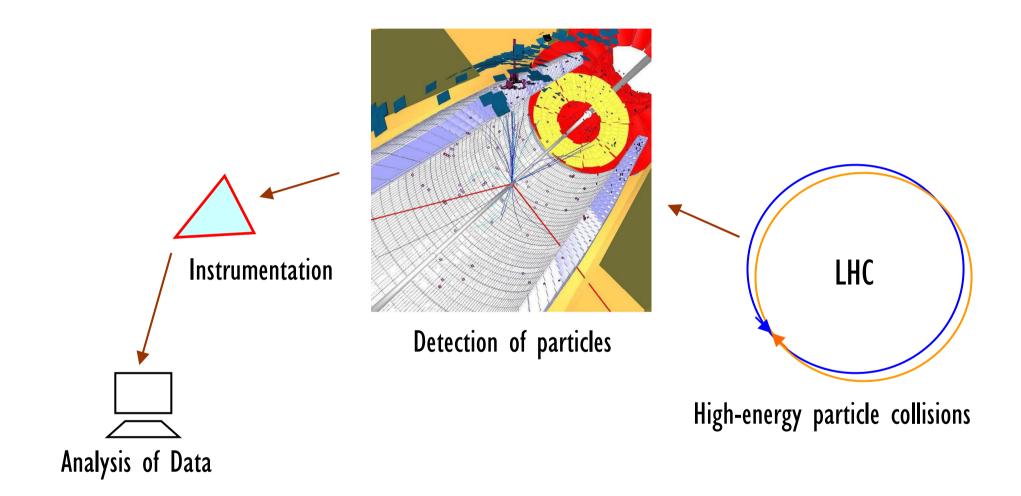

Lecture I

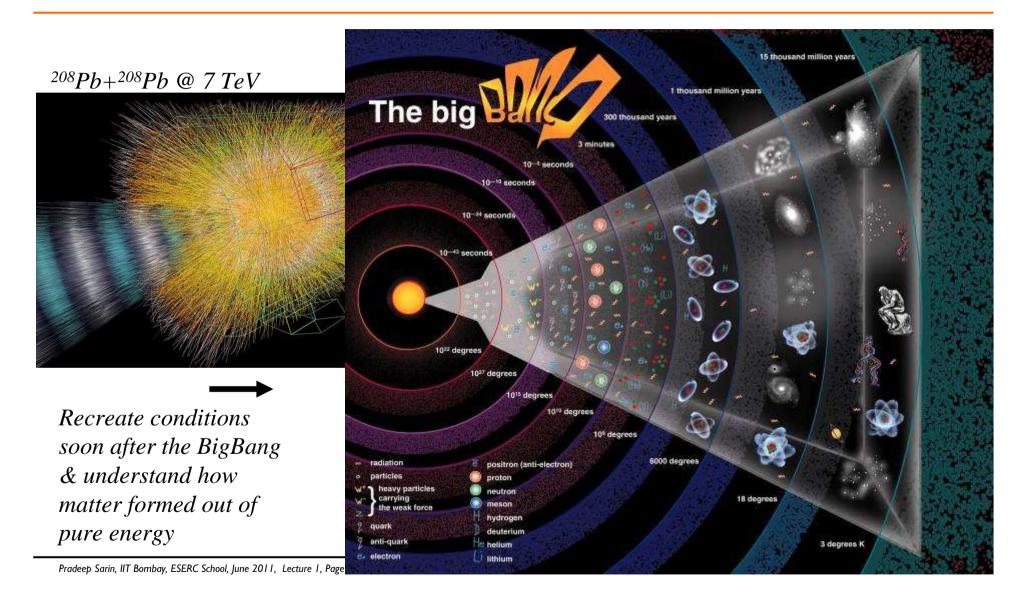
Detector Instrumentation Introduction

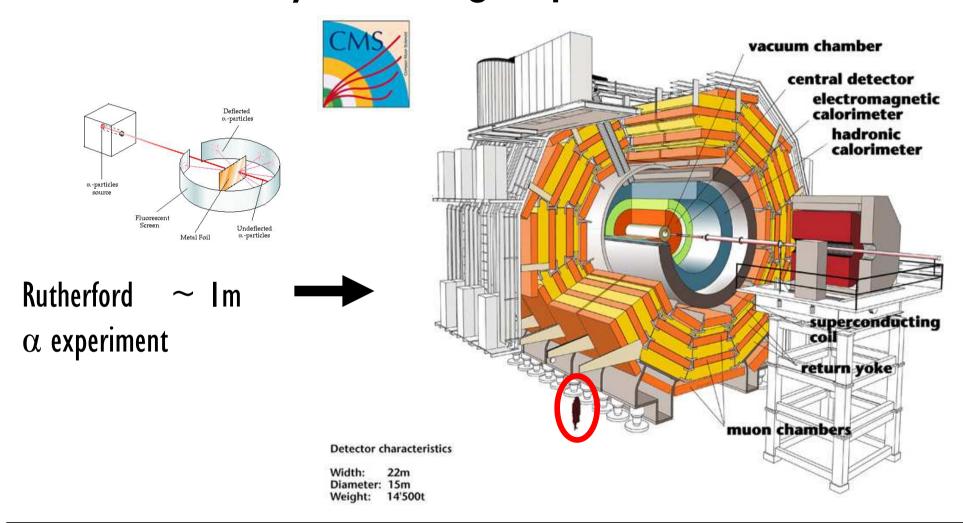
Reference for this lecture series: William Leo, Techniques of Nuclear and Particle Physics


Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 1, Page 1 of 27

How do you see ?

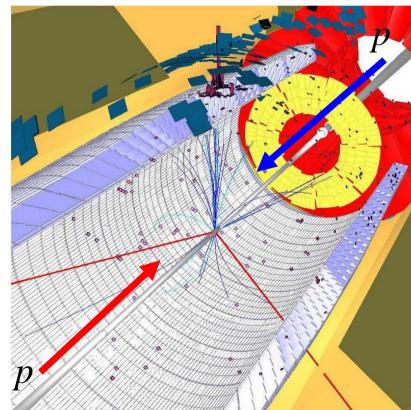
Instrumentation - Detection - Phenomenon


Detector instrumentation


Why do you want to study fundamental particles ?

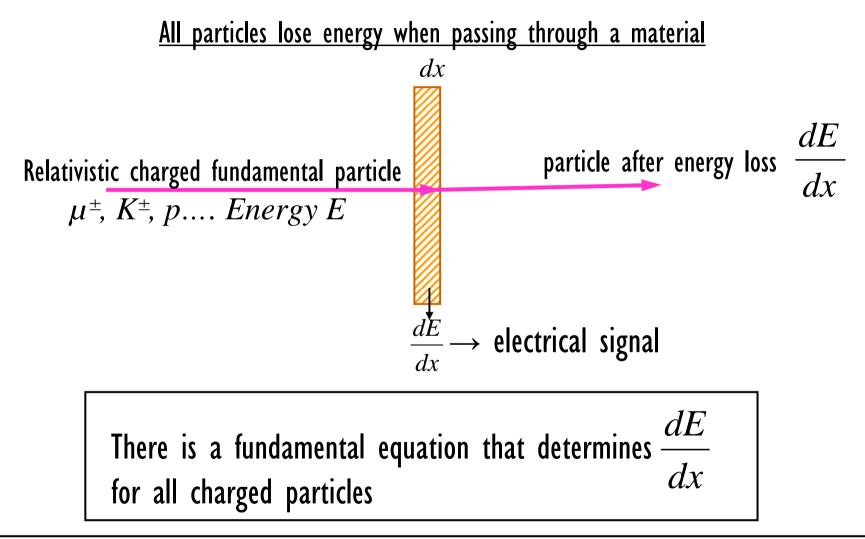
- > 208Pb + 208Pb nuclei collide at high energy: 416 nucleons go in,
 - \sim 7000 fundamental particles come out.
- \succ Two protons collide at high energy (7 TeV c.o.m energy for LHC),
 - \sim 80 fundamental particles come out
- The collision converts ordinary matter to pure energy, which then coalesces back out into fundamental particles
- > This is similar to what happened at the Big Bang: start with pure energy, and produce fundamental particles.
- > So we are recreating conditions of the early universe in these collisions

Why do you want to study fundamental particles ?

