Dense Baryonic Matter

by
Abhee K. Dutt-Mazumder

E- nai | : abhee. dm@aha. ac. i n

High Energy Particle and Nuclear Physics Division

Saha Institute of Nuclear Physics
1/AF Bidhannagar, Kolkata 700 064

Dense Baryonic Matter — p. 1



Introduction

Nuclear matter:

Nuclear matter is a hypothetical uniform system of infinite number of nucleons (A) in the

absence of Coulomb interaction.

® symmetric nuclear matter (SNM):  Equal number of proton (Z) and neutron (V).

® Asymmetric nuclear matter (ANM):  The proton and neutron numbers are unequal.

The asymmetry parameter: | &« = % where p,, (pp) is the neutron (proton)

density.

The material at the center of 298 Pbgo-nucleus may be considered as nuclear matter.

Dense nuclear matter is such a system with density higher tha n those observed in ordinary nuclei.

Dense Baryonic Matter — p. 2



Quantum hadrodynamics (QHD)

Quantum hadrodynamics:
A theoritical framework (analogous to quantum electrodynamics) for complete and consistent
description of a relativistic nuclear system (N, 4, - --) and mesons.

Like QED, it should be a renormalizable theory and all the parameters in this theory can be

determined from the appropriately chosen experimental data.

® oHD-1: This model deals with the interaction of nucleons (p, n) via the exchange of
neutral scalar meson (o) and vector meson (w) meson and it is a renormalizable
theory.

This theory shows repulsion between two nucleons at short-distances and attraction at

large distances which are the dominant features of nuclear force.

® oHD-II: This model is an extension of QHD-I, which includes two more isovector
mesons, the pion (7) and rho (p).

A local gauge theory has been developed to make the theory of p meson

renormalizable.
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Walecka model

It is the simplest version of QHD-I, in which meson fields are replaced by their expectation
values which serve as the classical fields so that the nucleons move inside this mean field
(MF) - first introduced to study the dense nuclear matter of neutron star.

This model successfully explains the properties of bulk nuclear matter such as saturation

density and binding energy, the strong spin-orbit splitting observed in finite nuclei.

QHD-I Lagrangian:

_ 1
L= (0" —gV*) — (My — g:0)] 9 + 5 (0p00" ¢ — me?)

1
—  F,FM 4 5m?)v,ﬂ/“ + 3L,

where FFY = gFVY — YV E and § L contains the counter terms.
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Effective NN potential and field

equations

Vepp(r) = (ii) -

Field equations:

040, +m?] 6 =
OMFyu —l—m%V“ =
[i’)/ﬂau - MN] Y =

In MF approximation: ¢ —< ¢ >= ¢g and V,

e <g§> e meT
r 47 r

gS@Z@b
gvlz’)’,uw
[gv Y Vi — gsd] ¥

—< Vy >= 5M0V0

o § 1 1
Lup = O [iwd" — My — gy Vo] ¥ + omi Ve — Smieg .
- : 1 1
Hyur = —[—iv'0i+gvyo Vo+ My| ¢ — 5’”%2) Ve + 5"”3 b5
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Solution of Dirac equation

Dirac equation:  [iy, 0" — M5 ] ¢ = g Voy

Y(z) = st \/VT*(k) [

The normalization condition:

axs U(k,s) e” i(e4 ()t—kex) 4 b;r{,s V(k,s) e—z’(g_(k)tjuk.x)} .

> o Uk, )UK, s") =30 o V(k,8)TV(k,s') = 2E% (k) dsgr -

e (k) =goVo + (/K2 + MZ =g, Vo + Ef(K)

The effective nucleon mass (modified by the scalar mean field):

AM* = M} — M = My, — My = AM

My = My — gs¢o

bo = 5 < ) >= 2 " ps, (scalar density)
mS

Vo = g_q; <Pl >= 2 2% pp, (baryon density)
m
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Scalar density and baryon density

The scalar and baryonic density operators:

R 1
pp = YPly=— Z (aL,Sak,s — bL,Sbk,s) :

