
Gagan Mohanty

Background fighting with robust
multivariate techniques

DHEP, TIFR, Mumbai

2

The Lecture Outline

30-03-11

• Background fighting: why and what?

You will be provided with the lecture notes

• What do we mean by multivariate analysis technique?
 Classic Cut-n-Count Method
 Fisher’s Linear Discriminant
 Multidimensional Likelihood
 Artificial Neural Network
 Decision Trees (very recent)

3

Background fighting – Layman Language

30-03-11

• Almost all the time the number of interesting signal events
are very few and overshadowed by huge background

signal

background

• There is nothing like a 100% signal enriched data may I
dare say, it is difficult to think of an experiment without any
background or noise

Needle in the haystack

4

Put it Mathematically

30-03-11

• We start with a data sample of
U interesting events
 Each event is described by

n discriminating variables
(or n dimensions)

• The data sample contains m
classes of events: A, B, …
(let’s take m=2 for simplicity)

• So: andA ½ U B ½ U
Right plot has got a
profound message,
i.e., between A and
B none of the n
variables is fully
nonoverlapping

CMS dataset
recorded till
14-05-2011

5

Closing the Math Chapter

30-03-11

• Consider the event ei:
 ei ≡ ei(x) = ei(x1,x2,x3, …, xn), ith event of the dataset U
 How do we determine Aness or Bness of this event?

• We need some way to assign a probability
to the hypothesis that the event ei is of the
class A

• The compliment of that is the probability that ei belongs to the
class B (a case of two classes)

P (ei 2 A) · 1

P (ei 2 A) = P (ei 2 B) · 1

Background fighting is a classification algorithm, where one
would like to optimally combine some (or, all) variables x in
order to obtain a best-possible separation between A and B

Testing your smartness!!!

6

Pictorial Sketch of all I have said

30-03-11

OUTPUT

INPUT

7

Features of a Good (Optimal) Algorithm

30-03-11

• Separation of classes A and B reach experimental sensitivity
 Statistical precision on the measured variables
 Systematic uncertainties (study some control sample?)

• Understandable and reproducible
 Can we tell when something has gone wrong?
 Even better, how easily can we reproduce it?
 Are there any known pathologies that can impact the

problem at hand?

• Ease of use
 Many readymade toolkits available in the market (TMVA,

NeuroBayes, StatPatternRecognition, etc.) you do not
have to code it up yourself!

 But… that does not mean you need not understand what is
going on It should not be a black-box to you!

8

Classic Cut-n-Count Method

30-03-11

• Apply an n-dimensional step function to an event ei

 Select the event if it satisfies all the criteria
 Else, reject it

• Determine the cut values using some optimization scheme
 Most of the time the signal (statistical) significance is used

• Pros: easy to use, transparent, systematic well understood
• Cons: Not very efficient mostly used as a cross-check

S = NAp
NA+NB

9

Fisher’s Linear Discriminant

30-03-11

• Consider the case where we have a data sample U which
contains one signal class and one background class
 Our aim is to develop a multivariate discriminating

variable Oi(x) for the ith event

 We will drop β from further discussion as the offset is
arbitrary and set for convenience then pictorially Oi

 Again the name of the game is how to maximize the
separation between signal and background find
out a suitable way to tune the coefficients of α

10

How to Optimize the α’s?

30-03-11

• Before thinking in that direction, let’s see what we know
about the data (signal/background)
 μ(x) , σ(x) are known for each variable and for each class

• One can write the Fisher mean and sigma of the
corresponding signal and background distributions as:

(just the vector sum of the scaled mean and variance using the corresponding weights in α)

• To maximize the separation between S and B basically means
 maximize |MS − MB|
 minimize variances

• These requirements can be combined to

11

How to Optimize the α’s?