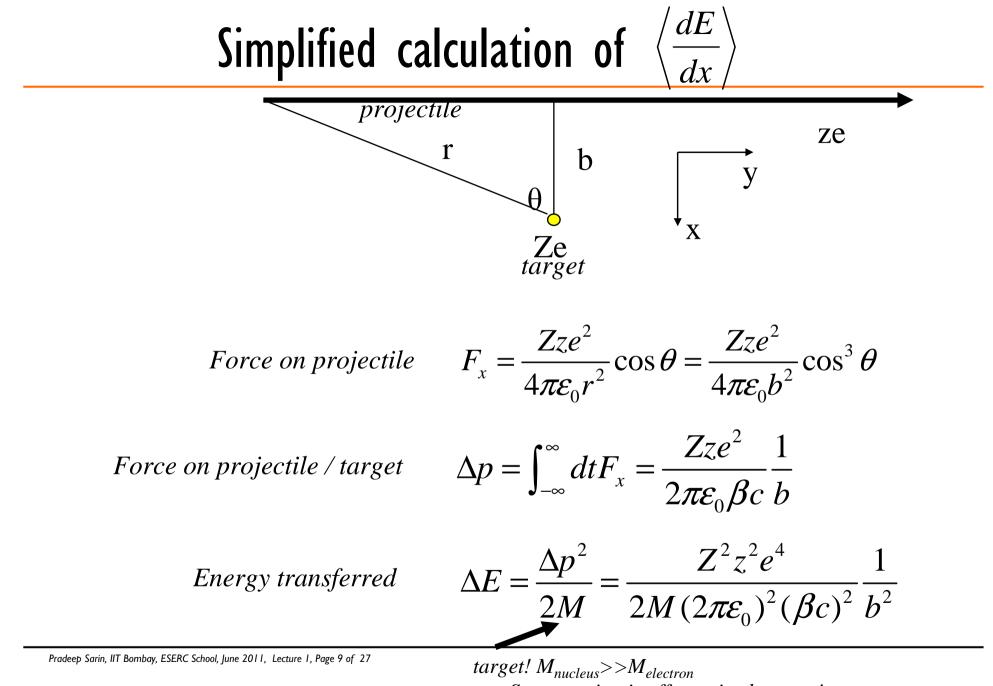

Why such big experiments?

http://cms.web.cern.ch/cms/Detector/WhyBig/index.html

Digital Camera=2D image of photons at low energy Particle detector=3D image of collision of high energy particles with tracking, energy measurements



Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 1, Page 7 of 27


Camera

gital

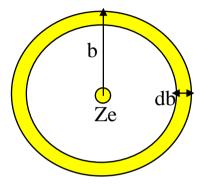
Basic principle of particle detection

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 1, Page 8 of 27

So scattering is off atomic electrons!

Simplified calculation of $\left\langle \frac{dE}{dx} \right\rangle$

Energy transferred ΔE is a function of the impact parameter 'b': Integrate over all b's and figure out the average number of electrons as the


projectile goes through material of thickness Δx

 $\frac{dn}{db} = 2\pi b \times (\text{number of electrons / unit area})$

$$= 2\pi b \times Z \frac{N_A}{A} \rho \Delta x$$

$$\overline{\Delta E} = \int_{b_{\min}}^{b_{\max}} \mathrm{d}b \frac{\mathrm{d}n}{\mathrm{d}b} E_e(b) = 2C \frac{m_e c^2}{\beta^2} \frac{Zz^2}{A} \rho \Delta x \left[\ln b\right]_{b_{\min}}^{b_{\max}}$$

$$= C \frac{m_e c^2}{\beta^2} \frac{Z z^2}{A} \rho \Delta x [\ln E]_{E_{\text{min}}}^{E_{\text{max}}}$$

