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1 IntrodutionThe physis of the Quark Gluon Plasma (QGP) is being atively investigated presentlytheoretially as well as experimentally. The motivation for this omes from the osmosas well as from attempts to understand the phase diagram of strongly interating matter.The universe onsisted of quark-gluon plasma during the early stages when the age of theuniverse was less than a few miroseonds. It is also believed that the ores of various ompatastrophysial objets, e.g. neutron stars, may be in the QGP phase. Laboratory experimentsonsisting of ollision of heavy nulei at ultra-relativisti energies are being arried out inan attempt to reate a transient phase of QGP in tiny regions of spae. These letures willprovide an overall piture of QGP starting with a basi understanding of Quantum ChromoDynamis (QCD) whih is the theory of strong interations. Let us start by realling thefour basi interations: Eletromagneti, Weak, Strong, and Gravity. We know that the�rst two of these are uni�ed into �Eletroweak Interation�. There are attempts to unify theeletroweak and strong interations into an, as yet unknown, Grand Uni�ed Theory (GUT).Uni�ation of all the four basi fores is attempted in String Theories. How well do weunderstand these fores individually?Eletromagneti: The omplete theory of Eletromagnetism is provided by QuantumEletrodynamis (QED). This theory is well understood and its preditions have been veri�edin experiments with very high auray.Eletroweak Theory: Of ourse, the omplete theory of Eletromagnetism is givenonly when uni�ed with weak interations. Eletroweak theory is also well understood, and itspreditions are veri�ed in experiments. One major �missing part� of the theory is the Higgsboson whih plays a ruial role in the formulation of the theory (spontaneous symmetrybreaking leading to massive W and Z bosons whih are responsible for the �weakness� of theweak fore).At the present stage this is an experimental problem only. Properties of the Higgspartile are predited by the theory (expeted mass range, et.) and it is hoped that at theupoming Large Hadron Collider (LHC) one may be able to detet it. If the Higgs partileis not deteted at LHC, it will open up muh ground for theoretial work as theories beyondthe standard model will have to be explored.
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Gravity: Gravitational interations are very well understood at the lassial level interms of Einstein's general theory of relativity. However, at present there is no theory ofQuantum Gravity. There are various attempts towards Quantum Gravity. The most popularapproah is in terms of String Theories. There are other approahes within onventionalframeworks, e.g. using anonial quantization (Loop Quantum Gravity) et.Strong Interations: Let us now disuss strong interations whih will be the subjetof these Letures. The theory for strong interations is believed to be �Quantum ChromoDynamis� (QCD). The basi ingredients for QCD were proposed by studying properties ofhadrons whih are supposed to be made up of the basi degrees of freedom in QCD, namelyquarks. Interations between quarks are mediated by gluons (in the same way as photonsmediate interation between eletrons).Theoretial investigations of QCD show a remarkable property of strong interations.At very high energies, the strength of the interation between quarks beomes smaller. Inother words, the e�etive oupling onstant of strong interations beomes smaller at largeenergies, eventually approahing zero. This is known as �asymptoti freedom�. This behavioris the opposite of the behavior in QED where the oupling onstant inreases with energy.Asymptoti freedom (for whih there was already evidene from deep inelasti satteringexperiments) is well tested in experiments to a high auray. However the understandingof QCD in the domain of low energy remains poor. This is the domain where hadrons form,and quarks are on�ned in these hadrons. Reall, it was the study of these hadrons whihled to the formulation of QCD.Apart from this �on�nement� there is another domain where QCD is not well understood.This is the domain of high temperature and high density matter. From the theoretial sideit is expeted, based on asymptoti freedom, that at high temperatures the interationsbetween quarks will beome weak. Does that mean we should get an ideal gas of quarks andgluons at high temperatures?Some of these questions led to the searh for the so alled �Quark Gluon Plasma� phase ofQCD. From general physial arguments one expets that at su�iently high temperatures (at
T > Tc ∼ 170 MeV, the deon�nement temperature) and densities, quarks and gluons are nomore on�ned. Essentially at suh high temperatures and/or densities, one has overlappinghadrons, so it makes no sense to talk about quarks and gluons on�ned inside individualhadrons.However, it should be lear that at high T or high density ρ, one is inevitably dealing with6



many body e�ets. Here the understanding obtained from deep inelasti sattering experi-ments may not be diretly appliable. Also, it appears that the interations between partonsare not weak at temperatures ahievable in laboratory (in relativisti heavy ion ollisions).At present, we also do not have theoretial tools to properly analyze the behavior of QCDin these domains using analyti alulations (exept possibly at ultra high temperatures).Lattie QCD is the only theoretial tool we know for understanding this domain. Results sofar lead to interesting behavior of quarks and gluons in this QGP phase.A diret motivation for understanding this high T , ρ domain omes from osmologyand astrophysis. In the standard Big Bang theory of the universe, the temperature of theuniverse was very high initially. When the age of the universe was less than 10−6 se, itstemperature was higher than about 200 MeV. So we expet that the universe was �lled withQGP at those early times. To understand the evolution of the universe at those early timesone must understand the properties of the QGP phase at high T . Further expansion andooling of the universe onverts QGP to hadrons. This is expeted to be a phase transition(or, more likely, a ross over) at a ritial temperature of about 170 MeV. If it is a �rst ordertransition then it ould have onsequenes for di�erent primordial element abundanes inthe universe.In the present day universe, there are heavy and superdense objets known as neutronstars. These form at the end of fusion reation hains of regular stars whih undergo super-nova explosion. The mass density in a neutron star is about 1014 gm/cm3. At the enter ofthese neutron stars the density may be even higher, of the order of several times the nuleardensity. It is expeted that in the ores of neutron stars hadrons (neutrons/protons) may belosely paked so that quarks and gluons may be no more on�ned, leading to high density(not high temperature) QGP. Various properties of neutron stars (maximum mass, spin,et.) depend ruially on the properties of this type of ore.All of these are theoretial onsideration. Even neutron stars are aessible only throughindiret observations. The universe at the age of less than 10−6 se is in the past and noexperiments are possible for that. So, how do we test our theoretial modeling of QGP athigh T and/or high ρ whih is relevant for these ases?Relativisti heavy ion ollisions allow us the possibility for doing this. For example, at theRelativisti Heavy Ion Collider (RHIC), at Brookhaven, USA, beams of Au-Au are ollidedat 200 GeV per nuleon pair enter of mass energy. We �rst disuss, brie�y, the physis ofthese experiments - a detailed disussion will be provided later. As the nulei are aeleratedto very high energies, spherial nulei get Lorentz ontrated. (Note that Lorentz fator ∼7