4 k,s
; s 1 MN (1 i
Ps = v = VZ E* (k) (a’k sa’k5+b bk,s) ’
’S N
A gl 3
=< > = d°k O0(kny — |k
ol l¥o o [ @6ty — )
= k3
s =< Yolps|tro > = d°k O(ky — |k
p Yolps|vo (27T /E ™ (kv — [k|)

ky + E%
— knEl — M21n [ SN 5N
47‘(‘ My,

In nuclear matter v = 4 and v = 2 in pure neutron matter.
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Coupling constants ¢, and g,

The coupling constants gs and g, are obtained by minimizing the energy density at fixed
baryon density

o0&
<8M*) = 0 where,
N Pb
e = B )+ T My - ME) / T Bt 10 00k — k)
T o2m2 Y T N TN T [ ons TN N |
and reproducing the saturation density : p“:—b — My = —15.75

2 2
Atp, = 0.15fm=3,C2 = g2 2N = 3574, C2 = g2 2K = 273.8 and M3 /My = 0.6

ms v

The self-consistency relation for effective nucleon mass:

2 yM3 kn + E*
M =My — 827 N[kNE]*V—M;?ln< N ¥ N)]

m?2 4m? M%,
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Pion mass splitting in medium

To study the pion mass splitting in medium, one should calculate the in-medium pion

self-energy using in-medium nucleon propagator.
In medium, the vacuum |0 ) is replaced by the ground state |V ) which contains
positive-energy particles with same Fermi momentum kp and no antiparticles.

bk s|o) =0 forall k|,

aks|o) =0 for k| > kn,

af o) =0 for|k| <k,
)

= n(k)|¥y), where n(k)=0(kyx — |k]|).

The position space nucleon propagator in vacuum is given by the vacuum expectation value
of the time ordered product of Fermion fields.

iGn(z—2') = (0| Typ(x)y(z")]]0) .
= (Woly(z)Y(z)|Wo)0(t — ')
—  (Wolyp(x")Y(x)|To ) O(" — 1) .
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In-medium nucleon propagator

d*k : /
.k / _ . —ik-(x—x *
iGy(x—2') = 4 (2ﬂ)42Eke ( ) (F+ M3)
1 —6(ky — |k]) O(kny — k) 1
ko — EXN(k)+e€ ko — EX(k) —ie ko + EX (k) —ie

® First term represents particle propagation above the Fermi sea
® Second term indicates the propagation of holes inside the Fermi sea

® Last term shows the propagation of holes in the infinite Dirac sea.

1 1 B 2E% (k)
ko — B3 (k) +ie ko + Ef(k) —ie k2 — M2 +iC’
1 1

_ —  2rs(ko — B (K)) .
ko — Bx (k) —ic ko — By (k) + ic imd(ko = B (k)

iGy(x—2") = 4 WG ~N(k),
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Introduction

In-medium nucleon propagator in momentum space: G (k) = G}kVF(k) + G}kVD(k)
Explicitly,

G () = i
GRP () = s (k+ M) dlko — B3y (10) 0k — k)

The superscript F' and D denotes the free and dense parts, respectively. Delta function
indicates the nucleons are on-shell while 8(kn — |k|) ensures that propagating nucleons

have momentum less than k.
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Pion-Nucleon interaction

Pseudoscalar 7N interaction: EP]%N = —igr U5 (F- Cf;ﬂ) \\J
Pseudovector 7N interaction: [,P]‘\?N = %@757M8u (7_"- Cﬁ;) w

The the one-loop contribution to the pion self-energy:

4
Y (¢2) = /(;ZW])ZTI'[FW(Q)G}FV(k)F“(_q)G?V(k—FQ)]’

where N = p or n, and I'; is the vertex factor, for PS coupling I'x = —igr~5 and

I'n = iy5v"qu T{L—: for PV coupling.

p n,p
7r0 7r0 7TO . 7r0 T L
---»--O-»—- +--+--O-»- - - - =
J4 n pn
(a) (b)
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Vacuum part and medium part

4
M (2) = /(d )4Tr T (q)GN (k)T (—q)GN (k+q)

+ Ir(@QGN (K)Tx(—9)GR (k+q) + Tx(q)GN (K)Tr(—q)GH (k+q)
+ (@GR (TR (—)GRP (k+q) |

The last term, GiP (k)G1P (k + ¢), contains the product of two delta functions which puts
both the loop-nucleons on-shell. This means that pion can decay into nucleon-anti-nucleon
pair which happens only in the high momentum limiti.e |q| > 2k, . Butin the low
momentum (of pion) collective excitations, F'F' and (F'D + DF’) parts contribute.

