
Gagan Mohanty

Background fighting with robust
multivariate techniques

DHEP, TIFR, Mumbai



2

The Lecture Outline

30-03-11

• Background fighting: why and what?

You will be provided with the lecture notes

• What do we mean by multivariate analysis technique?
 Classic Cut-n-Count Method
 Fisher’s Linear Discriminant
 Multidimensional Likelihood
 Artificial Neural Network
 Decision Trees (very recent)



3

Background fighting – Layman Language

30-03-11

• Almost all the time the number of interesting signal events
are very few and overshadowed by huge background

signal

background

• There is nothing like a 100% signal enriched data may I
dare say, it is difficult to think of an experiment without any
background or noise

Needle in the haystack



4

Put it Mathematically

30-03-11

• We start with a data sample of
U interesting events
 Each event is described by

n discriminating variables
(or n dimensions)

• The data sample contains m
classes of events: A, B, …
(let’s take m=2 for simplicity)

• So: andA ½ U B ½ U
Right plot has got a
profound message,
i.e., between A and
B none of the n
variables is fully
nonoverlapping

CMS dataset
recorded till
14-05-2011



5

Closing the Math Chapter

30-03-11

• Consider the event ei:
 ei ≡ ei(x) = ei(x1,x2,x3, …, xn), ith event of the dataset U
 How do we determine Aness or Bness of this event?

• We need some way to assign a probability
to the hypothesis that the event ei is of the
class A

• The compliment of that is the probability that ei belongs to the
class B (a case of two classes)

P (ei 2 A) · 1

P (ei 2 A) = P (ei 2 B) · 1

Background fighting is a classification algorithm, where one
would like to optimally combine some (or, all) variables x in
order to obtain a best-possible separation between A and B

Testing your smartness!!!



6

Pictorial Sketch of all I have said

30-03-11

OUTPUT

INPUT



7

Features of a Good (Optimal) Algorithm

30-03-11

• Separation of classes A and B reach experimental sensitivity
 Statistical precision on the measured variables
 Systematic uncertainties (study some control sample?)

• Understandable and reproducible
 Can we tell when something has gone wrong?
 Even better, how easily can we reproduce it?
 Are there any known pathologies that can impact the

problem at hand?

• Ease of use
 Many readymade toolkits available in the market (TMVA,

NeuroBayes, StatPatternRecognition, etc.) you do not
have to code it up yourself!

 But… that does not mean you need not understand what is
going on It should not be a black-box to you!



8

Classic Cut-n-Count Method

30-03-11

• Apply an n-dimensional step function to an event ei

 Select the event if it satisfies all the criteria
 Else, reject it

• Determine the cut values using some optimization scheme
 Most of the time the signal (statistical) significance is used

• Pros: easy to use, transparent, systematic well understood
• Cons: Not very efficient mostly used as a cross-check

S = NAp
NA+NB



9

Fisher’s Linear Discriminant

30-03-11

• Consider the case where we have a data sample U which
contains one signal class and one background class
 Our aim is to develop a multivariate discriminating

variable Oi(x) for the ith event

 We will drop β from further discussion as the offset is 
arbitrary and set for convenience then pictorially Oi

 Again the name of the game is how to maximize the
separation between signal and background find
out a suitable way to tune the coefficients of α



10

How to Optimize the α’s?

30-03-11

• Before thinking in that direction, let’s see what we know
about the data (signal/background)
 μ(x) , σ(x) are known for each variable and for each class

• One can write the Fisher mean and sigma of the
corresponding signal and background distributions as:

(just the vector sum of the scaled mean and variance using the corresponding weights in α)

• To maximize the separation between S and B basically means
 maximize |MS − MB|
 minimize variances

• These requirements can be combined to



11

How to Optimize the α’s?

