Background fighting with robust multivariate techniques

Gagan Mohanty
DHEP, TIFR, Mumbai

The Lecture Outline

- Background fighting: why and what?
- What do we mean by multivariate analysis technique?
$>$ Classic Cut-n-Count Method
$>$ Fisher's Linear Discriminant
> Multidimensional Likelihood
$>$ Artificial Neural Network
$>$ Decision Trees (very recent)
${ }^{\|} \Rightarrow$ You will be provided with the lecture notes

Background fighting - Layman Language

- Almost all the time the number of interesting signal events are very few and overshadowed by huge background

- There is nothing like a 100% signal enriched data $\|$ may I dare say, it is difficult to think of an experiment without any background or noise

Put it Mathematically

- We start with a data sample of U interesting events
$>$ Each event is described by n discriminating variables (or n dimensions)
- The data sample contains m classes of events: A, B, \ldots (let's take $m=2$ for simplicity)
- So: $A \subset U$ and $B \subset U$

$\|=$ Right plot has got a profound message, i.e., between A and B none of the n variables is fully nonoverlapping

Closing the Math Chapter

- Consider the event e_{i} :
$>e_{i} \equiv e_{i}(\mathbf{x})=e_{i}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{n}\right), i^{\text {th }}$ event of the dataset U
$>$ How do we determine Aness or Bness of this event?
- We need some way to assign a probability to the hypothesis that the event e_{i} is of the

$$
P\left(e_{i} \in A\right) \leq 1
$$ class A

- The compliment of that is the probability that e_{i} belongs to the class B (a case of two classes)

$$
\overline{P\left(e_{i} \in A\right)}=P\left(e_{i} \in B\right) \leq 1
$$

$\|$ Background fighting is a classification algorithm, where one would like to optimally combine some (or, all) variables \mathbf{x} in order to obtain a best-possible separation between A and B

Pictorial Sketch of all I have said

Features of a Good (Optimal) Algorithm

- Separation of classes A and B $\| \Rightarrow$ reach experimental sensitivity
$>$ Statistical precision on the measured variables
$>$ Systematic uncertainties (study some control sample?)
- Understandable and reproducible
$>$ Can we tell when something has gone wrong?
$>$ Even better, how easily can we reproduce it?
$>$ Are there any known pathologies that can impact the problem at hand?
- Ease of use
> Many readymade toolkits available in the market (TMVA, NeuroBayes, StatPatternRecognition, etc.) $\| \Rightarrow$ you do not have to code it up yourself!
$>$ But... that does not mean you need not understand what is going on $\|$ It should not be a black-box to you!

Classic Cut-n-Count Method

- Apply an n-dimensional step function to an event e_{i}
$>$ Select the event if it satisfies all the criteria
$>$ Else, reject it

Retain Event:

$$
P\left(e_{i} \in A\right)>0
$$

Discard Event:
$P\left(e_{i} \in B\right)$ is significant

- Determine the cut values using some optimization scheme
$>$ Most of the time the signal (statistical) significance is used

$$
S=\frac{N_{A}}{\sqrt{N_{A}+N_{B}}}
$$

- Pros: easy to use, transparent, systematic well understood
- Cons: Not very efficient $\stackrel{m}{\boldsymbol{m}}$ mostly used as a cross-check

Fisher's Linear Discriminant

- Consider the case where we have a data sample U which contains one signal class and one background class
$>$ Our aim is to develop a multivariate discriminating variable $O_{i}(\mathbf{x})$ for the $i^{\text {th }}$ event

$$
O_{i}(\underline{x})=\sum_{j=1}^{n} \alpha_{j} x_{i j}+\beta
$$

$>$ We will drop β from further discussion as the offset is arbitrary and set for convenience $\| \Rightarrow$ then pictorially O_{i}

$>$ Again the name of the game is how to maximize the separation between signal and background $\|$ find out a suitable way to tune the coefficients of $\boldsymbol{\alpha}$

How to Optimize the α 's?

