- Determine Errors on Parameters
- Random, or Statistical - Precision
- Systematic - Accuracy
- Consider radioactive decay
- Determine decay constant
- Measure decay rate
- Mass of the sample
- Innate randomness gives a random error (Poisson distributed)
- Systematic Error
- Measured counting rate is lower
- Efficiency x Acceptance
- Estimate the correction
- Uncertainty in this estimate contributes to systematic error
- Another Example: Charged Particle Multiplicity in each rapidity bin
- Acceptance determined using angular distribution, and hence event generators
- Uncertainty in correction factor is systematic error
- Sometimes cancels out $\quad \sigma_{i}=\frac{n_{i}}{B t}$

Error Propagation

- $a=b \pm c$
- Error on ' a '

$$
\sigma_{a}^{2}=\sigma_{b}^{2}+\sigma_{c}^{2}
$$

- $a=b^{r} c^{s}$
$\begin{array}{r}- \text { Fractional } \\ \text { error on } a\end{array} \quad\left(\frac{\sigma_{a}}{a}\right)^{2}=r^{2}\left(\frac{\sigma_{b}}{b}\right)^{2}+s^{2}\left(\frac{\sigma_{c}}{c}\right)^{2}+\frac{2 r s \operatorname{cov}(b, c)}{b c}$
- Last term is zero if b and c are independent
- Errors on Scaled Factorial Moments:
- What happens when we fit a distribution?
- Goodness of fit statistic χ^{2}

$$
\frac{\chi^{2}}{d o f}=1 \quad \text { Is this value sacred? (Mean, not MP) }
$$

For a fixed ' p ' value, $\chi^{2} /$ dof is different for different no. of degrees of freedom

' p-value' is the area under tail of the χ^{2} distribution

- The χ^{2} distribution and p-values

Fig. 4.10. χ^{2}-distributions, for various numbers of degrees of freedom v (shown by each curve). As v increases, so do the mean and variance of the distribution.

Most probable values do not correspond to $\chi^{2} /$ dof $=1.0$

Fig. 4.11. The percentage area in the tail of χ^{2}-distributions, for various numbers of degrees of freedom, shown by each curve. Both

How do we decide on rejecting the null hypothesis

For 5 degrees of freedom, if χ^{2} is 3.0 , then the probability for hypothesis to be correct is 70%.

However, if it is ~ 11, then the probability is 5%

The χ^{2} values for 10 degrees of freedom, for the same probability are ~ 7.3 and ~ 18.3

For what value of χ^{2} can we say 100% ?
Based upon p-values, for $\chi^{2}=0$!

Gaussian peaked at x_{m}, width $\sigma=1$

x_{1}			90\% CL u	er limits : x_{l}
$\int f(x) d x$		x_{m}	Method 1	Method 2
$\int_{0} f(x) d x$		5	6.3	6.3
$\frac{0}{m}=0.9$	(1)	3	4.3	4.3
		1	2.4	2.3
$f(x) d x$		0.5	2.0	1.8
0		0	1.6	1.3
		-0.5	1.4	0.8
		-1	1.2	0.3
$x_{l}=x_{m}+1.28 \sigma$	(2)	-3	0.6	(-1.7)
		-5	0.5	(-3.7)

EVENT SELECTION (G.Cowan’s)

- Event characterised by X (multidimensional)
- $\mathrm{P}\left(\mathrm{X} \mid \mathrm{H}_{0}\right)$ corresponds to background
- $\mathrm{P}\left(\mathrm{X} \mid \mathrm{H}_{1}\right)$ corresponds to signal
- Need a decision boundary
- PMD: charged particle and photon separation

c_{i}
- For the decision boundary
- Make a test statistic $\mathrm{t}(\mathrm{X})$, boundary defined by $\mathrm{t}_{\text {cut }}$
$-\mathrm{g}\left(\mathrm{t} \mid \mathrm{H}_{0}\right), \mathrm{g}\left(\mathrm{t} \mid \mathrm{H}_{1}\right)$
Probability to reject H_{0} if it is the correct hypothesis (Error of Type-I)

$$
\alpha=\int_{t_{\text {cut }}}^{\infty} g\left(t \mid H_{0}\right) d t
$$

Probability to accept H_{0} if H_{1} is the correct hypothesis (Type-II)

$$
\beta=\int_{-\infty}^{t_{\mathrm{c}} \mathrm{t}} g\left(t \mid H_{1}\right) d t
$$