100 but the Lorentz ontrated width is not less than 1 fm due to quantum e�ets.) At suhhigh energies nulei, or even protons and neutrons for that matter, lose their identity and theinteration between nulei beomes e�etively quark-quark interations. Due to asymptotifreedom, this interation is also weak, so most of the quarks go through eah other, reatingseondary partons in the middle. The density of these seondary partons grows due tomultiple satterings and the system thermalizes. This entral thermalized system ools asit expands. If its initial temperature is above 200 MeV, we expet that it should be in anequilibrated QGP state. On subsequent expansion it should undergo a phase transition to ahadroni system.Note that the resulting system is just like what was present in the early universe (apartfrom some di�erenes like expansion rate, et.). Thus investigation of this system allows usto probe a part of the early history of our universe.Experiments at lower energies (AGS and future GSI experiments in Germany) lead tohigher baryon densities in the enter (as the quark-quark interation is stronger at lowerenergies), though lower temperature. This matter is similar to neutron star ore matter andould help us in understanding this domain of QCD.Above all, studying the reation of QGP and the subsequent phase transition to hadronshelps us in better understanding on�ning fores between quarks beause the proess ofhadron formation at the transition stage depends ruially on that.We will disuss these relativisti heavy-in ollision experiments in these letures. Throughthese experiments we an probe di�erent parts of the QCD phase diagram. The phaseboundaries in the QCD phase diagram are obtained from several symmetry arguments, or ine�etive low energy models. Lattie alulation also give us some handle on these (espeiallyfor zero or small baryon hemial potential).The plan of the letures is as follows. First we will provide a general introdution to QCDleading to the onept of asymptoti freedom and running oupling onstant [1℄. Sine thewhole disussion is based on QCD, we will disuss important aspets of QCD inluding itsbasi struture in detail. Then we will sketh steps to give the basi idea of running ouplingonstant and asymptoti freedom for QCD.Next we disuss the predition of QGP phase of QCD [2, 3℄. We will see how generalarguments lead us to the predition of QGP phase of QCD. We will disuss arguments basedon running oupling onstant as well as more detailed ones based on the Bag model ofhadrons leading to the expetation that QGP phase should exist at high temperature as well8



as high density.Following this we will disuss QGP formation and evolution in relativisti heavy-ionollisions [4℄. We will disuss the Bjorken piture for the evolution and various signals ofQGP [6℄. We will then disuss various topis suh as the on�nement-deon�nement phasetransition, et.2 QCDOur approah will not be historial. We will list the requirements, from experimentalevidene, for the theory of strong interations and then argue that QCD satis�es theserequirements.2.1 Basi ontents1. We know that there are six quarks.
( ud ) , ( s ) , ( tb )

u, c, t quarks have harges +2
3
e while d, s, b have harges −1

3
e.Quark masses Current quark mass Constituent quark massd 15 MeV 330 MeVu 7 MeV 330 MeVs 200 MeV 500 MeV 1.3 GeV 1.5 GeVb 4.8 GeV 5 Gevt 170 GeV -Note: no free quarks are seen, and we do not list onstituent quark mass for t quarkas no hadrons involving t quark are known yet. The urrent quark mass is what goesin the QCD Lagrangian. The Constituent quark mass tells us how the quark behaveinside hadrons (i.e, it aounts for the on�ning fores)9



2. Quarks are spin 1/2 fermions and have an internal quantum number alled olor.Hadron spetrosopy tells that there are 3 olors for eah quark and that hadrons areolor singlets (the olor wave funtion is totally antisymmetri). This is known as oloron�nement and is required by the fat that no isolated quarks are observed. Theyonly appear inside hadrons. There are two types of hadrons made up of quarks.Mesons : qq̄ systems, Baryons : qqq systems, and their antipartiles.With the above quark ontent, we need an interation between quarks with the follow-ing properties:3. The interation should lead to olor on�nement. Thus the interation should orre-spond to the olor harges of quarks. Following suess of QED, we want to onstruta �gauge theory� of olor interation.4. Deep-inelasti sattering of leptons with nuleons shows Bjorken saling whih showsthat at short distanes quarks are almost free: this is the `asymptoti freedom'. Thus,we need a theory where the oupling onstant beomes small at large energies. In4 dimensions, only Yang-Mills theories show this type of behavior. These are gaugetheories with a non-Abelian gauge group.Combining the requirement of olor harge interation (with 3 di�erent olors), weome to a theory of strong interations based on the SU(3) olor gauge group. This isalled Quantum Chromo Dynamis (QCD) and is believed to be the orret theory ofstrong interation.To understand this theory, we will �rst reall basis of QED whih is a gauge theorybased on the Abelian gauge group U(1). We will then generalize the onstrution toQCD.2.2 QEDFirst reall the Lagrangian for a free eletron �eld ψ(x)

L0 = ψ(x)(iγµ∂µ −m)ψ(x)

10



L0 has a global U(1) symmetry under the transformation
ψ(x) → ψ′(x) = e−iαψ(x)

ψ(x) → ψ
′
(x) = eiαψ(x)Here α is the parameter of the symmetry transformation. α is independent of x and t andhene it is alled a global symmetry transformation. We generalize this symmetry to a loalgauge symmetry when α depends on x and t, so α → α(x). Note:The motivation for this issimply that we know this way we an write down theory of eletromagneti interations ofharged partiles.With α→ α(x) one says that the symmetry is gauged. So, now we onsider the followingtransformation

ψ(x) → ψ′(x) = e−i α(x)ψ(x)

ψ̄(x) → ψ̄′(x) = eiα(x)ψ̄(x)With L0 = ψ̄(x)(iγµ∂µ −m)ψ(x) we see that mψ̄ψ term is invariant under this trans-formation, but the derivative term is not invariant.
ψ̄(x)∂µψ(x) → ψ̄′(x)∂µψ

′(x)

= ψ̄(x)eiα(x)∂µ

(

e−iα(x)ψ(x)
)

= ψ̄(x)∂µψ(x) − iψ(x) (∂µα(x))ψ(x)The seond term on the r.h.s. spoils the invariane. If instead of ψ(x) ∂µ ψ(x), we had aterm ψ(x)Dµ ψ(x) where Dµ ψ(x) has simple transformation rule
Dµψ(x) → [Dµψ(x)]′ = e−iα(x)Dµψ(x)(i.e. Dµψ(x) transforms in the same way as ψ(x)), then ψ(x) Dµ ψ(x) will be gauge invariant.