- Before thinking in that direction, let's see what we know about the data (signal/background)
$>\mu(\mathbf{x}), \sigma(\mathbf{x})$ are known for each variable and for each class
- One can write the Fisher mean and sigma of the corresponding signal and background distributions as:

$$
M_{S, B}=\alpha^{T} \mu_{S, B} \quad \Sigma_{S, B}^{2}=\alpha^{T} \sigma_{S, B}^{2} \alpha
$$

(just the vector sum of the scaled mean and variance using the corresponding weights in $\boldsymbol{\alpha}$)

- To maximize the separation between S and B basically means
$>$ maximize $\left|M_{S}-M_{B}\right|$
$>$ minimize variances $\Sigma_{S, B}^{2}$
- These requirements can be combined to $J(\alpha)=\frac{\left[M_{S}-M_{B}\right]^{2}}{\Sigma_{S}^{2}+\Sigma_{B}^{2}}$

How to Optimize the α 's?

$$
J(\alpha)=\frac{\left[M_{S}-M_{B}\right]^{2}}{\Sigma_{S}^{2}+\Sigma_{B}^{2}}
$$

${ }^{\|} \Rightarrow$ Putting back the respective values of M and Σ :

$$
\begin{gathered}
{\left[M_{S}-M_{B}\right]^{2}=\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left(\mu_{S}-\mu_{B}\right)_{i}\left(\mu_{S}-\mu_{B}\right)_{j}=\alpha^{T} B \alpha} \\
B \text { represents the separation between classes }
\end{gathered} \Sigma_{S_{S}^{2}+\Sigma_{B}^{2}=\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j}\left(V_{S}+V_{B}\right)_{i j}=\alpha^{T} W \alpha}^{W \text { represents the sum of covariances within classes }} 4 .
$$

- Optimal separation between S and B can be found by solving the top equation for given signal and background samples
- Essentially we need to solve $\frac{\partial J(\alpha)}{\partial \alpha_{i}}=0$

Fisher Discriminant - An Example

Points not to forget about Fisher

- Simpler alternative to the Cut-n-Count method but works pretty well for most of the cases
- Works fine for variables not correlated at all or with linear correlation (see below)

$$
O=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\ldots+\alpha_{n} x_{n}
$$

Let's say x_{2} and x_{3} are linearly correlated which means, $x_{2}=m x_{3}+c$

$$
O=\alpha_{1} x_{1}+\alpha_{2}^{\prime} x_{2}+\ldots+\alpha_{n} x_{n}
$$

- If a variable is symmetric about the mean value, and both signal and background have a common mean $\|$ it will not contribute to Fisher ($\mu_{\mathrm{S}}-\mu_{\mathrm{B}}=0$)

Artificial Neural Network

- Artificial Neural Network (ANN) or simply Neural Network (NN) is a nonlinear algorithm
- Aims to replicate how the human brain works $\| \Rightarrow$ fundamental building block of a NN is the perceptron $\|$ similar to neuron in case of the brain

Brain
$y=f(\underline{w} \cdot \underline{x}+b)$
If $y>0$, then $O=1$
$O=0$ or 1

Impulse:	Binary	Response:
n inputs	Threshold	Output

Artificial Neural Network
$>y$ is the definition of a plane in a n-dimensional hyperspace

Basic Unit: Perceptron

- It looks like a familiar concept (recall the logic used in the Cut-n-Count method)

- The perceptron is doing pretty much the same thing for given \underline{w} and b, by cutting in the n-dimensional hyperspace
- Recall all the cut information is encoded in c_{j} in Cut-n-Count
- This tells us an important thing: A single perceptron won't be of much help than optimally cutting on the data
- We need to move beyond to the next logical step: Multi-layer Perceptron (MLP)

Multi-layer Perceptron - ANN's Heart

- Combine layers of percetprons in a way so as to obtain a refined separation between classes A and B
- Modify the output of a perceptron so that it is some function with an output usually between 0 and $1 \Perp$ activation function
$>$ Step function can be used
$>$ Any other suitable function can also be used
\Rightarrow The sigmoid function is the most popular choice

MLP Architecture

- An MLP example with
$>n$ inputs
>1 hidden layer with n nodes
>1 output

```
Looks good but...
```

... what are we supposed to do now?