Signal/Background Efficiency

Assume it is a background event. We may (mis)identify it as a signal event. The probability of 'background efficiency' is

$$
\varepsilon_{\mathrm{b}}=\int_{t_{\mathrm{cut}}}^{\infty} g(t \mid \mathrm{b}) d t=\alpha
$$

Assume a signal event. The probability to identify it correctly is 'signal efficiency' and is

$$
\varepsilon_{\mathrm{s}}=\int_{t_{\mathrm{cut}}}^{\infty} g(t \mid \mathrm{s}) d t=1-\beta
$$

Purity of the Sample

- Assume fractions of signal and background events are π_{s} and π_{b}. Then, the purity of signal is

$$
\begin{aligned}
P\left(\mathrm{~s} \mid t>t_{\mathrm{cut}}\right) & =\frac{P\left(t>t_{\mathrm{cut}} \mid \mathrm{s}\right) \pi_{\mathrm{s}}}{P\left(t>t_{\mathrm{cut}} \mid \mathrm{s}\right) \pi_{\mathrm{s}}+P\left(t>t_{\mathrm{cut}} \mid \mathrm{b}\right) \pi_{\mathrm{b}}} \\
& =\frac{\varepsilon_{\mathrm{s}} \pi_{\mathrm{s}}}{\varepsilon_{\mathrm{s}} \pi_{\mathrm{s}}+\varepsilon_{\mathrm{b}} \pi_{\mathrm{b}}}
\end{aligned}
$$

Purity depends upon prior probabilities ! Uncertainty in the prior probabilities contributes to systematic error.

- More-than-one parameter
- Correlations and error bars
$-\mathrm{X}_{\mathrm{j}}$ are the set of parameters
- Maximise the probability

$$
\begin{aligned}
& \left.\frac{\partial P}{\partial X_{i}}\right|_{\left\{X_{o j}\right\}}=0 \\
& L=L\left(X_{0}, Y_{0}\right)+\frac{1}{2}\left[\begin{array}{l}
\left.\frac{\partial^{2} L}{\partial X^{2}}\right|_{X_{o} Y_{o}}\left(X-X_{o}\right)+\left.\frac{\partial^{2} L}{\partial Y^{2}}\right|_{X_{o}, Y_{o}}\left(Y-Y_{o}\right) \\
+\left.2 \frac{\partial^{2} L}{\partial X \partial Y}\right|_{X_{o}, Y_{o}}\left(X-X_{o}\right)\left(Y-Y_{o}\right)
\end{array}\right]+\ldots
\end{aligned}
$$

$$
\begin{gathered}
Q=\left(X-X_{0} \quad Y-Y_{0}\right)\left(\begin{array}{ll}
A & C \\
C & B
\end{array}\right)\binom{X-X_{0}}{Y-Y_{0}} \\
A=\left.\frac{\partial^{2} L}{\partial X^{2}}\right|_{X_{0} Y_{0}}, B=\left.\frac{\partial^{2} L}{\partial Y^{2}}\right|_{X_{o} Y_{0}}, C=\left.2 \frac{\partial^{2} L}{\partial X \partial Y}\right|_{X_{o} Y_{0}} \\
\sigma_{X}=\sqrt{\frac{-B}{A B-C^{2}}} ; \sigma_{Y}=\sqrt{\frac{-A}{A B-C^{2}}} ; \sigma_{X Y}^{2}=\frac{C}{A B-C^{2}} \\
\left(\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X Y}^{2} \\
\sigma_{X Y}^{2} & \sigma_{Y}^{2}
\end{array}\right)=\frac{1}{A B-C^{2}}\left(\begin{array}{cc}
-B & C \\
C & -A
\end{array}\right)=-\left(\begin{array}{ll}
A & C \\
C & B
\end{array}\right)^{-1}
\end{gathered}
$$

As magnitude of C increases, skewed contours

Same thing....differently.