30-03-11

• Optimal separation between S and B can be found by solving
the top equation for given signal and background samples

Putting back the respective values of M and Σ:

• Essentially we need to solve

B represents the separation between classes

W represents the sum of covariances within classes

12

Fisher Discriminant – An Example

30-03-11

13

Points not to forget about Fisher

30-03-11

• Works fine for variables not correlated at all or with linear
correlation (see below)

• Simpler alternative to the Cut-n-Count method but works
pretty well for most of the cases

• If a variable is symmetric about the mean value, and both
signal and background have a common mean it will not
contribute to Fisher (μS−μB = 0)

O = ®1x1 + ®2x2 + ®3x3 + ::: + ®nxn

Let's say x2 and x3 are linearly correlated

which means, x2 = m x3 + c
O = ®1x1 + ®02x2 + ::: + ®nxn

14

Artificial Neural Network

30-03-11

• Artificial Neural Network (ANN) or simply Neural Network
(NN) is a nonlinear algorithm

• Aims to replicate how the human brain works fundamental
building block of a NN is the perceptron similar to neuron
in case of the brain

Brain Artificial Neural Network

y = f(w ¢ x + b)

If y > 0, then O = 1

 y is the definition of a plane in a n-dimensional hyperspace

15

Basic Unit: Perceptron

30-03-11

• It looks like a familiar concept (recall the logic used in the
Cut-n-Count method)

• The perceptron is doing pretty much the same thing for given
w and b, by cutting in the n-dimensional hyperspace

• Recall all the cut information is encoded in cj in Cut-n-Count

• This tells us an important thing: A single perceptron won’t be
of much help than optimally cutting on the data

• We need to move beyond to the next logical step: Multi-layer
Perceptron (MLP)

16

Multi-layer Perceptron – ANN’s Heart

30-03-11

• Combine layers of percetprons in a way so as to obtain a
refined separation between classes A and B

• Modify the output of a perceptron so that it is some function
with an output usually between 0 and 1 activation function
 Step function can be used
 Any other suitable function can also be used
 The sigmoid function is the most popular choice

y = e
¡®

2
x2

y = 1

1+e®x+¯

17

MLP Architecture

30-03-11

• An MLP example with
 n inputs
 1 hidden layer with n nodes
 1 output

• Decide on the activation function to be used for each node/layer

• Determine the weights used to evaluate yi for each node

• Check that we have not overtrained our network

Let’s stick to the sigmoid function

Most critical component of ANN

18

How to determine the weights?

30-03-11

Is our solution the global minimum?

• Start with an initial guess for the weights
 Determine how good an estimate this is (use the error in

the output classification as a figure-of-merit)
 Estimate a new set of weights using the rate of change

of errors w.r.t. weights
 Re-evaluate the error on the new set of weights

y = f(w ¢ x + b)

• When the result is stable and good enough, stop iterating

• At that stage, we have determined the parameters that define
the ANN

19

Global Error Function

30-03-11

• To start with, consider the simple case of a single perceptron
 Use Class A (t=1) and Class B (t=0) events from a total

data sample U as input supervised learning
 We want to train our algorithm, so we know the target

type ti for each event ei

 Sometimes we can get the classification wrong, which
we characterize by an error εi:

"i = 1
2 (ti ¡ yi)

2

Error Target type Perceptron output

• So for the whole data sample U, containing N events, the
total error E:

20

Minimizing the Error

30-03-11

¢w = ¡®@E
@w

• Now that we have defined an error, we can:
 Guess a set of weights
 Evaluate the total error using those weights

• We need to estimate a new set of weights

 Want to try with a new value, which is at
a small distance from the initial one

 At the same time, we wish to move closer
to the minimum, so let

 Here α (learning rate) is a small positive
parameter making

is always positive

w0 ! w0 + ¢w

¢E = ¡® @E
@w

2

This is called gradient descent on an error or delta rule

21

Complexity of the Problem

30-03-11

• Need to determine weights for
each of the nodes, e.g., see the
left plot

• A complex job involving many
nodes many weights, akin to
a multi-dimensional fit with a
lot of free parameters

• We use the method of Back Propagation (of error) to accomplish
this complicated task

See the error contribution of a node j to the output layer

Check how was the situation at the previous hidden layer

j

22

Train the MLP (as you want it to perform)

30-03-11

• In order to train the network we need two samples of data (at a
time):
 Sample 1 containing M entries of class A events
 Sample 2 containing M entries of class B events

• How do we know when training has finished?