Dµψ(x) is alled the gauge-ovariant derivative (or simply ovariant derivative) of ψ(x).One an realize this requirement of Dµψ(x) by enlarging the theory by inluding a newvetor �eld Aµ(x), the gauge �eld. With this,
Dµψ(x) = (∂µ + ieAµ)ψ(x)(where e is a parameter whih is identi�ed with the eletri hange) One an easily hekthat the requirement

[Dµψ(x)]′ = e−iα(x)Dµ(x)ψ(x)11



implies the following transformation property for the gauge �eld:
A′

µ(x) = Aµ(x) +
1

e
∂µα(x)With Aµ transforming like this, the derivative term beomes invariant

ψiγµ (∂µ + ieAµ)ψ → ψ
′
iγµ
(

∂µ + ieA′
µ

)

ψ′

= ψeiα(x)iγµ (∂µ + ieAµ + i∂µα(x)) eiα(x)ψ(x)

= ψiγµ (∂µ + ieAµ)ψ(x)Thus, the extra term from gauge transformation of Aµ preisely anels the extra term when
∂µ ats on e−iα(x)ψ(x). This will be important when we disuss QCD. Our Lagrangian L0hanges now to

L = ψiγµ (∂µ + ieAµ)ψ −mψψ

Aµ is the gauge �eld for E.M. interation. To inlude dynamis of Aµ, we add
LA = −1

4
FµνF

µν , F µν = ∂µAν − ∂νAµThis leads to the Maxwell equations. With -1
4
normalization one gets the equation

∂µF
µν = −Jµwhere Jµ = eψγµψ is the matter urrent. One an easily hek diretly that F µν is gaugeinvariant.Exerise: Chek

[DµDν −DνDµ]ψ = ieFµνψ(This equation has a nie geometri meaning in terms of urvature.)Using this and the transformation property of Dνψ one an show that Fµν is gaugeinvariant. We thus get �nal QED Lagrangian
L = ψiγµ (∂µ + ieAµ)ψ −mψψ − 1

4
Fµν .F

µνNote the following 12



1. A term like m2AµA
µ is not gauge invariant, so the photon is massless. This will remaintrue for all gauge theories, e.g. QCD.2. The oupling of the photon to the eletron is ontained in the Dµψ term. It is alledthe `minimal oupling'.This will also be used in QCD3. The QED Lagrangian does not have a gauge �eld self oupling, i.e., there are no termslike AAA, or AAAA. This is beause the photon does not arry harge.This will not be true for QCD. Gluons (whih are the analogs of the photon) arry olorharges and hene self interat. Let us now write down the Lagrangian for QCD with 2olors. (Hypothetial ase).2.3 Non-Abelian gauge symmetry: Yang-Mills TheoryThe symmetry group here will be SU(2) (it was U(1) for QED whih is Abelian). SU(2)is a non-Abelian group. Let the fermion �elds be a doublet (fundamental representation ofSU(2)):

ψ =

(

ψ1

ψ2

)Note : eah omponent ψi will be a four omponent Dira Spinor. Under an SU(2) transfor-mation, ψ will transform as
ψ(x) → ψ′(x) = exp{−i~τ .~θ

2

}

ψ(x)

≡ Uψ(x)where ~τ = (τ1, τ2, τ3) are the usual Pauli matries, satisfying the Lie algebra of SU(2)
[τi

2
,
τj
2

]

= iǫijk
τk
2

i, j, k = 1, 2, 3and ~θ = (θ1, θ2, θ3) are the SU(2) transformation parameters.We write the Lagrangian
L = ψ(x) (iγµ∂µ −m)ψ(x)13



This is again invariant under above global SU(2) transformation with ~θ being independentof ~x and t.
ψ → ψ′ = Uψ

ψ → ψ
′

= ψ U † where U †U = 1Now we gauge this symmetry, i.e., make θi spae-time dependent. Then
ψ(x) → ψ′(x) = U(θ(x))ψ(x)with
U(θ(x)) = exp{−i~τ

2
.~θ(x)

}Again we an easily see that the mass term mψ̄ψ in L is invariant under this symmetrytransformation but the derivative term is not. To make the derivative term also invariantwe will again onstrut a ovariant derivative Dµ by introduing new gauge �elds (like Aµwas introdued for QED).Note: The derivative term whih spoils gauge invariane has term ∂µU(θ), i.e.,
∂µ

{exp(−iτa

2
θa(x)

)}

∼ τa∂µθ
a(x)exp(...)for a = 1, 2, 3. It is these terms whih spoil the invariane of L when θa depend on ~x and t.Using gauge �elds we have to ompensate for these derivatives.Sine τa, a = 1, 2, 3 are linearly independent, to anel eah derivative, suh as τ1∂µθ

1,one will need a gauge �eld. That is, we will need a term like τaAa
µ, a = 1, 2, 3 with eahgauge �eld transforming with appropriate θ (as we see below). Thus the number of gauge�elds to be introdued = number of generators = 3 for SU(2).Note: When we onstrut a gauge theory for SU(3), i.e. real QCD, then we need number ofgauge �elds = number of generators of SU(3) = 8. (For SU(N) , Number of generators =N2-1). Eah gauge �eld is like an independent photon. These are the gluons (massless gaugebosons). Thus we will need 8 gluons for QCD.We go bak to the ase of 2 olor QCD with gauge group SU(2). Again, to have the deriva-tive term gauge invariant, we need the following transformation property for the ovariantderivative:

Dµψ(x) → [Dµψ(x)]′ = U(θ)Dµψ(x)14



when ψ(x) → ψ′(x) = U(θ)ψ(x)Clearly, then with ∂µ replaed by Dµ we get
L = ψ(x) (iγµDµ −m)ψ(x)whih will be gauge invariant.We write Dµψ(x) as

Dµψ(x) =

[

∂µ − ig
τa

2
Aa

µ

]

ψ(x)where g is the oupling onstant.One an hek that the requirement of [Dµψ(x)]′ = U(θ)Dµψ(x) implies the followingtransformation properly for the gauge �elds:
τa

2
Aa′

µ = U(θ)
τa

2
Aa

µU(θ)−1 − i

g
[∂µU(θ)]U−1(θ)Reall : For QED also, we had

ψ(x) → ψ′(x) = e−iα(x)ψ(x)

≡ U(α)ψ(x)Transformation of Aµ is then
A′

µ = U(α)AµU
−1(α) − i

e
[∂µU(α)]U−1(α)

= Aµ − i

e
(−i∂µα(x)) = Aµ − 1

e
∂µα(x)whih is the familiar transformation for QED (with negative eletri harge).2.3.1 Self interation of gauge �eldsOne ruial di�erene between QED and Yang-Mills gauge theories is that for the non-Abelian ase gauge �elds have self interation whereas in QED, photons do not have selfinteration. Suh interations do not exist for photons but they do exist for gauge �elds inYang-Mills theories, e.g. in QCD. To understand the basi physial reason for this, let us gobak to the SU(2) gauge theory ase and onsider in�nitesimal gauge transformation for thevetor potentials.For θ(x) ≪ 1 we write

U(θ) = exp

{

−i~τ
2
.~θ(x)

}

≃ 1 − i
~τ .~θ(x)
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Exerise: Using this in the transformation law for Aa
µ, and negleting θ2 terms showthat one gets