4
M Nacle®) = [ 55T [ T @OH BT ()G (ko) |
4
a2 = / (;ZWI;LTI‘ L (@GR (W (~a)ORP (kta)
4 - -
[ T [T @O BT ()G (hta)
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Pion self-energy for PS coupling:vacuum part

For == the coupling constant g gets replaced by v/2g,. The vacuum part:

d*k { M*2 — k- (k + q)
(k

7r7r,vac(q ) ZgTr (27_(_)4 2 M*Q) ((k: _|_ q)2 _ M*Q)

It is observed that IT*FS  (42) is quadratically divergent. To eliminate these divergences we

T, vac

need to renormalizes IT*L5  (¢?). We adopt the dimensional regularization. The

T,vac

renormalized vacuum part can be approximated to

ﬁ;‘f;iac(q% ~ — ¢&+dq?, where
2 *
~ g 2 *2 *2 M
— 5 ol32M2 - M IM*21 ,
= ] A G
i 3g2 [ M \?
272 \m,,. '

N.B. We consider M,, = M, = M to calculate pion self-energy
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Pion self-energy for PS coupling:medium part

The medium contribution:

*0,PS
e (q°)

ww,med

x+,PS ( 2)

ww,med

5H*PS (q2)

ww,med

Explicitly,

A3k
—8 2/—A
5 | 2n)3E*

&3k
_8e2 [ 2 A
g”/ Gnp G|

H*O,PS (q2) == STI

ww,med

&3k
_gg? / _2F g
5 | 2n)3E*

PS

rs FBpg]

*PS

ww,med

(¢%), where

PS-
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In the long wavelength limit we neglect the term ¢* compared to the term 4(k - ¢)2 from the
denominator of both A pg and Bpg. The approximate results:

*0,PS 2 ~ PS
wa,med(q ) - Qﬂ'ﬂ',m@d )
PS q°
51_12(7); med(qQ) ~ =¢ — . where
) qO
2 k3 L3
PSS _ Er * * 1 *2 p n
Q7r7r,rned — ﬁ [(kp Ep + kn En) o gM <E;3 + E7>;3>

(@}
Il
(\}
ﬂw‘ng
1
Wl
N
=< | o
* [ w
n
|
< | o
% S W
n
N~
| I |

Total pion self-energy:

*(0,£)PS Sk x(0,£)PS
HTFST,I'JOZCLZ q2) - [Hwiﬁ)ac(q2) +1I ( ) q2):|

T, med
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Dispersion relations

We obtain the dispersion relations solving the (Dyson-Schwinger) Equation:

2 2 #(0,2)PS/ 2y _
(q o mWO,:I:) o H7r7r,total q ) =0

Without Dirac sea: qO ~m* 0 + T q?.

The effective masses of pions:

*2 ~ 2 PSS

m_o = m_o + wa,med
2 PS

%2 -~ mw + wm,med

mﬂ':l: - 1 5QPS
+ wm,med
where,
€

O mea =
" Vmos U e
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Dispersion relations

With Dirac sea: q(% ~ m;%’i + q2.

The effective masses:

1
*2 ~ 2
m_o — g |:Q7r7r total ~— mw0i| )
PS a2
o)) mm,total m_o4
m 3 53 =~ | , where
( + 59 total) d
PS _
Q7r7r,total = C— Q7r7r ,med>’
PS _ e
5Q7r7r,total -
PS _ 2 7
\/(wa,total m7r:|:) d_

In the PS coupling the asymmetry driven mass splitting is of O(kg(n)/M“). The terms

5(271:7*?,75075&[ and 5fo’med are non-vanishing in ANM and responsible for the pion mass

splitting.
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Pion dispersions for PS coupling at p = 0.17fm 3 and a = 0.2. The left and right panel

representing pion dispersions without and with the Dirac sea contribution, respectively.

