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PLAN 

• Introduction: Empirical Science 
– Logic: Deductive and Inductive 

• Formalism: Bayesian Approach 

• What are ‘good-estimates’ for a given distribution 

• Parameter Determination and Hypothesis Testing 

• Straight Line Fit and Outliers 

• Error Determination, and Propagation 

• Invariant Mass Analysis  

• Correlated Variables and Errors 

• Introduction to Flow / Neural Networks 
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• Lectures are based on parts of the following 

books (including figures, examples, notation!) 

– Data Analysis: a Bayesian approach 

• D S Sivia with J Skillings 

– Statistical for Nuclear and Particle Physicists 

• Louis Lyons 

– Statistical Data Analysis 

• Glen Cowan 

& 

– Wikipedia   
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• Given a certain set of data  

– How do we verify the validity of an assumed 

hypothesis 

• Subject to knowing the values of parameters 

– How do we determine the value(s) of unknown 

parameter(s) 

• Subject to the validity of the hypothesis in question 

 

– Learn by examples 
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• Why do we want to do this? 

• We believe that  

– the phenomena under study is not arbitrarily 

random 

– there is an underlying pattern 

– such a pattern is formed in accordance with certain 

discernible laws 

– these laws can be described in a mathematical 

form, making them amenable to make prediction 

and to be tested for subsequent (possible)  

falsification 
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• An Example:  

– Tycho Brahe studied the planetary motion 

• Classified the data  

– Kepler looked for patterns  

• The three laws of Kepler describe the pattern 

– Newton gave the law of gravitation, a 

mathematical form.  

• The law, along with the laws of motion, could make 

predictions. This was completely deterministic. 
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• Other Examples: (Innate Randomness) 

– Flipping  a coin; Throwing a dice 

• Requires an ‘ability’ to classify results of all 

flips/throws 

– Radioactive Decay 

• No. of decays in  varying time intervals 

• Amount of matter initially 

• Look for patters 

• Obtain the exponential law 
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Empirical Science  

 
• Any hypothesis is only (most) probable 

• All hypotheses ( models/theories) are accepted 

provisionally, until some data disproves it 

 

• We have learnt to create data in laboratory 

– Enables systematic study    

– Discern Laws of Nature 

• Given the data, how do we start? Reverse…. 
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• Deductive Logic 

– Start with a premises 

– Draw definite conclusions 

 

 

 

• Fair coin 

5 flips 

 

 

 

Privilege of a theorist ! 

1H, 4T;  p= 0.1562 

 

2H, 3T;  p=0.3125 

 

3H, 2T;  p=0.3125 

 

4H, 1T;  p=0.1562 

 

5H, 0T;  p=0.0312 
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• Inductive Logic 

– Experiment flipping 5 coins, 6 (or 6 Xillion) times  

P (H) = 0.4 

 

 

P(H) = 0.5 

 

 

P(H) = 0.55 

 
0H,5T;   p=0.0312 

 

1H, 4T;  p=0.1562 

 

2H, 3T;  p=0.3125 

 

3H, 2T;  p=0.3125 

 

4H, 1T;  p=0.1562 

 

5H, 0T;  p=0.0312 

What can we conclude about the coin?  The wonderful and 

imaginative world of an experimentalist : a data analyst 10 
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• Guide inferences , draw objective conclusions 

– Assign Numbers 

• Make rules to assign numbers 

 

 

 

 

 

 Need a formalism 
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FORMALISM 

• Rule 1: Given context  ‘ I ’ 

  P(X | I ) is probability of obtaining  X 

  P(X-bar | I ) is probability of NOT obtaining  X 

  P(X | I ) + P( X-bar | I ) = 1 

 

• Rule 2: Given context  ‘ I ’,  

  Probability of obtaining X and Y is 

  P (X, Y | I ) = P( X | Y, I ) * P( Y | I ) 

 

• ‘Comma’ means AND;      ‘ | ’ means GIVEN 
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• Useful Result 1: Bayes’ Theorem 
 

  

 

 

 

 

 

 

P(hypo. | data,I)   α   P(data. | hypo., I)* P(hypo. | I) 
         (coins from casino) 

 

 

P(data | hypothesis, I) can be obtained from deductive logic 

 

Bayes’ theorem becomes a boon 
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P(hypothesis | I )  is prior probability  

 

P(data |hypothesis, I ) is likelihood function  

 

P(hypothesis |data, I ) is posterior probability  

 

P(data | I )    is evidence  
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Useful result 2: Marginalisation 

 

 

Normalization  

 

 

 

 

 

Helps to deal with ‘nuisance’ parameters 
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• An example:  

 

 

 

Given:   

P(disease | I )        = 0.001  

P(+ | disease, I )    = 0.98  

P(+ | no disease, I)=0.03 

Deduce 

P(no disease | I)  =0.999 

P(- | disease,I)     =0.02 

P(- | no disease,I)=0.97 

 

Need to know  

 
 
 
 
 

032.0
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• Interpretations: 

– In data analysis, probability interpreted as limiting relative 

frequency 

 

Here M is No. of occurrences of 

outcome X in N measurements 

 

– N is never infinite 

• To estimate the probabilities, given a finite amount of 

experimental data 

• Frequency interpretation may not work: 

• frequency distribution of electron mass ?  

• Probability gives a degree of belief. 

 

N

M
XP

n 
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• Example from Relativistic Heavy Ion 

Collisions 

• Geometry plays an important role 

– Need to determine impact parameter  ‘ b ’  
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• The result of a certain data 

 

 

 

 

 

 

 

 

• Gaussian ‘likelihood function’. There are more… 
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• Binomial 

– Probability of success: p 

– Given n turns, probability of r successes 
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• Poisson 






 



















n

n

n

n

Pn

n

e
nn

0

22

0

)(

!

!
)|(

n

e
nP

n 






22 
Sudhir Raniwala,                                             

University of Rajasthan, Jaipur 

The forward-backward example with Binomial-

>Poisson 



• Cauchy (Breit-Wigner) 
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• Two fold purpose of data analysis 

– Testing hypothesis:  

• requires knowledge of parameter 

– determining parameter:   

• assumes valid hypothesis 

– deeply inter-related 

• Parameter Determination:  

– x ±Δx 

• Hypothesis testing: 

– XX% probability that the statement is correct 
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Parameter Determination:  

Estimate the Bias of a Coin 
• Generate data: flip the coin N times 

• Need to assume prior probabilities 
Purpose: 

Determine a 

parameter 

assuming the 

likelihood 

function to be a  

Binomial 

distribution.  

Result 

independent of 

prior ! 
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