τ c

2
A′c

µ =
τ c

2
Ac

µ + θa(x)Ab
µǫ

abc τ
c

2
− 1

g

τc
2
∂µθ

c(x).Sine τa are linearly independent, we get
A′c

µ = Ac
µ + ǫabcθaAb

µ − 1

g
∂µθ

c

ǫabc omes from
[

τa

2
,
τ b

2

]

= iǫabc τ
c

2Consider global transformations, so ∂µθ
c = 0, we get

A′c
µ = Ac

µ + ǫabcθaAb
µThis shows that Ac

µ transforms in the adjoint representation of SU(2). Several importantresults follow from this expression. Reall Noether's theorem : One an alulate a symmetryurrent and the assoiated harge. For example, reall the ase of QED.
ψ → ψ′(x) = e−iα(x)ψ(x)

Aµ → A′
µ(x) = Aµ(x) +

1

e
∂µα(x)For global transformation, α(x) = α we get

ψ′(x) = e−iαψ(x) & A′
µ(x) = Aµ(x)So, under global U(1) (ontinuous) symmetry transformation, ψ(x) transforms non-trivially.The assoiated harge is the "eletri harge" of �eld ψ(x). However, Aµ(x) transformstrivially under global U(1) transformations. So in QED, the photon does not arry anyeletri harge (the symmetry urrent will give zero harge). As the photon does not haveeletri harge, it does not have self ouplings like AAA or AAAA. Now, for the SU(2) asewe noted the transformation of Aa

µ for onstant SU(2) transformation
A′c

µ = Ac
µ + ǫabcθaAb

µThus, under global SU(2) transformation, Aa
µ transforms non-trivially. Hene there will bea non-zero Noether harge assoiated with Ac
µ. Due to this we expet self oupling. Indeed,16



we will see that for every Yang-Mills theory there are self oupling like AAA and AAAA.Note : So far we have the Lagrangian for the SU(2) ase
L = ψ(x) (iγµDµ −m)ψ(x)We are missing a term analogous to FµνF

µν for the QED ase. To write suh a term wereall the following relation from QED
(DµDν −DvDµ)ψ(x) = ieFµνψ(x)We will use this type of expression for de�ning the appropriate expression for Fµν for theSU(2) ase. Sine

Dµψ =

(

∂µ − ig
~τ

2
. ~Aµ

)

ψinvolving Pauli matries, we extend the above relation appropriately
[DµDν −DνDµ]ψ ≡ −ig

(

τa

2
F a

µν

)

ψNote: This expression here is used to de�ne F a
µν .Exerise : Show that the evaluation of the L.H.S. gives

F c
µν = ∂µA

c
ν − ∂νA

c
µ + gǫcabAa

µA
b
νThis is the expression for �eld strength F c

µν for the non-Abelian ase.We an write
Aµ ≡ Aa

µ

τa

2
and Fµν ≡ τa

2
F a

µν and Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]Exerise : In QED, Fµν was gauge invariant. Show that, for SU(2), we �nd under gaugetransformation
τaF a

µν → τaF a′
µν = U(θ)τ bF b

µνU(θ)−1.Thus, to onstrut analog of FµνF
µν term here, we writeTr{(~τ . ~Fµν

)

(~τ .F µν)
}This will be gauge invariant due to the yli properly of the trae.Note: Tr{τaF a

µντ
bF bµν

}

= Tr τaτ bF a
µνF

bµν = 2F a
µνF

aµν17



using Tr[τaτ b] = 2δab.Now, we an write down the omplete gauge invariant Lagrangian for the SU(2) olorgauge theory with the doublet �eld ψ
L = −1

4
F a

µνF
aµν + ψiγµDµψ −m~ψψ2.3.2 Generalization to other Lie GroupsOne an generalize this onstrution to any other Lie group. Essentially, one has toreplae τ i by appropriate generators and ǫabc by orresponding struture onstants.We will�rst disuss the general ase of a simple Lie Group and then write down the Lagrangian forQCD with 3 olors. Suppose G is a simple Lie Group (essentially meaning that it is not adiret produt of other groups).Let F a be the generators of the group, satisfying the Lie algebra

[

F a, F b
]

= ifabcF cwhere fabc are totally antisymmetri struture onstants (fabc are real). For SU(2) we had
[

τa

2
,
τ b

2

]

= iǫabc τc
2Suppose ψ transforms under some representation of G with representation matries T a, i.e.,under a gauge transformation

ψ(x) → ψ′(x) = exp
{

−i~T .~θ(x)
}

ψ(x)

≡ U(θ)ψ(x)Thus
[

T a, T b
]

= ifabcT cReall: For SU(2) ase, ~T were ~τ
2
and fabc was ǫabc. The ovariant derivative then is

Dµψ =
(

∂µ − igT aAa
µ

)

ψThe �eld strength tensor is
F a

µv = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν18



The gauge transformation for Aa
µ is

~T . ~Aµ(x) → T.A′
µ(x) = U(θ)T.AµU

−1(θ) − i

g
[∂µU(θ)]U−1(θ)Again, all these are exatly same as SU(2) ase with replaement

~T → ~τ

2
and fabc → ǫabcAlso the number of Aa

µ is equal to the number of generators T a. We an write the ompleteLagrangian as
L = −1

4
F a

µνF
aµν + ~ψ (iγµDµ −m)ψ2.3.3 Self interationNote : F a

µνF
aµν term has following types of terms

g∂νA
a
µf

abcAµbAνcand
g2fabcfalmAb

µA
c
νA

µlAνmCorresponding Feynman diagrams have three point and four point verties. Thus, everygauge theory with a non-Abelian gauge group has self oupling for the gauge �elds. Thiswas expeted sine we saw that gauge bosons here arry harges. In ontrast, in QED(Abelian Group U(1)) photons have no self interation.It is straightforward now to write the Lagrangian for QCD. We have six types of quarks(�avors u, d, s, et). The gauge group is SU(3) olor. Eah quark omes in 3 olors. That is,quarks are taken to transform as the 3-dimensional fundamental representation of the SU(3)olor group. SU(3) has 8 generators, so we need 8 gauge �elds Aa
µ, a = 1,...8. These are 8gluons.We an write down the Lagrangian:

LQCD = −1

4
F a

µνF
aµν +

∑

α

ψα (iγµDµ −mα)ψαwhere α = u, d, c, s, t, b is the �avor index for quarks.19



As ψα is taken to be in the 3-dimensional fundamental representation of SU(3)c,
ψα =







rbg 
α







redbluegreen  (for example)Thus, we take the following representation for the generators of SU(3):
λa are Gell-mann matries:

T a =
λa

2
, a = 1, 2...8

[

T a, T b
]

= ifabcT cis the Lie algebra of SU(3) with struture onstants fabc as:
f 123 = 1, f 458 = f 678 =

