
• Determine Errors on Parameters 

– Random, or Statistical - Precision 

– Systematic – Accuracy    darts 

• Consider radioactive decay 

– Determine decay constant 

• Measure decay rate 

• Mass of the sample 

• Innate randomness gives a random error 

(Poisson distributed) 
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• Systematic Error 

– Measured counting rate is lower 

• Efficiency x Acceptance 

– Estimate the correction 

• Uncertainty in this estimate contributes to systematic 

error 

– Another Example: Charged Particle Multiplicity in 

each rapidity bin 

• Acceptance determined using angular distribution, and 

hence event generators 

• Uncertainty in correction factor is systematic error 

– Sometimes cancels out  
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Error Propagation 

• a = b± c  

– Error on ‘a’ 

• a = brcs 

– Fractional  

   error on a 

 

– Last term is zero if b and c are independent 
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• Errors on Scaled Factorial Moments: 
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• What happens when we fit a distribution? 

– Goodness of fit statistic χ2 

 

Is this value sacred? (Mean, not MP) 

 

For a fixed ‘ p ’ value,  χ2/dof is different for 

different no. of degrees of freedom 

 

‘p-value’ is the area under tail of the χ2  

distribution 
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• The χ2  distribution and p-values 
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Most probable values do not 

correspond to χ2/dof  = 1.0 



How do we decide on rejecting the null hypothesis 

 

For 5 degrees of freedom, if χ2  is 3.0, then the 

probability for hypothesis to be correct is 70%. 

 

However, if it is ~11, then the probability is 5% 

 

The χ2  values for 10 degrees of freedom, for the 

same probability are ~7.3 and ~18.3 

 

For what value of χ2 can we say 100%?   

Based upon p-values, for χ2= 0 !  
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xm 
Method 1 Method 2 

5 6.3 6.3 

3 4.3 4.3 

1 2.4 2.3 

0.5 2.0 1.8 

0 1.6 1.3 

-0.5 1.4 0.8 

-1 1.2 0.3 

-3 0.6 (-1.7) 

-5 0.5 (-3.7) 
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EVENT SELECTION (G.Cowan’s) 
  

•  Event  characterised by X (multidimensional) 

• P(X|H0) corresponds to background 

• P(X|H1) corresponds to signal 

•    Need a decision boundary  

•    PMD: charged particle and photon separation 

accept 
H1 

H0 



• For the decision boundary 

– Make a test statistic t(X), boundary defined by tcut 

– g(t|H0),  g(t|H1) 
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Probability to reject H0 if it is 

the  correct hypothesis (Error 

of Type-I ) 

Probability to accept H0 if H1 is 

the correct hypothesis (Type-II) 



Signal/Background Efficiency 
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Assume it is a background event. We may (mis)identify it as  

a signal event.  The probability of ‘background efficiency’ is  

Assume a signal event. The 

probability to identify it correctly  

is  ‘signal efficiency’ and is  



Purity of the Sample 

• Assume fractions of signal and background 
events are πs and πb. Then, the purity of signal 
is 
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Purity depends upon prior probabilities ! Uncertainty in 

the prior probabilities contributes to systematic error. 



• More-than-one parameter 

– Correlations and error bars 

– Xj  are the set of parameters 

– Maximise the probability     
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As magnitude of C increases, skewed contours ……. 
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Same thing….differently. 

 

Equations above give  A = -1/σx
2  ; B = -1/σy

2  and C = 0 

Make the transformation and choose θ = 30o 

x’ = xcos θ – ysin θ and y’ = ycos θ + xsin θ   

X0=Y0=0; σx  =  √2/4 ; σy = √2/2 gives 8 x2 + 2 y2 = 1  



• This gives  
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• Simple Examples 

– Function of variables f = f(x,y) 

– Given the errors on x and y, find the error on f 

–    
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Change of variables p = p(x,y) and q = q(x,y) 



• Examples 

– y=x+2x 

– Asymmetry 

• F and B independent (N = F + B) 

• Error (Poissonian on F and B) 

 

 

 

• N is F+B is a constant (completely correlated) 

• Error 
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Various Distributions Used  

in Particle Physics 

Binomial   Branching Ratio 

Multinomial  Histogram 

Poisson   Counting Rate 

Gaussian   Measurement Error 

Cauchy   Resonance Formation         
(Breit-Wigner) 

Chi-square   Goodness of Fit Estimate 
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Summarise 

• Bayesian methods 

• Simple examples of hypothesis testing and 

parameter determination, fitting distributions 

• Rules about error propagation 

• Meaning of errors and confidence limits 

• Event Selection and Decision Boundary 

• Correlated errors and error matrix 
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