇒] ≡ [S_z →] along [P
 ←].
- Particle in state A can be transformed to state B by a Lorentz transformation along z-axis.
- The particle must come to rest in between : $m \neq 0$.
- For (N_f) massless particles, A or B do not change into each other: Chiral Symmetry (SU(N_f) × SU(N_f)).

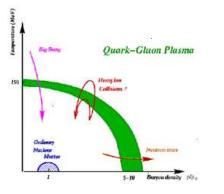
- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y. Nambu, Physics Nobel Prize 2008).

- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y. Nambu, Physics Nobel Prize 2008).
- Chiral symmetry **may** get restored at sufficiently high temperatures or densities. Effective mass then 'melts' away, just as magnet loses its magnetic properties on heating.
- New States at High Temperatures/Density expected on basis of models.

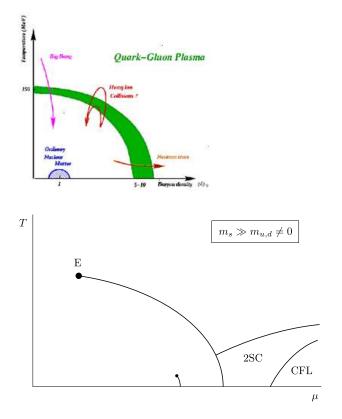
- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y. Nambu, Physics Nobel Prize 2008).
- Chiral symmetry **may** get restored at sufficiently high temperatures or densities. Effective mass then 'melts' away, just as magnet loses its magnetic properties on heating.
- New States at High Temperatures/Density expected on basis of models.
- Quark-Gluon Plasma is such a phase. It presumably filled our Universe a few microseconds after the Big Bang & can be produced in Relativistic Heavy Ion Collisions.
- Much richer structure in QCD : Quark Confinement, Dynamical Symmetry Breaking.. Lattice QCD should shed light on this all.

A fundamental aspect – Critical Point in T- μ_B plane;

A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram



A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram



From Columbia Physics Webpage & Rajagopal-Wilczek Review

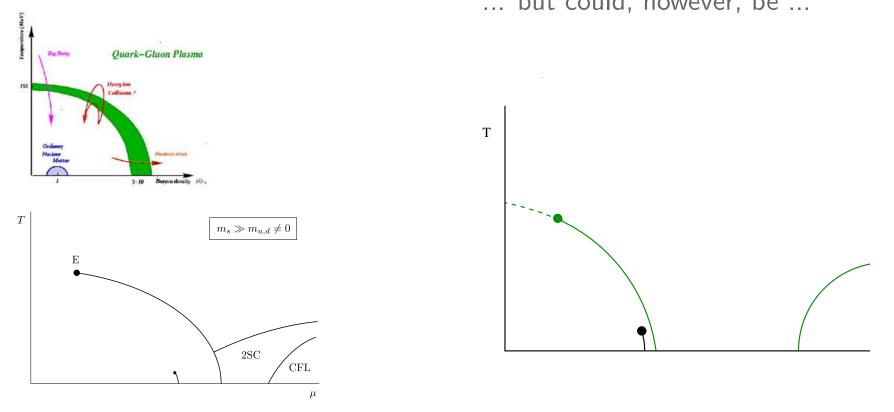
Nuclear Matter under Extreme Conditions, VECC, Kolkata, January 12-19, 2013

A fundamental aspect – Critical Point in $T-\mu_B$ plane; Based on symmetries and models, expected QCD Phase Diagram ... but could, however, be ...

From Columbia Physics Webpage & Rajagopal-Wilczek Review

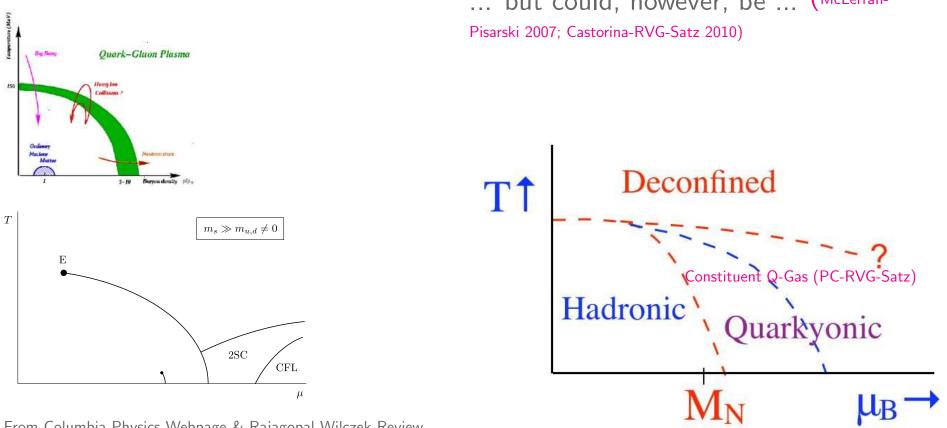
Nuclear Matter under Extreme Conditions, VECC, Kolkata, January 12-19, 2013

A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram ... but could, however, be ...