√
3/2the remaining independent fabc are 1/2.Gell-mann matries λa are given by

λ1 =







0 1 0

1 0 0

0 0 0






, λ2 =







0 −i 0

i 0 0

0 0 0







λ3 =







1 0 0

0 −1 0

0 0 0

,






, λ4 =







0 0 1

0 0 0

1 0 0







λ5 =







0 0 −i
0 0 0

i 0 0,






, λ6 =







0 0 0

0 0 1

0 1 0







λ7 =







0 0 0

0 0 −i
0 i 0






, λ8 =







1/
√

3 0 0

0 1/
√

3 0

0 0 −2/
√

3





With T a = λa

2
, the ovariant derivative is

Dµψα =
(

∂µ − igsT
aAa

µ

)

ψα

gs is the strong interation oupling onstant. The expression for F a
µν et. are the same asgiven for general ase of group G with T a = λa

2
. We thus onlude that gluons arry olorharges and hene they have self interation.20



2.4 Symmetries of QCDApart from the gauge SU(3) symmetry of QCD whih is exat, QCD posses approximateglobal symmetries2.4.1 Isospin SymmetryThis played a ruial role in the early stages of development of QCD in terms of hadronspetrosopy.Suppose, if mα ≃ m for ertain α, say α = u, d, s, then we an write
ψ =







u

d

s






ψ =

(

u d s
)

⇒ L = ψ (iγµDµ −m)ψ +
∑

ψβ (iγµDµ −mβ)ψβ β = c, t, bThis is invariant under SU(3) global symmetry transformation ating on






u

d

s





This is known as the isospin �avor symmetry and originally it led to the disovery of thequark model.2.4.2 Chiral symmetryThis is a very important symmetry of QCD whih arises if mα ≃ 0 for ertain α, leading todeoupled left handed and right handed omponents of quarks.2.5 Feynman rules for QCDEssentially, the only di�erene from the ase of QED is that for QCD we have olor fators(olor states C & C†) and λ matries. Also, for QCD we have 3-gluon and 4-gluon vertieswhih are not there for QED. For example, 21



1. The gluon propagator is (in Lorentz gauge)
−i g

µν

q2
δαβwhere α, β are olor indies for gluons (α, β = 1,2,..8).Reall: The propagator in QED for photon is

−i g
µν

q2Note: One may expet 9 gluon states : 3 ⊗ 3, rr, rb, rg, et. However 3 ⊗ 3 = 1 + 8,where 1 is olor singlet. The gluon annot be a olor singlet otherwise it does notinterat via the olor interation. Hene there are only 8 (otet) of gluons. Colorstates C for quarks are given by a 3 vetor
C :







100  ∼ red, 





010  ∼ blue, 





001  ∼ greenSimilarly, we have an eight element olumn vetor for gluons
α :





















1...:0




















for |1 >, ....



























00.;010


























for |7 >, etc.

2. Quark propagator:
i
(γµqµ +m)

q2 −m2
δabwhih apart from δab is the same as in QED for eletrons.3. Quark-gluon vertex:Note: The quark-gluon interation term in the QCD Lagrangian is

Lint = ψgs
λa

2
γµA

aµψ22



(a is the olor index). Thus the quark-gluon vertex is given by
−igsλ

a

2
γµIn QED, the eletron-photon vertex is igeγ

µ.4. Three gluon vertex: The relevant term in L is
−gs

(

∂µA
a
ν − ∂νA

a
µ

)

fabcAbµAcνThe vertex is
−gsf

abc
[

gµν (k1 − k2)λ + gνλ (k2 − k3)µ + gλµ (k3 − k1)ν

]where ki are the relevant momenta.5. Four gluon vertex:The interation term in L is
g2

sf
abcAb

µA
c
νf

adeAdµAeνSo, the vertex is
−ig2

s

[

fαβηfγδη (gµλgνρ − gµρgνλ) + fαδηfβγη (gµνgλρ − gµλgνρ) + fαγηf δβη (gµρgνλ − gµνgλρ)
]In these verties, various indies are aording to the indies assoiated with the linesmeeting at the vertex.6. External lines: quarks and anti-quarksExternal quark with momentum p, spin s, and olor C:Inoming quark: u(s)(p)C while for QED we have u(s)(p).Outgoing quark: u(s)(p)C† while for QED we have u(s)(p).For an external antiquark:Inoming antiquark: v(s)(p)C†while for QED we have v̄s.Outgoing antiquark: v(s)(p)C while for QED we have vs.Here C represents the olor of the orresponding quark.7. For an external gluon of momentum p, polarization ǫ, olor a:Inoming gluon: ǫµ(p) aα while for QED(photon) we have ǫµ.Outgoing gluon: ǫ∗µ(p) aα† while for QED(photon) we have ǫµ∗.23



3 Running oupling onstant in QCD3.1 Physial PitureLet us reall, how a `sreened' harge appears in an ordinary dieletri medium, like water.Test harge +q in a polarisable dieletri medium is sreened from outside. There will be anindued dipole moment ~P per unit volume, and the e�et of ~P on the resultant �eld is thesame as that produed by a volume harge density equal to -~∇. ~P .For linear medium, ~P is proportional to ~E so, ~P = χǫo ~E. Gauss's law is then modi�edfrom:
~∇. ~E = ρfree/ǫoto

~∇. ~E =
ρfree −∇. ~P

ǫoTaking χ to be approximately onstant, we get
~∇. ~E =

ρfree

ǫo
− χ~∇. ~E

⇒ ~∇. ~E =
ρfree

ǫwhere ǫ = (1 + χ)ǫo is the dieletri onstant of the medium, (ǫo being that of vauum).Thus, the eletri �eld is e�etively redued by the fator (1 + χ)−1.However, this is marosopi treatment, the moleules being replaed by a ontinuousdistribution of harge density −~∇. ~P . For very small distanes (∼ moleular distanes), thesreening e�et will be redued.Thus, we expet that ǫ should be a funtion of r, distane from the test harge. Ingeneral, the eletrostati potential between two test harges q1, and q2 in a dieletri an berepresented phenomenologially by
V (r) =

q1q2
4πǫ(r)rwhere ǫ(r) varies with r. We an de�ne an e�etive harge

q′ =
q

√

ǫ(r)for eah test harge. 24



3.1.1 E�etive harge in QEDIn quantum �eld theory, the polarisable medium is replaed by the vauum. We know aboutvauum polarization arising from vauum �utuations whih are always there. Produed
e+e− align in the presene of a test harge. Thus, near a test harge, in vauum, hargedpairs are reated. They exist for ∆t ∼ h̄/mc2. They an spread to a distane of about c∆t(i.e. the Compton wavelength λc). This distane gives a measure of the moleular diameter(for dieletri medium). Virtual e+e− pairs are e�etively dipoles of length λc ∼ 1

m
.Again, due to sreening e�ets of these vauum �utuations, e�etive harge will dependon the distane.3.1.2 Meaning of the familiar symbol eThis is simply the e�etive harge as r → ∞, or in pratie, the harge relevant for distanesmuh larger than the partile's Compton wavelength. For example, it is this large distanevalue whih is measured in Thomson sattering. Distane (or momentum) dependent ou-pling onstant is alled the `Running oupling onstant'. It arises due to renormalizationwhih we disuss in the next setion.3.2 β funtion in QFTWe will see that due to renormalization in QFT, one gets a running oupling onstant

g(t)where t is the momentum (distane−1) sale. The behavior of g(t) as a funtion of t isdetermined by the β funtion
t
dg(t)

dt
= β(g) .One we know the β funtion of a theory, we an immediately get the running ouplingonstant of the theory.How does one alulate β(g)? Let us sketh the important steps for a salar theory. We willthen disuss results for QED and QCD.
25