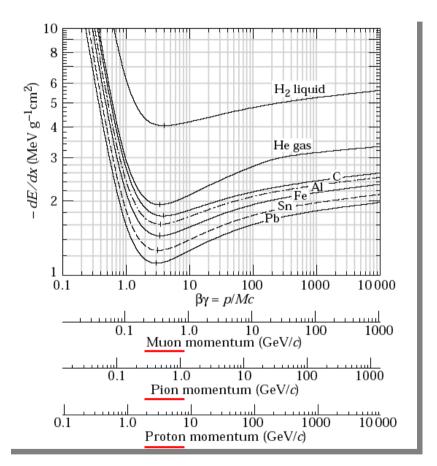
with $C = 2\pi N_A \left(\frac{e^2}{4\pi \varepsilon_0 m_e c^2}\right)$

$$E_{\max} = \frac{2\gamma^2 \beta^2 m_e c^2}{1 + 2\gamma \frac{m_e}{M} + \left(\frac{m_e}{M}\right)^2} \approx 2\gamma^2 \beta^2 m_e c^2$$

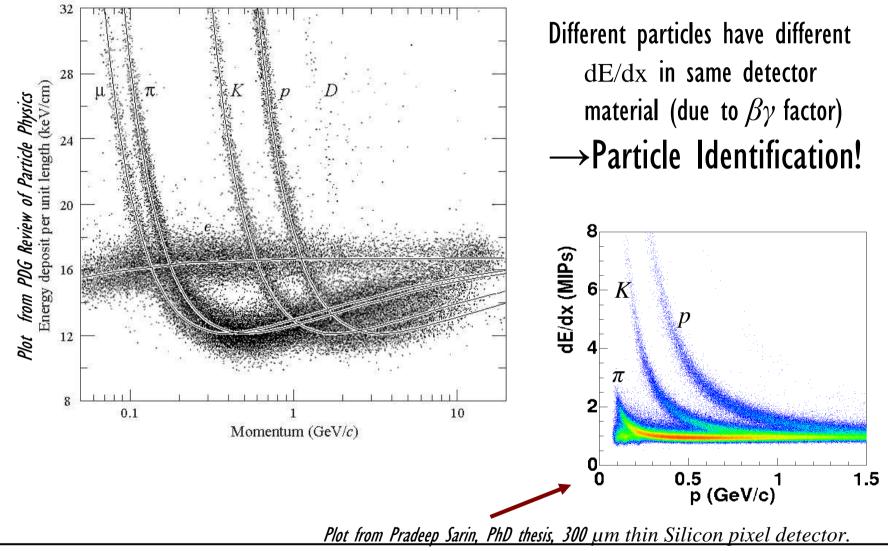
Maximum energy that a particle with speed β can transfer to a target with mass m at rest in an elastic collision

Bethe-Bloch equation (1930-33)

Our Simplified:


$$\left| \left\langle \frac{dE}{dx} \right\rangle = 2C \frac{m_e c^2}{\beta^2} z^2 \left(\frac{Z}{A} \right) \rho \ln \left(\frac{2\beta^2 \gamma^2 m_e c^2}{I_0} \right) \right|$$

Detailed analysis with quantum mechanics gives:


$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I} - \beta^2 - \frac{\delta}{2}\right]$$

Universal features of Bethe-Bloch Energy Loss

- For a relativistic charged particle going through detector material:
- I. Shape of energy loss curve is <u>independent</u> of material type & projectile particle $(\pi^{\pm}, K^{\pm}, p...)$
- Function of particle momentum Z/A of material constants and corrections

Why is Bethe-Bloch so important?

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 1, Page 13 of 27

What are the fundamental particles we study?