From Columbia Physics Webpage & Rajagopal-Wilczek Review

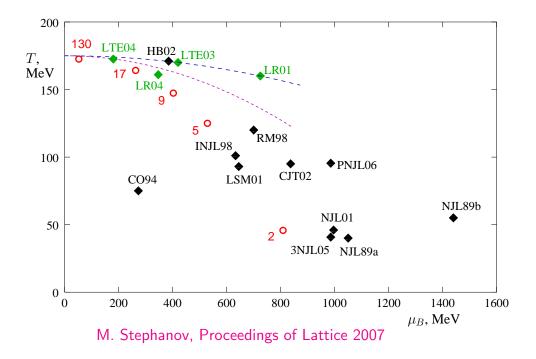
 \blacklozenge A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram ... but could, however, be ... (McLerran-



From Columbia Physics Webpage & Rajagopal-Wilczek Review

Models vs. Lattice QCD

- Many aspects of quark-gluon plasma (QGP) signals, including basic ideas underneath, depend on QGP properties, e.g., EoS, Debye Screening, etc.
- Computing in different models leads to different predictions.



- Large latent heat in Bag model, and hence long-lived mixed phase, is purely by construction, not at all generic.
- Lattice QCD, on the other hand, uses only the well-established QCD Lagrangian and the associated QFT knowledge/techniques.
- Only free parameters are quark masses, and QCD-scale Λ_{QCD} . These are fixed by well-known hadron masses : π , K, ρ .

- Large latent heat in Bag model, and hence long-lived mixed phase, is purely by construction, not at all generic.
- Lattice QCD, on the other hand, uses only the well-established QCD Lagrangian and the associated QFT knowledge/techniques.
- Only free parameters are quark masses, and QCD-scale Λ_{QCD} . These are fixed by well-known hadron masses : π , K, ρ .
- Same lattice techniques used to fix the above, and to make predictions, such at T_c or EoS or Heavy Quark Diffusion constant.
- Use of path integrals at both zero temperature (for hadron masses) & finite temperature/density key to lattice approach.
- $Z(T,\mu) = \text{Tr } \exp{-(\hat{H} \mu \hat{N})/T} \rightsquigarrow \text{EoS}, T_c,...$ all thermodynamics. E.g. the energy density is $-V^{-1} \partial \ln Z/\partial (1/T)$.

QCD Thermodynamics from First Principles

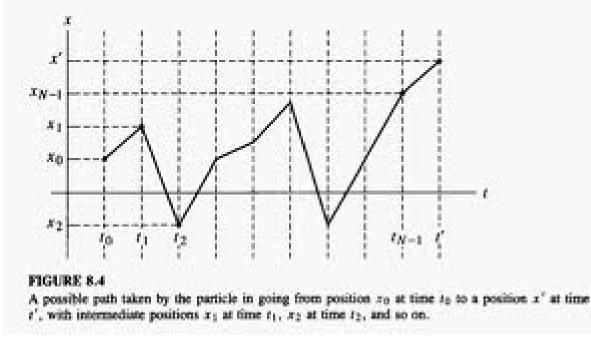
- Simply use \hat{H}_{QCD} and \hat{N}_{baryon} above to obtain QCD thermodynamics from basics.
- Evaluation of trace : too complicated, intractable and even gauge dependent. Gauss' law has to be imposed.
- Reformulate the problem as a functional integral over all the fields in the theory of the gauge invariant \mathcal{L}_{QCD} in Euclidean time.

QCD Thermodynamics from First Principles

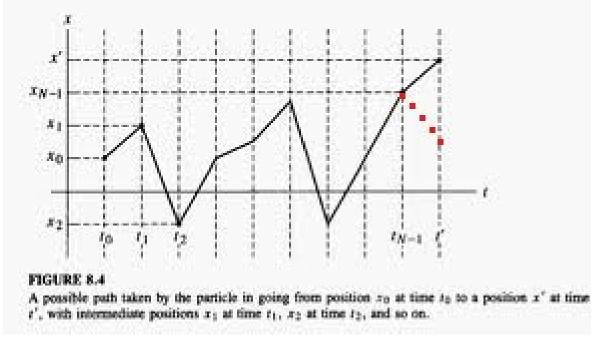
- Simply use \hat{H}_{QCD} and \hat{N}_{baryon} above to obtain QCD thermodynamics from basics.
- Evaluation of trace : too complicated, intractable and even gauge dependent. Gauss' law has to be imposed.
- Reformulate the problem as a functional integral over all the fields in the theory of the gauge invariant \mathcal{L}_{QCD} in Euclidean time.
- A sketch of the idea : Let $\mu_B = 0$ and \hat{H}_{QCD} be replaced by that of a one dimensional QM case. So, $\hat{H} = \hat{p}^2/2m + V(\hat{x})$.
- Use $\hat{x} \mid x \rangle = x \mid x \rangle$ as the complete and orthonormal set of states to evaluate the trace : $Z = \int dx \ \langle x \mid \exp(-\hat{H}/T) \mid x \rangle$.