30-03-11

• Optimal separation between S and B can be found by solving
the top equation for given signal and background samples

Putting back the respective values of M and Σ:

• Essentially we need to solve

B represents the separation between classes

W represents the sum of covariances within classes



12

Fisher Discriminant – An Example

30-03-11



13

Points not to forget about Fisher

30-03-11

• Works fine for variables not correlated at all or with linear
correlation (see below)

• Simpler alternative to the Cut-n-Count method but works
pretty well for most of the cases

• If a variable is symmetric about the mean value, and both
signal and background have a common mean it will not
contribute to Fisher  (μS−μB = 0)

O = ®1x1 + ®2x2 + ®3x3 + ::: + ®nxn

Let's say x2 and x3 are linearly correlated

which means, x2 = m x3 + c
O = ®1x1 + ®02x2 + ::: + ®nxn



14

Artificial Neural Network

30-03-11

• Artificial Neural Network (ANN) or simply Neural Network
(NN) is a nonlinear algorithm

• Aims to replicate how the human brain works fundamental
building block of a NN is the perceptron similar to neuron
in case of the brain

Brain Artificial Neural Network

y = f(w ¢ x + b)

If y > 0, then O = 1

 y is the definition of a plane in a n-dimensional hyperspace



15

Basic Unit: Perceptron

30-03-11

• It looks like a familiar concept (recall the logic used in the
Cut-n-Count method)

• The perceptron is doing pretty much the same thing for given
w and b, by cutting in the n-dimensional hyperspace

• Recall all the cut information is encoded in cj in Cut-n-Count

• This tells us an important thing: A single perceptron won’t be
of much help than optimally cutting on the data

• We need to move beyond to the next logical step: Multi-layer
Perceptron (MLP)



16

Multi-layer Perceptron – ANN’s Heart

30-03-11

• Combine layers of percetprons in a way so as to obtain a
refined separation between classes A and B

• Modify the output of a perceptron so that it is some function
with an output usually between 0 and 1 activation function
 Step function can be used
 Any other suitable function can also be used
 The sigmoid function is the most popular choice

y = e
¡®

2
x2

y = 1

1+e®x+¯



17

MLP Architecture

30-03-11

• An MLP example with
 n inputs
 1 hidden layer with n nodes
 1 output

• Decide on the activation function to be used for each node/layer

• Determine the weights used to evaluate yi for each node

• Check that we have not overtrained our network

Let’s stick to the sigmoid function

Most critical component of ANN



18

How to determine the weights?

30-03-11

Is our solution the global minimum?

• Start with an initial guess for the weights
 Determine how good an estimate this is (use the error in

the output classification as a figure-of-merit)
 Estimate a new set of weights using the rate of change

of errors w.r.t. weights
 Re-evaluate the error on the new set of weights

y = f(w ¢ x + b)

• When the result is stable and good enough, stop iterating

• At that stage, we have determined the parameters that define
the ANN



19

Global Error Function

30-03-11

• To start with, consider the simple case of a single perceptron
 Use Class A (t=1) and Class B (t=0) events from a total

data sample U as input supervised learning
 We want to train our algorithm, so we know the target

type ti for each event ei

 Sometimes we can get the classification wrong, which
we characterize by an error εi:

"i = 1
2 (ti ¡ yi)

2

Error Target type Perceptron output

• So for the whole data sample U, containing N events, the
total error E:



20

Minimizing the Error

30-03-11

¢w = ¡®@E
@w

• Now that we have defined an error, we can:
 Guess a set of weights
 Evaluate the total error using those weights

• We need to estimate a new set of weights

 Want to try with a new value, which is at
a small distance from the initial one

 At the same time, we wish to move closer
to the minimum, so let

 Here α (learning rate) is a small positive 
parameter making

is always positive

w0 ! w0 + ¢w

¢E = ¡® @E
@w

2

This is called gradient descent on an error or delta rule



21

Complexity of the Problem

30-03-11

• Need to determine weights for
each of the nodes, e.g., see the
left plot

• A complex job involving many
nodes many weights, akin to
a multi-dimensional fit with a
lot of free parameters

• We use the method of Back Propagation (of error) to accomplish
this complicated task

See the error contribution of a node j to the output layer

Check how was the situation at the previous hidden layer

j



22

Train the MLP (as you want it to perform)

30-03-11

• In order to train the network we need two samples of data (at a
time):
 Sample 1 containing M entries of class A events
 Sample 2 containing M entries of class B events

• How do we know when training has finished?