- Decide on the activation function to be used for each node/layer ${ }^{1} \boldsymbol{L}$ Let's stick to the sigmoid function
- Determine the weights used to evaluate y_{i} for each node
$\|$ Most critical component of ANN
- Check that we have not overtrained our network

How to determine the weights?

$$
y=f(\underline{w} \cdot \underline{x}+b)
$$

- Start with an initial guess for the weights
$>$ Determine how good an estimate this is (use the error in the output classification as a figure-of-merit)
$>$ Estimate a new set of weights using the rate of change of errors w.r.t. weights
$>$ Re-evaluate the error on the new set of weights
- When the result is stable and good enough, stop iterating
- At that stage, we have determined the parameters that define the ANN
$\| \Rightarrow$ Is our solution the global minimum?

Global Error Function

- To start with, consider the simple case of a single perceptron
\Rightarrow Use Class $A(\mathrm{t}=1)$ and Class $B(\mathrm{t}=0)$ events from a total data sample U as input $川$ supervised learning
$>$ We want to train our algorithm, so we know the target type t_{i} for each event e_{i}
$>$ Sometimes we can get the classification wrong, which we characterize by an error ε_{i} :

$$
\underset{\text { Error }}{\varepsilon_{i}}=\underset{\text { Target type }}{\frac{1}{2}} \underset{\uparrow}{\left(t_{i}\right.}-\underbrace{y_{i}}_{\text {Perceptron output }})^{2}
$$

- So for the whole data sample U, containing N events, the total error E :

$$
E=\sum_{i=1}^{N} \epsilon_{i}=\sum_{i=1}^{N} \frac{1}{2}\left(t_{i}-y_{i}\right)^{2}
$$

Minimizing the Error

- Now that we have defined an error, we can:
$>$ Guess a set of weights
$>$ Evaluate the total error using those weights
- We need to estimate a new set of weights

$>$ Want to try with a new value, which is at a small distance from the initial one

$$
w_{0} \rightarrow w_{0}+\Delta w
$$

$>$ At the same time, we wish to move closer to the minimum, so let

$$
\Delta w=-\alpha \frac{\partial E}{\partial w}
$$

$>$ Here α (learning rate) is a small positive parameter making

$$
\Delta E=-\alpha\left(\frac{\partial E}{\partial w}\right)^{2}
$$

is always positive
$30-03-11 \xrightarrow{\|}$ This is called gradient descent on an error or delta rule

Complexity of the Problem

- Need to determine weights for each of the nodes, e.g., see the left plot
- A complex job involving many nodes \Rightarrow many weights, akin to a multi-dimensional fit with a lot of free parameters

- We use the method of Back Propagation (of error) to accomplish this complicated task
$\|=$ See the error contribution of a node j to the output layer

$$
\Delta t=t_{j}-y_{j}
$$

$\| \Rightarrow$ Check how was the situation at the previous hidden layer

$$
\Delta t=\sum_{k \text { nodes }}\left(t_{j}-y_{j}\right) w_{j k}
$$

Train the MLP (as you want it to perform)

- In order to train the network we need two samples of data (at a time):
> Sample 1 containing M entries of class A events
\Rightarrow Sample 2 containing M entries of class B events

$$
\begin{array}{|l}
\text { You don't have to use equal numbers } \\
\text { of events for both classes, however } \\
\text { not doing so will affect the } \\
\text { convergence of your network. You are } \\
\text { advised to keep to using equal } \\
\text { number of events in samples A and B. }
\end{array}
$$

- How do we know when training has finished?
$\xrightarrow{\Perp}$ Compare the error and its gradient against some anticipated threshold
$\|$ Validate the performance against some test sample