- Let us divide $1/T = n\epsilon$, with ϵ very small, so that $\langle x \mid \exp(-\hat{H}/T) \mid x \rangle = \langle x \mid \prod_{i=1}^{n} \exp[-(\epsilon \hat{H})] \mid x \rangle.$
- Inserting the completeness relation n 1 times & identifying $x_0 = x_n$, $Z = \int \prod dx_i \ \langle x_{i-1} \mid \exp[-\epsilon V(\hat{x})/2] \exp[-\epsilon \hat{p}^2/2m] \exp[-\epsilon V(\hat{x})/2] \mid x_i \rangle.$

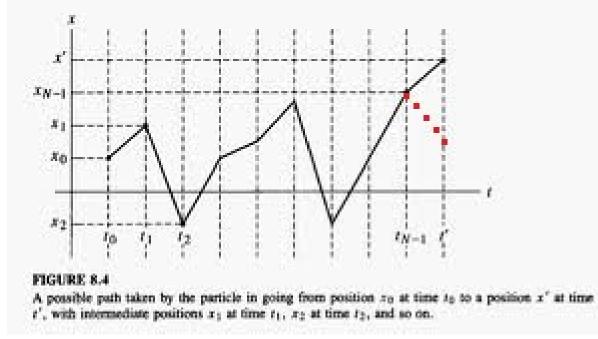
- Let us divide $1/T = n\epsilon$, with ϵ very small, so that $\langle x \mid \exp(-\hat{H}/T) \mid x \rangle = \langle x \mid \prod_{i=1}^{n} \exp[-(\epsilon \hat{H})] \mid x \rangle.$
- Inserting the completeness relation n 1 times & identifying $x_0 = x_n$, $Z = \int \prod dx_i \ \langle x_{i-1} \mid \exp[-\epsilon V(\hat{x})/2] \exp[-\epsilon \hat{p}^2/2m] \exp[-\epsilon V(\hat{x})/2] \mid x_i \rangle.$



- Let us divide $1/T = n\epsilon$, with ϵ very small, so that $\langle x \mid \exp(-\hat{H}/T) \mid x \rangle = \langle x \mid \prod_{i=1}^{n} \exp[-(\epsilon \hat{H})] \mid x \rangle.$
- Inserting the completeness relation n 1 times & identifying $x_0 = x_n$, $Z = \int \prod dx_i \ \langle x_{i-1} \mid \exp[-\epsilon V(\hat{x})/2] \exp[-\epsilon \hat{p}^2/2m] \exp[-\epsilon V(\hat{x})/2] \mid x_i \rangle.$



- Let us divide $1/T = n\epsilon$, with ϵ very small, so that $\langle x \mid \exp(-\hat{H}/T) \mid x \rangle = \langle x \mid \prod_{i=1}^{n} \exp[-(\epsilon \hat{H})] \mid x \rangle.$
- Inserting the completeness relation n 1 times & identifying $x_0 = x_n$, $Z = \int \prod dx_i \ \langle x_{i-1} \mid \exp[-\epsilon V(\hat{x})/2] \exp[-\epsilon \hat{p}^2/2m] \exp[-\epsilon V(\hat{x})/2] \mid x_i \rangle.$



• Noting that \hat{P} is the canonical momentum operator has similar complete eigenstates too, these can be inserted twice in each term above.

• Evaluating the matrix elements, and simplifying, one obtains : $Z = \int \prod dx_i \ dp_i \ \exp\left[-\epsilon \left[p_i^2/2m + V(x_i)/2 + V(x_{i-1})/2 - ip_i \frac{x_i - x_{i-1}}{\epsilon}\right] \ .$

- Evaluating the matrix elements, and simplifying, one obtains : $Z = \int \prod dx_i \ dp_i \ \exp\left[-\epsilon \left[p_i^2/2m + V(x_i)/2 + V(x_{i-1})/2 - ip_i \frac{x_i - x_{i-1}}{\epsilon}\right] \ .$
- Integrating over p_i by completing the square, $Z = Const. \int_{x_0=x_n} \prod dx_i \exp\left[-\frac{m}{2\epsilon}(x_i - x_{i-1})^2 - \epsilon \frac{V(x_i) + V(x_i)}{2}\right].$
- Letting $\epsilon \to 0$, $Z = \sum_{paths}^{x(0)=x(1/T)} \exp(-S)$ where $S = \int_0^{1/T} d\tau [\frac{m}{2} \dot{x}^2 + V(x)]$.

