- Quick Recap.
- Importance of Deductive and Inductive Logic
- Bayes' theorem:Simple applications
- Parameter Determination and Hypothesis Testing
- Some useful distributions: Likelihood Functions used in particle physics
- Today
- What are 'good-estimates' for a given distribution
- Parameter Determination and Hypothesis Testing
- Straight Line Fit and Outliers
- Error Determination, and Propagation
- Correlated Variables and Errors, error matrix
- How do we know what estimate is the best estimate?
- Assume probability is maximum for the best estimate
- Probability of points in nbd. obtained by making a Taylor expansion about the max. probability
- $\mathrm{P}=\mathrm{P}(\mathrm{X} \mid\{$ data $\}, \mathrm{I})$, then best estimate of its value X_{0} is obtained by maximising $\mathrm{L}=\ln [\mathrm{P}(\mathrm{X} \mid\{$ data $\} ; \mathrm{I})]$
$P(X \mid\{d a t a\}, I) \approx A \exp \left[\left.\frac{1}{2} \frac{d^{2} L}{d X^{2}}\right|_{X_{0}}\left(X-X_{0}\right)^{2}\right]$
$\sigma=\left(-\frac{\left.d^{2} L\right)^{2}}{d X^{2}}\right)_{X_{0}}^{-1 / 2} ; \quad \begin{array}{ll} & (\sim 68 \% \\ \sim & X_{0} \pm \sigma, \text { best estimate is } X_{0} \text { and } \sigma \text { is erro }\end{array}$
What if the distribution is asymmetric or multimodal ?
- Apply this to the experiment : flipping the coin

$$
P(H \mid\{\text { data }\}, I) \propto \underbrace{H^{R}(1-H)^{N-R}}_{\text {Likelihood function }}
$$

$$
\left.\frac{d L}{d H}\right|_{H_{0}}=\frac{R}{H_{0}}-\frac{(N-R)}{1-H_{0}}=0 \Rightarrow H_{0}=\frac{R}{N}
$$

$$
\left.\frac{d^{2} L}{d H^{2}}\right|_{H_{0}}=-\frac{R}{H_{0}^{2}}-\frac{(N-R)}{\left(1-H_{0}\right)^{2}}=\frac{-N}{H_{0}\left(1-H_{0}\right)} \Rightarrow \sigma=\sqrt{\frac{H_{0}\left(1-H_{0}\right)}{N}}
$$

\therefore width $\propto \frac{1}{\sqrt{N}}$
Numerator maximum at $\mathrm{H}_{0}=0.5$

- Assume data distributed according to a Gaussian
- Calculate the mean and the error
- Common sense 'mean' $=\frac{1}{N} \sum_{k=1}^{N} x_{k}$
$\left.\frac{d L}{d \mu}\right|_{\mu_{0}}=0 \Rightarrow \sum_{k=1}^{N} x_{k}=N \mu_{0} \Rightarrow \mu_{0}=\frac{1}{N} \sum_{k=1}^{N} x_{k}$
$\left.\frac{d^{2} L}{d \mu^{2}}\right|_{\mu_{0}}=-\sum_{k=1}^{N} \frac{1}{\sigma^{2}}=-\frac{N}{\sigma^{2}}$
$\therefore \mu=\mu_{0} \pm \frac{\sigma}{\sqrt{N}}$
- But we do not know σ; two unknowns

$$
\mu_{0}=\frac{1}{N} \sum_{k=1}^{N} x_{k}
$$

$$
\begin{aligned}
& \mu=\mu_{0} \pm \frac{S}{\sqrt{N}} \text { where } S^{2}=\frac{1}{N-1} \sum_{k=1}^{N}\left(x_{k}-\mu\right)^{2} \\
& \text { Binned data: }
\end{aligned}
$$

$$
\mu_{0}=\frac{\sum_{k} n_{k} x_{k}}{\sum_{k} n_{k}}
$$

$$
\text { and } S^{2}=\frac{\sum_{k} n_{k}\left(x_{k}-\mu\right)^{2}}{\sum_{k} n_{k}-1}, \quad \mu=\mu_{0} \pm \sqrt{\frac{S^{2}}{\sum_{k} n_{k}}}
$$

For continuous distribution

$$
\begin{aligned}
& \mu_{0}=\frac{\int n(x) x d x}{N} \text { and } S^{2}=\frac{1}{N} \int n(x)(x-\mu)^{2} d x \\
& \text { and } N=\int n(x) d x
\end{aligned}
$$