			I			1			I			Ι.	
p	P_{11}	****	$\Delta(1232)$	P ₃₃	****	Σ^+	P_{11}	****	<u>=</u> 0	P_{11}	****	Λ_c^+	***
n	P_{11}	****	$\Delta(1600)$	P ₃₃	***	Σ^0	P_{11}	****	Ξ-	P_{11}	****	$\Lambda_{c}(2595)^{+}$	***
N(1440)	P_{11}	****	$\Delta(1620)$	S_{31}	****	Σ-	P_{11}	****	$\Xi(1530)$	P_{13}	****	$\Lambda_{c}(2625)^{+}$	***
N(1520)	D_{13}	****	$\Delta(1700)$	D_{33}	****	$\Sigma(1385)$	P_{13}	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$	*
N(1535)	S_{11}	****	$\Delta(1750)$	P_{31}	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	***
N(1650)	S_{11}	****	$\Delta(1900)$	S_{31}	**	$\Sigma(1560)$		**	$\Xi(1820)$	D_{13}	***	$\Lambda_{c}(2940)^{+}$	***
N(1675)	D_{15}	****	$\Delta(1905)$	F ₃₅	****	$\Sigma(1580)$	D_{13}	*	$\Xi(1950)$		***	$\Sigma_{c}(2455)$	****
N(1680)	F ₁₅	****	$\Delta(1910)$	P_{31}	****	$\Sigma(1620)$	S_{11}	**	$\Xi(2030)$		***	$\Sigma_{c}(2520)$	***
N(1700)	D_{13}	***	$\Delta(1920)$	P ₃₃	***	$\Sigma(1660)$	P_{11}	***	$\Xi(2120)$		*	$\Sigma_{c}(2800)$	***
N(1710)	P_{11}	***	$\Delta(1930)$	D_{35}	***	$\Sigma(1670)$	D_{13}	****	Ξ(2250)		**	Ξ_c^+	***
N(1720)	P_{13}	****	$\Delta(1940)$	D ₃₃	*	$\Sigma(1690)$		**	$\Xi(2370)$		**	$= c^{0}$	***
N(1900)	P_{13}	**	$\Delta(1950)$	F ₃₇	****	$\Sigma(1750)$	S_{11}	***	Ξ(2500)		*	$\Xi_c^{\prime+}$	***
N(1990)	F ₁₇	**	$\Delta(2000)$	F ₃₅	**	$\Sigma(1770)$	P_{11}	*				=""	***
N(2000)	F ₁₅	**	$\Delta(2150)$	S_{31}	*	$\Sigma(1775)$	D_{15}	****	Ω^{-}		****	$\Xi_c(2645)$	***
N(2080)	D_{13}	**	$\Delta(2200)$	G ₃₇	*	$\Sigma(1840)$	P_{13}	*	$\Omega(2250)^{-}$		***	$\Xi_c(2790)$	***
N(2090)	S_{11}	*	$\Delta(2300)$	H_{39}	**	$\Sigma(1880)$	P_{11}	**	$\Omega(2380)^{-}$		**	$\Xi_c(2815)$	***
N(2100)	P_{11}	*	$\Delta(2350)$	D35	*	$\Sigma(1915)$	F ₁₅	****	$\Omega(2470)^{-}$		**	$\Xi_c(2930)$	*
N(2190)	G_{17}	****	$\Delta(2390)$	F ₃₇	*	$\Sigma(1940)$	D_{13}	***				$\Xi_c(2980)$	***
N(2200)	D_{15}	**	$\Delta(2400)$	G_{39}	**	$\Sigma(2000)$	S_{11}	*				$\Xi_c(3055)$	**
N(2220)	H_{19}	****	$\Delta(2420)$	$H_{3,11}$	****	Σ(2030)	F ₁₇	****				$\Xi_c(3080)$	***
N(2250)	G_{19}	****	$\Delta(2750)$	13.13	**	$\Sigma(2070)$	F_{15}	*				$\Xi_c(3123)$	*
N(2600)	I1,11	***	$\Delta(2950)$	K _{3,15}	**	$\Sigma(2080)$	P_{13}	**				Ω_c^0	***
N(2700)	$K_{1,13}$	**				$\Sigma(2100)$	G_{17}	*				$\Omega_{c}^{32}(2770)^{0}$	***
			Λ	P_{01}	****	$\Sigma(2250)$		***				32 _C (2110)	
			A(1405)	S_{01}	****	$\Sigma(2455)$		**				Ξ_{cc}^+	*
			A(1520)	D_{03}	****	$\Sigma(2620)$		**				- cc	
			A(1600)	P_{01}	***	Σ(3000)		*				Λ_b^0	***
			A(1670)	S_{01}	****	$\Sigma(3170)$		*				Σ_b	***
			A(1690)	D_{03}	****							Σ_b^*	***
			A(1800)	S_{01}	***							Ξ_{b}^{0}, Ξ_{b}^{-}	***
			A(1810)	P_{01}	***							Ω_b^{-}	***
			A(1820)	F ₀₅	****							32 b	
			A(1830)	D_{05}	****								
			A(1890)	P ₀₃	****								
			A(2000)		*				ם	- 44-	ala	Data	Dool links - 200 limour
			A(2020)	F ₀₇	*				l Pá	1/[[LIU -	Vala I	Book lists \sim 200 known
			A(2100)	G_{07}	****								
			A(2110)	F ₀₅	***			"	able?	, <u>(</u> .	nd	manta	l particles "Particle Zoo"
l			Alogor)	0	*	I		Sl	adie	ĪŪ	IIUa	Inenta	i particles rarticle 200
													1