- Evaluating the matrix elements, and simplifying, one obtains : $Z = \int \prod dx_i \ dp_i \ \exp\left[-\epsilon \left[p_i^2/2m + V(x_i)/2 + V(x_{i-1})/2 - ip_i \frac{x_i - x_{i-1}}{\epsilon}\right] \ .$
- Integrating over p_i by completing the square, $Z = Const. \int_{x_0=x_n} \prod dx_i \exp\left[-\frac{m}{2\epsilon}(x_i - x_{i-1})^2 - \epsilon \frac{V(x_i) + V(x_i)}{2}\right].$
- Letting $\epsilon \to 0$, $Z = \sum_{paths}^{x(0)=x(1/T)} \exp(-S)$ where $S = \int_0^{1/T} d\tau [\frac{m}{2} \dot{x}^2 + V(x)]$.

Remarks :

- 1. Z is now sum over all possible paths of e^{-S} : Euclidean path integral over the Euclidean time $\tau(=it)$.
- 2. In the limit $T \rightarrow 0$, the partition function Z reduces to a generating functional, i.e., the usual T = 0 path integral.

Generalization to Field Theory

- Recall that we introduced 'time' in form of $T^{-1} = n\epsilon$, introduced a transfer matrix from *i*th to i + 1th time slice, and wrote $Z = \text{Tr } T^n$.
- Using canonical coordinate and momentum, x and p, matrix element of T was evaluated in terms of eigenvalues, leading to the Lagrangian form.

Generalization to Field Theory

- Recall that we introduced 'time' in form of $T^{-1} = n\epsilon$, introduced a transfer matrix from *i*th to i + 1th time slice, and wrote $Z = \text{Tr } T^n$.
- Using canonical coordinate and momentum, x and p, matrix element of T was evaluated in terms of eigenvalues, leading to the Lagrangian form.
- Following the same procedure for Scalar fields, with (ϕ, π) as conjugate pair, Quark fields with $(\psi, \overline{\psi})$, and/or Gauge fields with (\vec{A}, \vec{E}) , one can obtain the Euclidean path integral for respective theories.
- $Z_{NS} = \int_{\phi(0)=\phi(1/T)} \mathcal{D}\phi \exp\left[-\int_{0}^{1/T} d\tau \int d^{3}x (\frac{\partial\phi}{\partial\tau})^{2} + (\nabla\phi)^{2} + m^{2}\phi^{2} + V(\phi)\right]$ $Z_{QCD} =$ $\int_{\psi(0)=-\psi(1/T),\bar{\psi}(0)=-\bar{\psi}(1/T),A_{\mu}(0)=A_{\mu}(1/T)} \mathcal{D}\psi \mathcal{D}\bar{\psi} \mathcal{D}A_{\mu} e^{-\int_{0}^{1/T} d\tau d^{3}x} \mathcal{L}_{QCD}$

Remarks :

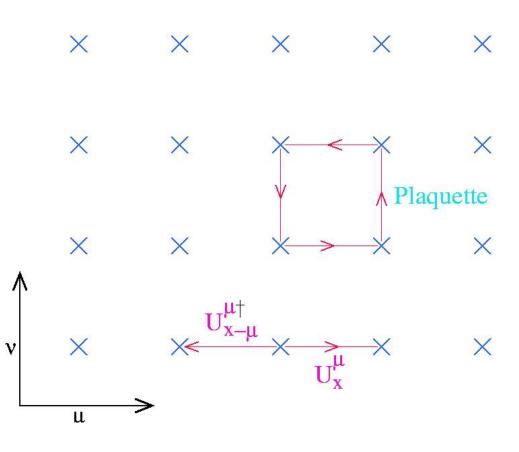
- 1. Z is again sum over all possible values of fields of e^{-S} : Euclidean path integral over the Euclidean time $\tau(=it)$.
- 2. In the limit $T \rightarrow 0$, the partition function Z reduces to a generating functional, i.e., the usual T = 0 path integral.

Remarks :

- 1. Z is again sum over all possible values of fields of e^{-S} : Euclidean path integral over the Euclidean time $\tau(=it)$.
- 2. In the limit $T \rightarrow 0$, the partition function Z reduces to a generating functional, i.e., the usual T = 0 path integral.
- 3. Fermion path integral defined in terms of Grassmann variables, satisfying $\eta_i \eta_j + \eta_j \eta_i = 0$. Note the anti-periodic boundary condition for (anti)quarks.
- 4. Scalar or vector fields (bosons) have periodic boundary conditions.
- 5. Manifest gauge invariance for Z_{QCD} .
- 6. Only Gaussian (i.e, free) field integrals are doable analytically.