- What if errors on each x_{k} are all different
- Again use maximum likelihood
- And if individual errors are different then

$$
\begin{aligned}
& P\left(x_{k} \mid \mu, \sigma_{k}\right)=\frac{1}{\sigma_{k} \sqrt{2 \pi}} \exp \left[-\frac{\left(x_{k}-\mu\right)^{2}}{2 \sigma_{k}{ }^{2}}\right] \\
& \& \mu_{0}=\frac{\sum_{k=1}^{N} w_{k} x_{k}}{\sum_{k=1}^{N} w_{k}} \quad \text { where } w_{k}=\frac{1}{\sigma_{k}^{2}}
\end{aligned}
$$

$$
\& \mu=\mu_{0} \pm\left(\sum_{k=1}^{N} w_{k}\right)^{-1 / 2}
$$

Caution:
Measured counting rate 1 ± 1 in $1^{\text {st }}$ hour and 100 ± 10 in $2^{\text {nd }}$ hour Average counting rate?

- Other methods, examples
- Moments
$\frac{d n}{d \cos \theta}=a+b \cos ^{2} \theta$

$$
\frac{b}{a}=\frac{5\left(3 \overline{\cos ^{2} \theta}-1\right)}{3-5 \overline{\cos ^{2} \theta}}
$$

$$
\left.\delta=\frac{1}{\sqrt{n}} \sqrt{\left[\frac{1}{n-1} \sum_{k=1}^{n}\left(\cos ^{2} \theta_{k}-\overline{\cos ^{2} \theta_{k}}\right)\right.}\right]
$$

Hypothesis

- Likelihood (normalization constant)

$$
L\left(\frac{b}{a}\right)=\prod_{k=1}^{n} y_{k}
$$

$$
y_{k}=N\left(1+\left(\frac{b}{a}\right) \cos ^{2} \theta\right)
$$

- Least Squares Method
- Assume
- Each data point is independent
- Noise associated with experimental measurement

$$
\begin{aligned}
& \text { is Gaussian } \\
& P\left(D_{k} \mid X, I\right)=\frac{1}{\sigma_{k} \sqrt{2 \pi}} \exp \left[-\frac{\left(F_{k}-D_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right] \\
& F_{k}=f(X, k) \quad \text { e.g. } \quad f(X, k)=y=m x_{k}+c
\end{aligned}
$$

$$
P\left(D_{k} \mid X, I\right) \propto \exp \left(-\frac{\chi^{2}}{2}\right)
$$

$$
\chi^{2}=\sum_{k=1}^{N}\left(\frac{F_{k}-D_{k}}{\sigma^{k}}\right)^{2}
$$

Obtain set of values of X, the parameters, by minimising.
Useful for fitting distribution

- Straight Line Fit

Parameter estimation II

Fig. 3.12 Fitting a straight line to noisy graphical data.

$$
\chi^{2}=\sum_{k=1}^{N} \frac{\left(m x_{k}+c-Y_{k}\right)^{2}}{\sigma_{k}^{2}}
$$

Minimise to get values of m and c

- If Y_{k} Poisson distributed, then $\sigma_{k}{ }^{2}=Y_{k}$
(σ should be error on theoretical estimate or on measured value?)

What if there are too many outliers?

Least-squares extensions

Fig. 8.1 The problem of outliers: (a) a 'well-behaved' set of data; (b) a case where quirky things occasionally happen. The least-squares estimate of the best straight lines is indicated by the dots, whereas the corresponding results following the analysis in Section 8.3.1 is marked by the dashes.
$L=\log _{e}[P(X \mid D, I)]=c+\sum_{k=1}^{N} \log _{e}\left[\frac{1-e^{-R_{k}^{2} / 2}}{R_{k}^{2}}\right]$
Assumed a lower bound
$R_{k}=\frac{\left(F_{k}-D_{k}\right)}{\sigma_{0}}, P\left(\sigma \mid \sigma_{0}, I\right)=\frac{\sigma_{0}}{\sigma^{2}}$ for $\sigma \geq \sigma_{0}$

- What do errors tell us? Why estimate errors?
- Usefulness of measurement (J / ψ mass $=3.0969 \mathrm{GeV}$)
- Errors on parameters
lone measurement?
- the mean charged particle multiplicity
- Temperature
- Multiplicity distribution is assumed Gaussian
- Peak is the most likely value N_{m}
-68.3 \% probability that true value N_{0} is in the range $\mathrm{N}_{\mathrm{m}} \pm \sigma$
-90% confidence level that $\mathrm{N}_{0} \leq \mathrm{N}_{\mathrm{m}}+1.28 \sigma$
-95% confidence level that $\mathrm{N}_{0} \leq \mathrm{N}_{\mathrm{m}}+1.64 \sigma$