3.2.1 Divergenes and Renormalization in QFTNote: Renormalized g arises due to vauum �utuations. These also lead to divergenes.Hene the two are intimately onneted.First take the ase of salar �eld theory with a φ4 interation.
L =

1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4The propagator and vertex of this theory are given by

i

p2 −m2
and − igDivergenes arise from loop integrals. For example : Self energy ontribution at one looplevel to the free partile propagator

g

∫

d4q

(2π)4

1

q2 −m2This is ultraviolet divergent as there are 4 powers of q in the numerator and 2 in thedenominator.Similarly, onsider the 1 - loop ontribution to the 4 - point vertex funtion.
g2

∫

d4q

(2π)4

1

(q2 −m2)
(

[p1 + p2 − q]2 −m2
)Here there are 4 powers of q in both numerator and denominator, so we have a logarith-mi divergene.3.2.2 1PI DiagramsFor studying renormalization we fous on the one-partile- irreduible (1PI) diagrams.These are the onneted Feynman diagrams, whih annot be disonneted by utting anyone internal line. Correspondingly, we de�ne the 1PI Green's funtion Γ(n) (p1, ..pn) whihhave ontributions from 1PI diagrams only. 26



The reason for seleting 1PI diagrams is that every other diagram an be deomposedinto 1PI diagrams without further loop integration. So, if we know how to take are of thedivergenes of 1PI diagrams, we an then handle other diagrams also.
3.3 RegularizationOne needs to isolate the divergenes in these divergent integrals. Eventually, these diver-genes are absorbed by re-de�ning various parameters of the theory, i.e. by Renormaliza-tion. There are various tehniques for regularizing a divergent Feynman diagram.3.3.1 Pauli-Villars regularizationHere the propagator is modi�ed by using

1

p2 −m2
− 1

p2 −M2
=

m2 −M2

(p2 −m2) (p2 −M2)As now the propagator behaves as 1
p4 , integrals usually onverge. When we take M2 → ∞,the original theory is restored.3.3.2 Cut-o� regularizationOne an use a ut o� Λ in the momentum integral. Eventually Λ → ∞ limit is taken.All these methods beome problemati when non-Abelian gauge theories are onsidered.3.3.3 Dimensional RegularizationThis is the most versatile regularization tehnique. Here the ation is generalized to ar-bitrary dimensions d where there are regions in omplex d spae in whih the Feynmanintegrals are all �nite. Then as we analytially ontinue d to 4, the Feynman graphs pik up27



poles in d spae, allowing us to absorb the divergenes of the theory into physial parameters.
3.4 Salar TheoryLet us onsider dimensional regularization for the salar theory.

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4We �rst generalize this theory to arbitrary d dimensions. As S =

∫

Lddx is dimensionless(S should have units of h̄ = 1), we have, from the �rst term in L,
1

L2
Ld[φ]2 = 1

⇒ [φ] = L
2−d
2where L denotes the length dimension (same as mass−1 dimension in natural units). Sothe mass dimension of φ = d

2
− 1.The gφ4 term has mass dimension [g℄ M2d−4 This needs to be [M ℄d.To keep g dimensionless, we need to introdue a fator µ4−d to anel (2d−4−d) in gφ4.Thus we get

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − µ4−dg

4!
φ4Note the presene of the arbitrary mass sale µ.With this L we an alulate the divergent 1-loop diagrams. The self energy is

∑

=
1

2
gµ4−d

∫

ddp

(2π)d

1

p2 −m2These integrals an be alulated using the gamma funtion.
∑

=
−ig
32π2

m2

(

4πµ2

m2

)2−d/2

Γ (1 − d/2)28



The gamma funtion Γ has poles at zero and negative integers, so, we see that thedivergene of the integral manifests itself as a simple pole as d → 4. Using ǫ = 4 − d

Γ(1 − d/2) = Γ
(

−1 +
ǫ

2

)

=
−2

ǫ
− 1 + γ +O(ǫ)where γ = 0.577 is the Euler-Masheroni onstant.Thus expanding the above expression about d=4 using aǫ = 1 + ǫ ln a +...., we get

∑

i
=

igm2

16π2ǫ
+
igm2

32π2

[

1 − γ + ln
(4πµ2)

m2

]

+O(ǫ)

=
igm2

16π2ǫ
+ �niteSimilarly, the 4-point funtion to order g2 is

1

2
g2(µ2)4−d

∫

ddp

(2π)d

1

(p2 −m2)

1

[(p− q)2 −m2]Again using the Γ funtion one an get it as
ig2µǫ

16π2ǫ
− finite partWe an now obtain the vertex funtions (with amputated legs).2-point funtion:

Γ(2)(p) = p2 −m2 −
∑

(p2)(apart from inverse of bare propagator it ontains only 1PI graphs)
= p2 −m2

(

1 − g

16π2ǫ

)

neglecting finite term4-point funtion:
Γ(4)(pi) = −igµǫ

(

1 − 3g

16π2ǫ

)

+ �nite ≡ −igR29



3.4.1 RenormalizationConsider now the vertex funtion Γ(2) and Γ(4) to one loop approximation
Γ(2)(p) = p2 −m2 −

∑

∑

=
−gm2

16π2ǫ(ignoring �nite parts), where ǫ = 4 − d. We write it as
Γ(2)(p) = p2 −m2

1where
m2

1 = m2
(

1 − g

16π2ǫ

)

=
m2

(1 + g/16π2ǫ)

m1 is taken to be �nite, representing the physial mass. This is alled theRenormalizedmass. ∑ is divergent (with ǫ→ 0) so m (bare mass) is taken to be appropriately divergentso that m1 is �nite.The renormalized mass m1 is given by,
m2

1 = −Γ(2)(0)Note: This is the renormalization ondition where physial mass is de�ned at p = 0. Itould very well have been de�ned at some other value of p.Similarly, onsider Γ(4)

iΓ(4)(pi) = gµǫ − g2µǫ

16π2

[

3

ǫ
+ �nite Γ̃(pi)