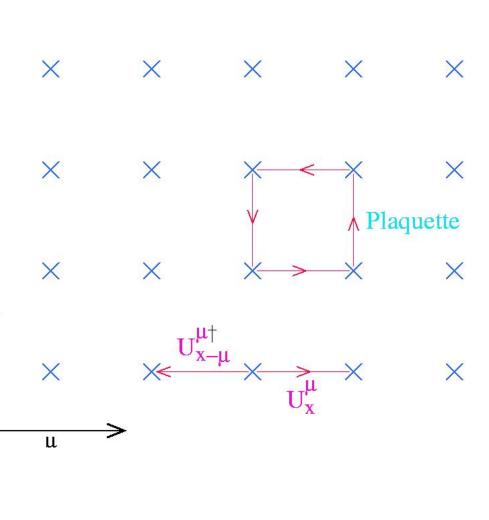
Basic Lattice QCD

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$



Basic Lattice QCD

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- Quark fields $\psi(x)$, $\overline{\psi}(x)$ on lattice sites.
- Gluon Fields on links : $U_{\mu}(x)$
- Gauge invariance : Actions from Closed Wilson loops, e.g., plaquette.
- Fermion Actions : Staggered, Wilson, Overlap, Domain Wall..



Scalar fields

- Klein-Gordon equation (Euclidean time) : $(-\Box + m^2)\phi = 0$, where $\Box = \sum_{\mu} \partial_{\mu} \partial_{\mu}$ and $\mu = 1, 2, 3, 4$.
- Derived from the action, $S_E = \frac{1}{2} \int d^4x \ [(\partial_\mu \phi)^2 + m^2 \phi^2] = \frac{1}{2} \int d^4x \ [\phi(-\Box + m^2)\phi].$
- Z now is a doable Gaussian functional integral (Prob. : Derive Bose-Einstein distribution using this form).

Scalar fields

- Klein-Gordon equation (Euclidean time) : $(-\Box + m^2)\phi = 0$, where $\Box = \sum_{\mu} \partial_{\mu} \partial_{\mu}$ and $\mu = 1, 2, 3, 4$.
- Derived from the action, $S_E = \frac{1}{2} \int d^4x \; [(\partial_\mu \phi)^2 + m^2 \phi^2] = \frac{1}{2} \int d^4x \; [\phi(-\Box + m^2)\phi].$
- Z now is a doable Gaussian functional integral (Prob. : Derive Bose-Einstein distribution using this form).
- Add nontrivial $V(\phi) = \lambda \phi^4$: now only small λ can be tackled analytically, i.e., perturbation theory.
- Recall integrals are limits of sums : $I = \int f(x) dx = \lim_{\Delta x \to 0} \sum_{i} f(x_i) \Delta x$.

- To perform the functional integral in general, indeed even to define it, employ a space-time grid : lattice field theory.
- Let $(\vec{x}, x_4) \rightarrow na \equiv (n_1a_s, n_2a_s, n_3a_s, n_4a_t)$, with $a_s(a_t)$ as lattice spacing in a space(time) direction. We will mostly use $a_s = a_t = a$.

- To perform the functional integral in general, indeed even to define it, employ a space-time grid : lattice field theory.
- Let $(\vec{x}, x_4) \rightarrow na \equiv (n_1a_s, n_2a_s, n_3a_s, n_4a_t)$, with $a_s(a_t)$ as lattice spacing in a space(time) direction. We will mostly use $a_s = a_t = a$.
- Let the field $\phi(x) \rightarrow \phi(na)$. The measure then is $\mathcal{D}\phi \rightarrow \prod_n d\phi(na)$ and $\int d^4x \rightarrow a_s^3 a_t \sum_n$. Path integral on lattice is a product of ordinary integrals!
- Volume is $V = N_s^3 a_s^3$ & temperature is $T = (N_t a_t)^{-1}$.

- To perform the functional integral in general, indeed even to define it, employ a space-time grid : lattice field theory.
- Let $(\vec{x}, x_4) \rightarrow na \equiv (n_1a_s, n_2a_s, n_3a_s, n_4a_t)$, with $a_s(a_t)$ as lattice spacing in a space(time) direction. We will mostly use $a_s = a_t = a$.
- Let the field $\phi(x) \rightarrow \phi(na)$. The measure then is $\mathcal{D}\phi \rightarrow \prod_n d\phi(na)$ and $\int d^4x \rightarrow a_s^3 a_t \sum_n$. Path integral on lattice is a product of ordinary integrals!
- Volume is $V = N_s^3 a_s^3$ & temperature is $T = (N_t a_t)^{-1}$.
- Define forward and backward differences to replace derivatives. $\Delta^f_{\mu}\phi(x) = \frac{(\phi(x+a\hat{\mu})-\phi(x))}{a} \text{ and } \Delta^b_{\mu}\phi(x) = \frac{(\phi(x)-\phi(x-a\hat{\mu}))}{a}.$
- Problem : Show that i) $(\Delta^f_{\mu})^{\dagger} = -\Delta^b_{\mu}$ and ii) $\Box = \sum \Delta^b_{\mu} \Delta^f_{\mu}$ with $\Box \phi(x) = a^{-2} \sum_{\mu} \{ \phi(x + \hat{\mu}a) + \phi(x \mu a) 2\phi(x) \} \equiv a^{-2} \hat{\Box} \phi(x).$