$L=\ln p=$ const $-\frac{1}{2}\left(\frac{X^{2}}{\sigma_{X}^{2}}+\frac{Y^{2}}{\sigma_{Y}^{2}}\right)$

Equations above give $\mathrm{A}=-1 / \sigma_{\mathrm{x}}{ }^{2} ; \mathrm{B}=-1 / \sigma_{\mathrm{y}}{ }^{2}$ and $\mathrm{C}=0$
$X_{0}=Y_{0}=0 ; \sigma_{x}=\sqrt{ } 2 / 4 ; \sigma_{y}=\sqrt{ } 2 / 2$ gives $8 x^{2}+2 y^{2}=1$

Make the transformation and choose $\theta=30^{\circ}$
$\mathrm{x}^{\prime}=\mathrm{x} \cos \theta-\mathrm{y} \sin \theta$ and $\mathrm{y}^{\prime}=\mathrm{y} \cos \theta+\mathrm{x} \sin \theta$

- This gives

$$
\frac{1}{2}\left[13 x^{\prime 2}+6 \sqrt{3} x^{\prime} y^{\prime}+7 y^{\prime 2}\right]=1
$$

$$
\left(\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right)\left(\begin{array}{cc}
\frac{13}{2} & \frac{3 \sqrt{3}}{2} \\
\frac{3 \sqrt{3}}{2} & \frac{7}{2}
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}=1 \begin{aligned}
& \text { Inverting } \\
& \text { gives the } \\
& \text { error matrix }
\end{aligned} \quad \frac{2}{64}\left(\begin{array}{cc}
7 & -3 \sqrt{3} \\
-3 \sqrt{3} & 13
\end{array}\right)
$$

Yielding $\quad \sigma_{x}{ }^{2}=\frac{14}{64}=(0.468)^{2} \quad \sigma_{y^{\prime}}{ }^{2}=\frac{26}{64}=(0.637)^{2}$

$$
\operatorname{cov}\left(x^{\prime}, y^{\prime}\right)=-\frac{6 \sqrt{3}}{64}=-(0.403)^{2}
$$

Negative sign

- Simple Examples
- Function of variables $f=f(x, y)$
- Given the errors on x and y , find the error on f
$-\quad \overline{\delta f^{2}}=\left(\frac{\partial f}{\partial x}\right)^{2} \overline{\delta x^{2}}+\left(\frac{\partial f}{\partial y}\right)^{2} \overline{\delta y^{2}}+2\left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right) \overline{\delta x \delta y}$

$$
\overline{\delta f^{2}}=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right)\left(\begin{array}{ll}
\overline{\delta x^{2}} & \overline{\delta x \delta y} \\
\overline{\delta x \delta y} & \overline{\delta y^{2}}
\end{array}\right)\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
$$

$$
\sigma_{f}^{2}=\bar{D} M D
$$

Change of variables $p=p(x, y)$ and $q=q(x, y)$

- Examples
$-y=x+2 x$
$\begin{aligned} & -\mathrm{y}=\mathrm{x}+2 \mathrm{x} \\ & \text { - Asymmetry }\end{aligned} \quad A=\frac{F-B}{F+B}$
- F and B independent $(\mathrm{N}=\mathrm{F}+\mathrm{B})$
- Error (Poissonian on F and B)

$$
\sigma_{a}=\frac{1-A^{2}}{2} \sqrt{\left(\frac{1}{F}+\frac{1}{B}\right)}
$$

- N is $\mathrm{F}+\mathrm{B}$ is a constant (completely correlated)
- Error

$$
\sigma_{a}=\frac{2}{N} \sqrt{\frac{F B}{N}}
$$

Various Distributions Used in Particle Physics

Binomial
Multinomial
Poisson
Gaussian
Cauchy
(Breit-Wigner)
Chi-square

Branching Ratio
Histogram
Counting Rate
Measurement Error
Resonance Formation

Goodness of Fit Estimate

Summarise

- Bayesian methods
- Simple examples of hypothesis testing and parameter determination, fitting distributions
- Rules about error propagation
- Meaning of errors and confidence limits
- Event Selection and Decision Boundary
- Correlated errors and error matrix