Most of those particles don't travel far Distance a particle travels (and can be detected be before it decays) <u>depends on it's energy.</u>

Example I: $\mu \rightarrow e^- + \overline{v_e} + v_{\mu}$ lifetime $\tau = 2.2 \times 10^{-6} s$

• Cosmic ray μ 's produced by cosmic rays colliding with p,He, Li in upper atmosphere: altitude ~ 10 km.

• In it's rest frame $\tau \sim 2.2 \cdot 10^{-6}$ s. At speed ~ c expect μ to travel ~ $c\tau \sim 660$ m before decaying to e^- . $m_{\mu}c^2=105$ MeV

• <u>But</u> $E_{\mu} \sim 2$ GeV so it has a Lorentz boost of $E_{\mu} = \gamma (m_{\mu}c^2)$ so $\gamma \sim 20$ gives mean range of μ before decay $s = c\gamma\tau \sim 12$ km

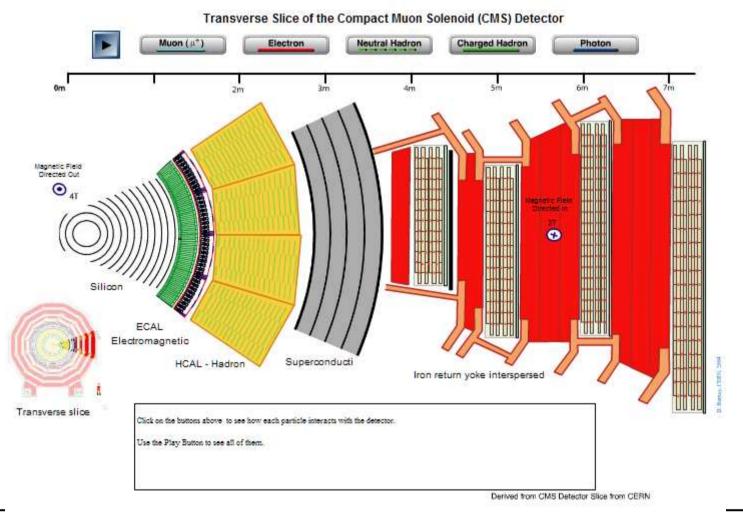
Example 2:

 π has shorter lifetime 2.6 · 10⁻⁸ s ρ_0 lifetime ~ 6 · 10⁻²⁴ s

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 1, Page 15 of 27

Reducing the Zoo membership in a p+p collider **@** 7 TeV

- I. From the ~ 200 fundamental particles listed by the PDG, only 27 have a $c\gamma\tau > ~ 1\mu m$ so they can be seen as 'tracks' in a detector.
- 2. 13 of these have a $c\gamma\tau < 500 \ \mu m$, *i.e.* very short tracks that must be measured indirectly with high precision vertex detectors.
- 3. Of the <u>14</u> remaining particles only <u>8</u> typically have energies high enough to have $c\gamma\tau > few$ tens of meters to make it all the way through most detectors:


 e^{\pm} , μ^{\pm} , γ^{0} , π^{\pm} , K^{\pm} , K^{0} , p^{\pm} , n

These are the common 'bread and butter' of particle physics.

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 1, Page 16 of 27

Particle detection at work

A slice through the CMS detector

Pradeep Sarin, IIT Bom

_

What are the measurements we make?

Energy *E*

through energy deposition and/or calorimetry

Momentum *p*

make charged particles bend in a magnetic field

$$(E^2 - p^2) = m^2$$
 uniquely identifies particles

Can also measure spin, polarization in specialized experiments.

Summary

In this lecture we have looked at:

- > Why we do high energy Particle & Nuclear physics
- \succ What are the common fundamental particles we deal with
- > Principle of particle detection through energy loss