- Note that ϕ has mass dimension one. Define $\hat{\phi}_n = a\phi(x) \equiv a\phi(na)$.
- Continuum action can be now written in terms of lattice variables. $S_E = \frac{1}{2} \int d^4x \ \phi(x)(-\Box + m^2)\phi(x) \longrightarrow$ $S_{lat} = \frac{1}{2}a^4 \sum_n \frac{\hat{\phi}_n}{a} (-\frac{\hat{\Box}}{a^2} + m^2) \frac{\hat{\phi}_n}{a} = \frac{1}{2} \sum_n \hat{\phi}_n (-\hat{\Box} + \hat{m}^2) \hat{\phi}_n$
- We thus obtain the lattice action in terms of dimensionless variables, parameter and 'operators'. Here $\hat{m} = a \ m$ is dimensionless mass.

- Note that ϕ has mass dimension one. Define $\hat{\phi}_n = a\phi(x) \equiv a\phi(na)$.
- Continuum action can be now written in terms of lattice variables. $S_E = \frac{1}{2} \int d^4x \ \phi(x)(-\Box + m^2)\phi(x) \longrightarrow$ $S_{lat} = \frac{1}{2}a^4 \sum_n \frac{\hat{\phi}_n}{a} (-\frac{\hat{\Box}}{a^2} + m^2) \frac{\hat{\phi}_n}{a} = \frac{1}{2} \sum_n \hat{\phi}_n (-\hat{\Box} + \hat{m}^2) \hat{\phi}_n$
- We thus obtain the lattice action in terms of dimensionless variables, parameter and 'operators'. Here $\hat{m} = a \ m$ is dimensionless mass.
- Using the sum over all n to shift argument of ϕ , action can be simplified to $S_E = -2\kappa \sum_{n,\mu} \hat{\phi}_n \hat{\phi}_{n+\hat{\mu}} + \sum \hat{\phi}_n \hat{\phi}_n$, where $8 + \hat{m}^2 = \kappa^{-1}$ and $\hat{\phi}_n$ has been re-scaled by $(2\kappa)^{-1/2}$.

- Note that ϕ has mass dimension one. Define $\hat{\phi}_n = a\phi(x) \equiv a\phi(na)$.
- Continuum action can be now written in terms of lattice variables. $S_E = \frac{1}{2} \int d^4x \ \phi(x)(-\Box + m^2)\phi(x) \longrightarrow$ $S_{lat} = \frac{1}{2}a^4 \sum_n \frac{\hat{\phi}_n}{a} (-\frac{\hat{\Box}}{a^2} + m^2) \frac{\hat{\phi}_n}{a} = \frac{1}{2} \sum_n \hat{\phi}_n (-\hat{\Box} + \hat{m}^2) \hat{\phi}_n$
- We thus obtain the lattice action in terms of dimensionless variables, parameter and 'operators'. Here $\hat{m} = a \ m$ is dimensionless mass.
- Using the sum over all n to shift argument of ϕ , action can be simplified to $S_E = -2\kappa \sum_{n,\mu} \hat{\phi}_n \hat{\phi}_{n+\hat{\mu}} + \sum \hat{\phi}_n \hat{\phi}_n$, where $8 + \hat{m}^2 = \kappa^{-1}$ and $\hat{\phi}_n$ has been re-scaled by $(2\kappa)^{-1/2}$.

Comments :

1. Generically true for all lattice field/gauge theories, including Lattice QCD, that action is defined by dimensionless field variables, and parameters.

- 2. Lorentz symmetry, which became the O(4) symmetry in the Euclidean space, is badly broken on the lattice. Only discrete rotations by $\pi/2$ are symmetries of the action. Lattice also breaks translational invariance.
- 3. Both translational and rotational symmetries restrored in $a \rightarrow 0$ continuum limit. *Must check if this is so quantum mechanically*.

- 2. Lorentz symmetry, which became the O(4) symmetry in the Euclidean space, is badly broken on the lattice. Only discrete rotations by $\pi/2$ are symmetries of the action. Lattice also breaks translational invariance.
- 3. Both translational and rotational symmetries restrored in $a \rightarrow 0$ continuum limit. *Must check if this is so quantum mechanically*.
- 4. Above discretization is by no means unique but only simple. Indeed, Any discretization could be chosen as long as $\lim_{a\to 0} S_E^{lat} = S_E$ in the continuum limit.
- 5. Infinitely many lattice actions possible which all reproduce the continuum action as $a \rightarrow 0$. Physics demands that they all lead to the same result for QFT : **Universality** and *Improved actions*.
- 6. Interactions like $\lambda \phi^4$ can be added in a straightforward way : $\lambda \hat{\phi}(n)^4$. In general, any $V(\phi)$ is added this way.