Compare the error and its gradient against some anticipated
threshold
Validate the performance against some test sample

23

Need for a Validation Sample

30-03-11

• Provides a statistically independent reference point
 If the training and the validation (or, testing) samples perform

the same with a set of weights, then we can have faith in the
MLP configuration when applying it to the real data

• Solution should be more robust than using all data for training
 Possibility of overtraining can be easily traced out

• How much data we keep aside for testing?

Experience says approximately similar size as the training
sample is a good choice

M = data size for training
W = total number of weights
ε = error threshold
N = number of nodes

• How much data in total (training + testing) we need for an MLP?

M > O W
"

M > O W
" log(N=")For more complex network

24

How much data one needs for an MLP?

30-03-11

• Example:
 Below is an MLP with 1 hidden layer of 6 nodes, there are 6 input

variables and 1 output node
 Total number of weight parameters, W = (6+1)×6 = 42
 Say, the misclassification (error) level we want to achieve is 1%

The training data size should be at least 42/0.01 = 4200,
so the total data should be twice of that, which is 8400

25

Points not to forget about NN

30-03-11

• Just don’t assume MLP is a magic tool for you
 Need to check if your problem is that complex which a simpler

algorithm cannot suitably handle
 Check all the input variables you want to use as inputs to MLP

don’t add any unuseful variable adding noise to your network
 What sort of correlations exist between various input variables,

e.g., if there are no nonlinear correlations, a Fisher discriminant
may be sufficient

Bottom-line: Think twice before you plunge

• If all of the above makes you think that MLP is the way to go
about, you should
 Ensure there is a large data samples at your avail
 Go step by step don’t put everything together at a time

judiciously add the input variables in increment check if the
improvement in performance makes any sense

 Pay enough attention to the validation step it would be even
better to test out the performance with some control data sample
in addition

26

What is a (Binary) Decision Tree?

30-03-11

• Apply the initial rule to
all data:
 Divide them into two

classes with a binary
output

 At each successive
layer, we divide the
data further into
signal (class A) or
background (class B)

R(x1) = x > xi TRUE

= x < xi FALSE

• The classification for a set of cut values will have an error
 Just as with a NN, one can vary the cut values in order to minimize

the error train the decision tree

27

What is really happening?

30-03-11

Some variables may be used more often by more than one node

Other (noise) variables may never be used

• Each node uses a subset
of input variables that
give the best separation
between two classes

28

Looking little bit closer

30-03-11

There are many bottom levels to the tree

…many signal/background regions defined by the algorithm

• Bottom of the tree just
looks like a sub-sample
of events subjected to a
cut based analysis

29

Is it a carbon-copy of C-n-C?

30-03-11

• If the binary decision tree just mimicks Cut-n-Count, why to
bother about it?

• Pros:
 More flexibility in the algorithm when trying to separate two

classes of events able to obtain a better separation than a
simple cut-based approach

 Easy to understand and interpret in contrast to a NN

• Cons:
 Potential instability with respect to statistical fluctuations in

the training sample

Could you think beyond the binary version of the tree?

30

Boosted Decision Trees

30-03-11

By reweighting misclassified events by α the aim is to reduce
the error rate of the trained tree

• At each stage in training there may be some misclassification
of events (error rate) let’s try to minimize that
 Assign a greater event weight α to misclassified events in the

next iteration

 Reweight the whole sample so that the sum of event weights
remains the same, continue to iterate until the tree is stabilized

® = 1¡"
" , where " is the error rate

31

Let’s now take a tour of TMVA

30-03-11