Need for a Validation Sample

- Provides a statistically independent reference point
$>$ If the training and the validation (or, testing) samples perform the same with a set of weights, then we can have faith in the MLP configuration when applying it to the real data
- Solution should be more robust than using all data for training
$>$ Possibility of overtraining can be easily traced out
- How much data we keep aside for testing?
${ }_{\|} \longrightarrow$ Experience says approximately similar size as the training sample is a good choice
- How much data in total (training + testing) we need for an MLP?

$$
M>\left(\frac{W}{\varepsilon}\right) \quad \begin{aligned}
& M=\text { data size for training } \\
& W=\text { total number of weights } \\
& \varepsilon=\text { error threshold } \\
& N=\text { number of nodes }
\end{aligned}
$$

${ }^{30-03-11}$.11 For more complex network $M>O\left[\frac{W}{\varepsilon} \log (N / \varepsilon)\right]$

How much data one needs for an MLP?

- Example:
$>$ Below is an MLP with 1 hidden layer of 6 nodes, there are 6 input variables and 1 output node
$>$ Total number of weight parameters, $\mathrm{W}=(6+1) \times 6=42$
$>$ Say, the misclassification (error) level we want to achieve is 1%

$\|$ The training data size should be at least $42 / 0.01=4200$, so the total data should be twice of that, which is 8400

Points not to forget about NN

- Just don't assume MLP is a magic tool for you
$>$ Need to check if your problem is that complex which a simpler algorithm cannot suitably handle
$>$ Check all the input variables you want to use as inputs to MLP\| $\quad \Rightarrow$ don't add any unuseful variable $\|$ adding noise to your network
$>$ What sort of correlations exist between various input variables, e.g., if there are no nonlinear correlations, a Fisher discriminant may be sufficient
- If all of the above makes you think that MLP is the way to go about, you should
$>$ Ensure there is a large data samples at your avail
$>$ Go step by step $\|$ don't put everything together at a time $\| \Rightarrow$ judiciously add the input variables in increment $\|$ check if the improvement in performance makes any sense
$>$ Pay enough attention to the validation step $\|$ it would be even better to test out the performance with some control data sample in addition

What is a (Binary) Decision Tree?

- Apply the initial rule to all data:
$>$ Divide them into two classes with a binary output

$$
\begin{aligned}
R\left(\underline{x}_{1}\right) & =\underline{x}>\underline{x}_{i} \text { TRUE } \\
& =\underline{x}<\underline{x}_{i} \text { FALSE }
\end{aligned}
$$

$>$ At each successive layer, we divide the data further into signal (class A) or background (class B)

- The classification for a set of cut values will have an error
$>$ Just as with a NN, one can vary the cut values in order to minimize the error $\|$ train the decision tree

What is really happening?

- Each node uses a subset of input variables that give the best separation between two classes

$\|$ Some variables may be used more often by more than one node
$\|$ Other (noise) variables may never be used

Looking little bit closer

- Bottom of the tree just looks like a sub-sample of events subjected to a cut based analysis

${ }^{\|} \Rightarrow$ There are many bottom levels to the tree
$\|=$...many signal/background regions defined by the algorithm

Is it a carbon-copy of C-n-C?

- If the binary decision tree just mimicks Cut-n-Count, why to bother about it?
- Pros:
$>$ More flexibility in the algorithm when trying to separate two classes of events $\|$ able to obtain a better separation than a simple cut-based approach
$>$ Easy to understand and interpret in contrast to a NN
- Cons:
$>$ Potential instability with respect to statistical fluctuations in the training sample
${ }^{n} \Rightarrow$ Could you think beyond the binary version of the tree?

Boosted Decision Trees

- At each stage in training there may be some misclassification of events (error rate) $\|$ let's try to minimize that
$>$ Assign a greater event weight α to misclassified events in the next iteration

$$
\alpha=\frac{1-\varepsilon}{\varepsilon}, \text { where } \varepsilon \text { is the error rate }
$$

$>$ Reweight the whole sample so that the sum of event weights remains the same, continue to iterate until the tree is stabilized

$\| \Rightarrow$ By reweighting misclassified events by α the aim is to reduce the error rate of the trained tree

Let's now take a tour of TMVA