Nuclear Matter under Extreme Conditions, VECC, Kolkata, January 12-19, 2013

Lattice Propagator

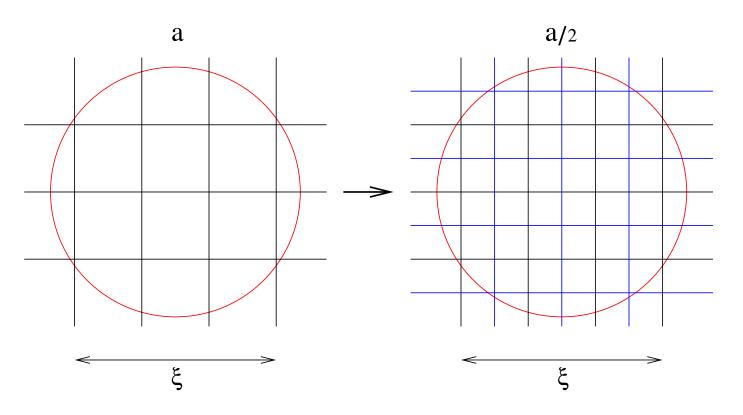
- Introduce (dimensionless) lattice sources, and compute the propagator as usual by taking derivatives with respect to them.
- Let $M_{n,m} = -\sum_{\mu} [\delta_{n+\hat{\mu},m} + \delta_{n-\hat{\mu},m} 2\delta_{n,m}] + \hat{m}^2 \delta_{n,m}$, then $Z[J] = \int \prod_n d\hat{\phi}_n \ e^{-\frac{1}{2}\Phi^{\dagger}M} \ \Phi + \sum_n \hat{J}_n \hat{\phi}_n$, where Φ is a column vector of $\hat{\phi}_n$.

Lattice Propagator

- Introduce (dimensionless) lattice sources, and compute the propagator as usual by taking derivatives with respect to them.
- Let $M_{n,m} = -\sum_{\mu} [\delta_{n+\hat{\mu},m} + \delta_{n-\hat{\mu},m} 2\delta_{n,m}] + \hat{m}^2 \delta_{n,m}$, then $Z[J] = \int \prod_n d\hat{\phi}_n \ e^{-\frac{1}{2}\Phi^{\dagger}M} \ \Phi + \sum_n \hat{J}_n \hat{\phi}_n$, where Φ is a column vector of $\hat{\phi}_n$.
- Complete square and integrate over each $\hat{\phi}_n$ to obtain the lattice propagator $\hat{G}(n,m;\hat{m})$. $Z[J] = \frac{e^{\frac{1}{2}\sum_{n,m}\hat{J}_m M^{-1}mn\hat{J}_n}}{\sqrt{\det M}} \Longrightarrow \hat{G}(n,m;\hat{m}) \equiv \langle \hat{\phi}_n \hat{\phi}_m \rangle = M^{-1}{}_{nm}.$
- Problem : Show that in the Fourier space $M(\hat{p}_{\mu}) = 4 \sum_{\mu} \sin^2(\hat{p}_{\mu}/2) + \hat{m}^2$, with discrete momenta $\hat{p}_{\mu} = 2\pi n_{\mu}/N_{\mu}$ for $n_{\mu} = 0, 1..., N_{\mu} - 1$ & $N_{\mu} = N_s(N_t)$.
- Correlation function $\langle \hat{\phi}_n \hat{\phi}_m \rangle \sim f(|n-m|)$, typically exponential/power law decay. Correlation length $\hat{\xi} \sim \hat{m}$ pole of the propagator.

- Since typically $\hat{X} = aX$, continuum limit $a \to 0$ of \hat{G} is non-trivial only if some dimensional quantity such as m is fixed in physical units and $\hat{m} \to 0$.
- Equivalently, lattice correlation length in $\hat{\xi} = \xi/a \to \infty \Longrightarrow$ Tune coupling(s) to second order phase transition for the lattice theory. How ?

- Since typically $\hat{X} = aX$, continuum limit $a \to 0$ of \hat{G} is non-trivial only if some dimensional quantity such as m is fixed in physical units and $\hat{m} \to 0$.
- Equivalently, lattice correlation length in $\hat{\xi} = \xi/a \to \infty \Longrightarrow$ Tune coupling(s) to second order phase transition for the lattice theory. How ?



- We need to hold x = na and y = ma constant as $a \to 0 \Longrightarrow N_s, N_t \to \infty$.
- Discrete \hat{p}_{μ} become continuous : $-\pi \leq \hat{p}_{\mu} \leq \pi$.