]De�ne a new parameter g1, the renormalized oupling onstant, by
g1 = gµǫ − g2µǫ

16π2

[

3

ǫ
+ Γ̃(0)

]Again, note here that g1 is being de�ned at point pi=0. An alternative is to de�ne it atthe symmetrial point, p2
i = m2, so s, t, u = 4m2/3.30



These are the results upto 1-loop level. It turns out that when 2-loop diagrams arealulated then using renormalization of the m and g parameters, Γ(4) is �nite, but Γ(2) re-mains divergent. This is due to overlapping divergene at 2-loop level. So, oupling onstantand mass renormalization do not remove this additional divergene at 2-loop level. It is re-moved by absorption in a multipliation fator and we de�ne a renormalized 2-point funtion
Γ(2)

r = Zφ(g1, m1, µ)Γ(2)(p,m1, µ)

Γ
(2)
r is now �nite with Zφ in�nite. √Zφ is alled the wave funtion (or �eld) renormal-ization onstant.Field renormalization is φ = Z

−1/2
φ φ0, where φ0 is the unrenormalized �eld.So, the 2-point funtion is

< 0|T (φ(x1)φ(x2)|0) >= Z−1
φ < 0|T (φ0(x1)φ0(x2)|0 >)where the 2-point funtions on the L.H.S. and the R.H.S. are G(2)

R (x1, x2) and G(2)
(0)(x1, x2)respetively.Thus, in general, the renormalized �eld φ de�nes the renormalized Green's funtions G(n)

Rwhih are related to the unrenormalized ones by
G

(n)
R (x1....xn) = < 0|T (φ(x1)...φ(xn)|0 >

= Z
−n/2
φ 〈0|T (φ0(x1)...φ0(xn)|0〉

= Z
−n/2
φ G

(n)
0 (x1...xn)In momentum spae, we get

G
(n)
R (p1..pn) = Z

−n/2
φ G

(n)
0 (p1...pn)Now, to go from the onneted Green's funtions given above to the 1PI (amputated)Green's funtion, we have to eliminate the one-partile reduible diagrams. But more im-portantly for us, we have to remove the propagators for the external lines in the1PI Green's funtions (to get amputated Green's funtion).31



Thus, we need to remove ∆R (pi) from G
(n)
R (p1..pn) and ∆(pi) from G

(n)
0 (pi)Now

∆R(pi) = Z−1
φ ∆(pi)where the propagators on the L.H.S. and R.H.S. are G(2)

R and G(2)
0 respetively.Thus, we get

Γ
(n)
R (pi) = [∆R(pi)]

−nG
(n)
R (pi)

= Zn
φ (∆(Pi))

−n Z
−n/2
φ G

(n)
0 (pi)or Γ

(n)
R (pi) = Z

n/2
φ [∆(pi)]

−nG
(n)
0 (pi)so Γ

(n)
R (pi) = Z

n/2
φ Γ(n)(pi)Thus, �nally using renormalized quantities, et., we an write

Γ
(n)
R (p1, ..pn; gR, mR, µ) = Z

n/2
φ Γ

(n)
0 (p1..pn, g0, m0)Note: Γ

(n)
0 (pi, g0, m0) will be divergent. Some divergene will be removed by using renor-malized mR and gR, remaining divergene will be removed by multiplying by Zn/2

φ .
3.5 Renormalization groupWe have

Γ
(n)
R (pi, gR, mR, µ) = Z

n/2
φ Γ

(n)
0 (pi, g0, m0)or

Γ
(n)
0 (pi, g0, m0) = Z

−n/2
φ Γ

(n)
R (pi, gR, mR, µ)Now the unrenormalized vertex funtion Γ

(n)
0 should be independent of µ, so

µ
d

dµ
Γ

(n)
0 = 0(Note Γ0 is divergent, here it is used with proper regularization, e.g, dimensional regulariza-tion with ǫ 6= 0. Γ0 diverges in ǫ→ 0 limit). 32



We get
µ
d

dµ

[

Z
−n/2
φ Γ

(n)
R (pi, gR, mR, µ)

]

= 0where gR and mR depend on µ,
⇒ −n

2
Z

(−n/2−1)
φ µ

∂Zφ

∂µ
Γ

(n)
R + Z

(−n/2)
φ

[

µ
∂

∂µ

+ µ
∂gR

∂µ

∂

∂gR

+ µ
∂mR

∂µ

∂

∂mR

]

Γ(n)R = 0Above ×Zn/2
φ ⇒

[

−nµ ∂

∂µ
ln
√

Zφ + µ
∂

∂µ

+ ...

]

Γ
(n)
R = 0De�ne

µ
∂

∂µ

ln√Zφ = γ(g)

β(g) = µ
∂g

∂µ

mγm(g) = µ
∂m

∂µWe thus get the renormalization group (RG) equation:
[

µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) +mγm(g)

∂

∂m

]

Γ(n) = 0

β(g) is alled the β funtion of the theory.Renormalization group equation expresses how the renormalized vertex funtions hangewhen we hange the arbitrary sale µ.We are interested in knowing the behavior of oupling onstants et. under the hange ofmomentum sale, beause we want to understand the behavior of the theory at high energies.We therefore make the following sale transformations and desire a slightly di�erentonstraint on the vertex funtion.Consider pi → tpi resaling of all momenta by t.Then
Γ(n)(tpi, g,m, µ) = tDΓ(n)

(

pi, g, t
−1m, t−1µ

)

,33



where D is the mass dimension of the vertex funtion Γ(n), or
Γ(n) (tpi, g,m, µ) = µDf

(

g,
t2p2

i

mµ

)

≡ µDf(g, α)This is beause Γ is Lorentz invariant, and hene an only be a funtion of various dotproduts pi.pj . To reate a dimensionless quantity, we divide by µm. The overall salingquantity µD means that the funtion has mass dimension D. Let us alulate
µ
∂

∂µ
Γ(n) (tpi, g,m, µ) = µDµD−1f + µD+1 ∂f

∂α

(−t2p2
i

mµ2

)Similarly,
t
∂Γ

∂t
= tµD ∂f

∂α

(

2tp2

mµ

)

m
∂Γ

∂m
= mµD ∂f

∂α

(−t2p2

m2µ

)

Summing all these terms, we get
[

t
∂

∂t
+m

∂

∂m
+ µ

∂

∂µ
−D

]

Γ(n) = µD ∂f

∂α

[

−t
2p2

mµ
+

2t2p2

mµ
− t2p2

mµ

]

= 0We now have two di�erent equations for Γ(n). Note that for the RG equation also, we anonsider Γ(n) (tp, g,m, µ). We an eliminate µ ∂
∂µ

term from the above equation and the RGequation. We get
[

β(g)
∂

∂g
− nγ(g) +mγm(g)