Compare the error and its gradient against some anticipated
threshold
Validate the performance against some test sample



23

Need for a Validation Sample

30-03-11

• Provides a statistically independent reference point
 If the training and the validation (or, testing) samples perform

the same with a set of weights, then we can have faith in the
MLP configuration when applying it to the real data

• Solution should be more robust than using all data for training
 Possibility of overtraining can be easily traced out

• How much data we keep aside for testing?

Experience says approximately similar size as the training
sample is a good choice

M = data size for training
W = total number of weights
ε = error threshold
N = number of nodes

• How much data in total (training + testing) we need for an MLP?

M > O W
"

M > O W
" log(N=")For more complex network



24

How much data one needs for an MLP?

30-03-11

• Example:
 Below is an MLP with 1 hidden layer of 6 nodes, there are 6 input

variables and 1 output node
 Total number of weight parameters, W = (6+1)×6 = 42
 Say, the misclassification (error) level we want to achieve is 1%

The training data size should be at least 42/0.01 = 4200,
so the total data should be twice of that, which is 8400



25

Points not to forget about NN

30-03-11

• Just don’t assume MLP is a magic tool for you
 Need to check if your problem is that complex which a simpler

algorithm cannot suitably handle
 Check all the input variables you want to use as inputs to MLP

don’t add any unuseful variable adding noise to your network
 What sort of correlations exist between various input variables,

e.g., if there are no nonlinear correlations, a Fisher discriminant
may be sufficient

Bottom-line: Think twice before you plunge

• If all of the above makes you think that MLP is the way to go
about, you should
 Ensure there is a large data samples at your avail
 Go step by step don’t put everything together at a time

judiciously add the input variables in increment check if the
improvement in performance makes any sense

 Pay enough attention to the validation step it would be even
better to test out the performance with some control data sample
in addition



26

What is a (Binary) Decision Tree?

30-03-11

• Apply the initial rule to
all data:
 Divide them into two

classes with a binary
output

 At each successive
layer, we divide the
data further into
signal (class A) or
background (class B)

R(x1) = x > xi TRUE

= x < xi FALSE

• The classification for a set of cut values will have an error
 Just as with a NN, one can vary the cut values in order to minimize

the error train the decision tree



27

What is really happening?

30-03-11

Some variables may be used more often by more than one node

Other (noise) variables may never be used

• Each node uses a subset
of input variables that
give the best separation
between two classes



28

Looking little bit closer

30-03-11

There are many bottom levels to the tree

…many signal/background regions defined by the algorithm

• Bottom of the tree just
looks like a sub-sample
of events subjected to a
cut based analysis



29

Is it a carbon-copy of C-n-C?

30-03-11

• If the binary decision tree just mimicks Cut-n-Count, why to
bother about it?

• Pros:
 More flexibility in the algorithm when trying to separate two

classes of events able to obtain a better separation than a
simple cut-based approach

 Easy to understand and interpret in contrast to a NN

• Cons:
 Potential instability with respect to statistical fluctuations in

the training sample

Could you think beyond the binary version of the tree?



30

Boosted Decision Trees

30-03-11

By reweighting misclassified events by α the aim is to reduce 
the error rate of the trained tree

• At each stage in training there may be some misclassification
of events (error rate) let’s try to minimize that
 Assign a greater event weight α to misclassified events in the 

next iteration

 Reweight the whole sample so that the sum of event weights
remains the same, continue to iterate until the tree is stabilized

® = 1¡"
" , where " is the error rate



31

Let’s now take a tour of TMVA

30-03-11


