
• Quick Recap. 

– Importance of Deductive and Inductive Logic 

– Bayes’ theorem:Simple applications  

– Parameter Determination and Hypothesis Testing 

– Some useful distributions: Likelihood Functions 
used in particle physics 

• Today 

– What are ‘good-estimates’ for a given distribution 

– Parameter Determination and Hypothesis Testing 

– Straight Line Fit and Outliers  

– Error Determination, and Propagation 

– Correlated Variables and Errors, error matrix 
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• How do we know what estimate is the best estimate? 

– Assume probability is maximum for the best estimate 

– Probability of points in nbd. obtained by making a Taylor 

expansion about the max. probability 

 

• P=P(X|{data},I), then best estimate of its value X0 is obtained 

by maximising L=ln[P(X|{data};I)] 

 

 
  

;    X = X0 ±σ, best estimate is  X0  and σ is error 

   (~68% chance that true value within this)        

What if the distribution is asymmetric or multimodal ? 
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• Apply this to the experiment : flipping the coin 
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• Assume data distributed according to a 

Gaussian  

– Calculate the mean and the error 

– Common sense ‘mean’  
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• But we do not know σ; two unknowns 

 

 

 

• Binned data: 
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For continuous distribution 

 

 

 

 

 

• What if errors on each xk are all different 

• Again use maximum likelihood 
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• And if individual errors are different then 
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Caution:  

Measured counting rate  

1 ± 1 in 1st hour and  

100 ± 10 in 2nd hour  

Average counting rate? 



• Other methods, examples 

– Moments  

 

 

 

 

 

 

– Likelihood (normalization constant) 
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• Least Squares Method 

• Assume 

– Each data point is independent 

– Noise associated with experimental measurement 

is Gaussian 
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Obtain set of 

values of X, the 

parameters, by 

minimising.  

Useful for fitting 

distribution  



• Straight Line Fit 

 

 

 

 

 

 

 

• If Yk Poisson distributed, then σk
2 =Yk 

(σ should be error on theoretical estimate or on 
measured value?) Sudhir Raniwala,                                             
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What if there are too many outliers? 

Assumed a 

lower bound 

on σ 



• What do errors tell us? Why estimate errors? 

– Usefulness of measurement (J/ψ mass=3.0969 GeV) 

• Errors on parameters 

– the mean charged particle multiplicity 

– Temperature 

• Multiplicity distribution is assumed Gaussian 

– Peak is the most likely value Nm 

– 68.3 % probability that true value N0 is in the range 

Nm ± σ 

– 90% confidence level that N0 ≤  Nm + 1.28 σ 

– 95% confidence level that N0 ≤  Nm + 1.64 σ 
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lone measurement? 