Density dependent effective masses of pion at a = 0.2 for PS coupling. The left panel:

without Dirac sea effect and right panel: with Dirac sea effect.
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Pion self-energy for PV coupling:vacuum part

Dirac sea contribution:

PV oy i (SN[ A (MR k- (k+9)q® —2(k-q)(k+q) g
R Gl = ] v ey

mr

Direct power counting shows that the term H;ﬁf,‘{)ac(q% is divergent. A simple subtraction
can remove the divergences:

B 2 2 1 M*2 2 1 —
H;I;}z/)ac(QQ) S 5 I 2M*2/ dzr In 5 q2513( z) :
272 \'mg 0 M*2 —m2z(1 — x)

Now,

f[;kri}{)ac(qQ) ~ c¢—dq®. where

(=)

- (G

C
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Pion self-energy for PV coupling:medium part

The medium part:

*0,PV ( 2)

ww,med

PV

ww,med

PV 2
5er7r,med(q )

Apy

Bpy

f})z A3k
8 — A
(mw em3E+ "V

- (57)2 (2:;3kE* Apv ¥ Brv]
er?r’,]jnved(QQ) + 5er’7fg,::zed(q2)’ where

_8g72r/ (ijfE* Brv.

{q‘* f44?((2/5%(1)2] O + ),

S+ = %Z?Z)Q} (k - q)(6p — 0n).
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In the long wavelength limit, the term ¢* can be neglected compared to the term 4(k - q)?
from the denominator of A py and B py . The approximate results:

4
*0,PV 2 -~ q 2
ww,med ) — a % + b q
51_[*7T med(q ) ~ € qo .where

The total pion self-energy: IO PV g2y = [PV (2) 4 T3 OD PV (02

o, total T, vac
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Dispersion relations

Without Dirac sea:

2 2 2 Vi q’
do ~ mer,ﬂ: + Yrrq” + |: Z ‘|‘Oé7r7r:| =0
4 m
70,+
o a
qrp = 1 _ PV )
ww,med
PV
L 1 — Q7r7r,med + b
Ormwo = 1 _ QPV 1 _ QPV
wmw,med wmw,med
The effective pion masses:
2
m*2 ~ mTl'O
70 - 1 — QPV
ww,med
2
m*%t ~ m7r:|:
T - PV PV
L - (Qﬁw,med + 5Q7T7r,med)
PV PV e’
Q7r7r,med — a’+b7 and 5Q7r7r,med —
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Dispersion relations

With Dirac sea:

12 4
2 2 / 2 2 gl / 2 / q
% = mjro,:l: + [777” + Qmjroai&”r] Q”+ ==+ Qe — Operr (mjro,:l: - 2’77r7r) *2 .
4 m'ﬂ'oai
The effective masses:
2
m*2 ~ m7r0
70 — . PV !
1 QTMT,tOtCLl
2
m*2:|: ~ mwi
s — PV PV )
L - (wa,total + 5Q7r7r,med)
PV _ PV
QTMT,tOtCLl — Q7r7r,med +c,
Ck, = ¢
T o _ PV ’
1 Q7r7r,total
5 B d
T - PV Y
L — Q7r7r,total
PV
’Y, . 1 — QTMT,tOtCLl + b + c
T 1 — QPV 1 — QPV 1 — QPV

o, total o, total m,total

Dense Baryonic Matter — p. 24



Dispersion relations
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Pion dispersion relations (PV coupling) without (left panel) and with (right panel) the effect of

Dirac seaat p = 0.17fm~3 and o« = 0.2.
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Density dependence of effective masses for PV coupling without Dirac sea (left panel) and

with Dirac sea (right panel) at « = 0.2.
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Pion mass shift

Pion mass shifts in Pb-like nuclei.

mass shift (MeV)

Dirac sea Am_— Am_o Am_4

without 139.2 120.7 102.0
PS

with 17.41 16.8 17.37

without 6.82 4.95 3.47
PV

with 3.02 6.07 4.6
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