- We need to hold x = na and y = ma constant as $a \to 0 \Longrightarrow N_s, N_t \to \infty$.
- Discrete \hat{p}_{μ} become continuous : $-\pi \leq \hat{p}_{\mu} \leq \pi$.
- Taking an inverse Fourier transform, and recognising that $G(x/a,y/a;m) = \lim_{a\to 0} \hat{G}/a^2$, one obtains

$$G(x,y;m) = \lim_{a \to 0} a^2 \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} 4 \sin^2 \frac{p \mu a}{2} + m^2 a^2}$$

- We need to hold x = na and y = ma constant as $a \to 0 \Longrightarrow N_s, N_t \to \infty$.
- Discrete \hat{p}_{μ} become continuous : $-\pi \leq \hat{p}_{\mu} \leq \pi$.
- Taking an inverse Fourier transform, and recognising that $G(x/a,y/a;m) = \lim_{a\to 0} \hat{G}/a^2$, one obtains

$$G(x, y; m) = \lim_{a \to 0} a^2 \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} 4 \sin^2 \frac{p \mu a}{2} + m^2 a^2}$$
$$= \lim_{a \to 0} \int_{-\pi/a}^{\pi/a} d^4 n \frac{e^{ip \cdot x}}{\sum_{\mu} 4 \sin^2 \frac{p \mu a}{2} + m^2 a^2}$$

$$= \lim_{a \to 0} \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{-\frac{1}{2}}}{\sum_{\mu} \frac{\sin^2 \frac{p \mu a}{2}}{\frac{a^2}{4}} + m^2}$$

- We need to hold x = na and y = ma constant as $a \to 0 \Longrightarrow N_s, N_t \to \infty$.
- Discrete \hat{p}_{μ} become continuous : $-\pi \leq \hat{p}_{\mu} \leq \pi$.
- Taking an inverse Fourier transform, and recognising that $G(x/a,y/a;m) = \lim_{a\to 0} \hat{G}/a^2$, one obtains

$$G(x, y; m) = \lim_{a \to 0} a^2 \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} 4 \sin^2 \frac{p \mu a}{2} + m^2 a^2}$$
$$= \lim_{a \to 0} \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} 4 \sin^2 \frac{p \mu a}{2} + m^2 a^2}$$

$$= \lim_{a \to 0} \int_{-\pi/a}^{+} d^{4}p \frac{1}{\sum_{\mu} \frac{\sin^{2} \frac{p \mu a}{2}}{\frac{a^{2}}{4}} + m^{2}}$$

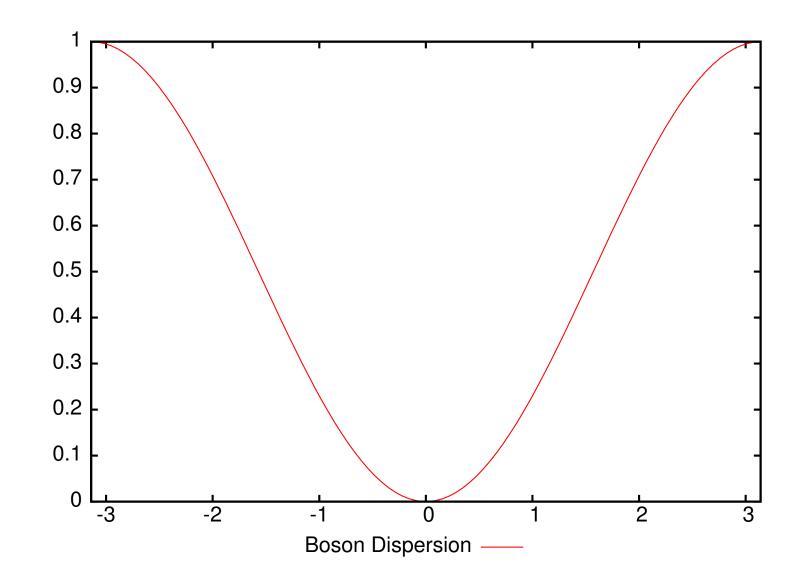
$$= \int_{-\infty}^{\infty} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} p_{\mu}^2 + m^2}$$

- We need to hold x = na and y = ma constant as $a \to 0 \Longrightarrow N_s, N_t \to \infty$.
- Discrete \hat{p}_{μ} become continuous : $-\pi \leq \hat{p}_{\mu} \leq \pi$.
- Taking an inverse Fourier transform, and recognising that $G(x/a, y/a; m) = \lim_{a \to 0} \hat{G}/a^2$, one obtains

$$G(x, y; m) = \lim_{a \to 0} a^2 \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} 4 \sin^2 \frac{p \mu a}{2} + m^2 a^2}$$

$$= \lim_{a \to 0} \int_{-\pi/a}^{\pi/a} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} \frac{\sin^2 \frac{p \mu a}{2}}{\frac{a^2}{4}} + m^2}$$
$$= \int_{-\infty}^{\infty} d^4 p \frac{e^{ip \cdot x}}{\sum_{\mu} p_{\mu}^2 + m^2}$$

• Thus holding physical mass *m* constant, leads to the correct 'quantum continuum' limit in the sense that the correct correlator/propagator results.



Fermions on Lattice

Bringing in Interactions

Continuum Limit