∂

∂m
− t

∂

∂t
−m

∂

∂m
+D

]

Γ(n) = 0or
[

β(g)
∂

∂g
− t

∂

∂t
− nγ(g) +m (γm(g) − 1)

∂

∂m
+D

]

Γ(n)(tp, g,m, µ) = 0This equation diretly gives the e�et of saling up the momenta by a fator t.Important : This equation expresses the fat that a hange in t (i.e. momentumsale) may be ompensated by a hange in m and g and an overall fator.Thus, we expet that there should be funtions g(t), m(t) and f(t) suh that
Γ(n)(tp,m, g, µ) = f(t)Γ(n)(p,m(t), g(t), µ).34



Di�erentiating this w.r.t. t we get (m & g also depend on sale t)
t
∂

∂t
Γ(n)(tp,m, g, µ) = t

df(t)

dt
Γ(n)(p,m(t), g(t), µ)+tf(t)

[

∂m

∂t

∂

∂m
+
∂g

∂t

∂

∂g

]

Γ(n)(p,m(t), g(t), µ)Then using
Γ(n)(tp,m, g, µ) = f(t)Γ(n)(p,m(t), g(t), µ)we get

[

−t ∂
∂t

+
t

f(t)

df

dt
+ t

∂m

∂t

∂

∂m
+ t

∂g

∂t

∂

∂g

]

Γ(n)(tp,m; g, µ) = 0Comparison of this equation with the previous equation gives
t
∂g(t)

∂t
= β(g)We also get

t
∂m

∂t
= m [γm(g) − 1]This gives hange of mass

t

f

df

dt
= D − nγ(g)The solution of this equation is

f(t) = tD exp

[

−
∫ t

0

nγ(g(t))dt

t

]

Reall : Γ(n)(tp,m, g, µ) = f(t)Γ(n)(p,m(t), g(t), µ). Here tD gives the anonial mass di-mension of the vertex funtion Γ(n). The exponential term gives the `Anomalous Dimension'for the vertex funtion arising entirely due to renormalization e�ets.3.6 β funtionWe have
t
∂g(t)

∂t
= β(g)where g(t) is alled the `running oupling onstant'. Knowledge of the funtion β(g) enablesus to �nd g(t), and of partiular interest is the asymptoti limit of g(t), as t→ ∞.We now onsider the possible behavior of g(t) as t → ∞, i.e. at large momentum (andassuming that the above equation is still valid there).35



1. Suppose β(g) has the following form. It is zero at g = 0. Then, as g inreases, itinreases �rst and then starts dereasing, rossing the g axis at g0 beoming negativeafter that. The zeros of β, at g = 0 and g = g0 are alled `�xed points' (as g does notevolve there).
g near g0 : If g < g0, β > 0. So g inreases with inreasing t and is driven towards g0.Similarly, if g > g0, then β < 0 and dg

dt
< 0 ⇒ g dereases towards g0 with inreasing t.Thus, g0 is an ultra-violet (large t) stable �xed point g(∞) = g0. Note that g0 is aninfrared unstable �xed point. Beause for g < g0, β > 0 so g dereases away from g0with dereasing t. Similarly, for g > g0, β < 0, so t dereasing takes g away from g0.By same arguments, g = 0 is an infrared stable �xed point.2. Now onsider other possibility: Suppose, β(g) is zero at g = 0. Then, as g inreases, itdereases �rst and then starts inreasing, rossing the g axis at g0 beoming positiveafter that.Here g0 is an infrared stable �xed point while g = 0 is an ultraviolet �xed point. Thisis beause if g > 0 near g = 0 then β < 0 ⇒ when t inreases then g(t) dereasestowards 0. So, g(t → ∞) → 0. This is alled Asymptoti freedom. For theorieswith g = 0 an ultraviolet �xed point, the perturbation theory gets better and betterat higher energies and in the in�nite momentum limit, the oupling onstant vanishes.We will see that QCD is an asymptotially free theory, with a negative β funtion.3.7 β funtion for a salar φ4 theoryReall the de�nition of the β funtion:

β(g) = µ
∂gR

∂µ

36



At 1-loop level, we reall that the renormalized oupling
g1 = gµǫ − g2µǫ

16π2

[

3

ǫ
+ �nite term]

with gbare ≡ gB = gµǫ,we have

g1 = gB − g2
Bµ

−ǫ

16π2

[

3

ǫ
+ �nite term]Hene, µ

∂g1

∂µ
= ǫ

g2
Bµ

−ǫ

16π2

[

3

ǫ
+ �nite term]

≃ 3

16π2
g2
1with ǫ→ 0 limit as the di�erene is of order g3, i.e. at the 2 loop level.So, keeping terms only upto 1-loop level (i.e. g2) one gets the β funtion by taking ǫ→ 0limit

β(g1) ≡ µ
∂g1

∂µ
=

3g2
1

16π2
> 0From the above disussions about the �xed points we see that g = 0 is infrared stable �xedpoint and that φ4 theory is not asymptotially free. Reall:

t
∂g(t)

∂t
= β(g(t)) =

3g(t)2

16π2We an solve this equation as
dg(t)

g2
=

3

16π2

dt

t

⇒ g =
g0

1 − 3g0

16π2 ln t/t0This gives us the running oupling onstant. As t inreases, g inreases.3.8 Running oupling onstant in QEDStart with the Lagrangian in d dimensions:
L = iψγµ∂µψ −mψψ − eµ2−d/2Aµψγµψ − 1

4
(∂µAν − ∂νAµ)2 − 1

2
(∂µA

µ)2where the last term on the r.h.s. is the gauge �xing term. With this, one gets the Maxwellequation as ∂ν∂
νAµ = 0 (i.e. in Lorentz gauge ∂µAµ = 0).37



The vertex graph at one loop level leads to the renormalized oupling onstant e, relatedto the bare oupling eB as,
eB =

(

1 +
1

12

e2

π2ǫ

)

eµǫ/2Using ∂eB

∂µ
= 0 we an show that β(e) = µ ∂e

∂µ
= e3

12π2 .So in QED also, β funtion is positive and there is no asymptoti freedom. Using
t
∂e(t)

∂t
= β(e) =

e3

12π2We get
de

e3
=

dt

12π2t
⇒ e2(t) =

e2(t0)

1 − e2(to)
6π2 lnt/t0De�ning

α = e2/4π; α(t) =
α(to)

1 − 4α(to)
6π

ln(t/to)Note: The Landau Singularity at
t ≃ t0 exp (6π2/e2(t0)

)

≃ t0 exp( 6π

4πα(t0)

)

So, if t0 ∼ 1 MeV then t ∼ 1080 MeV.(Note that for energies higher that 100 GeV one should use Eletroweak theory.)3.9 Asymptoti freedom in QCDThe quark gluon vertex funtion leads to renormalized oupling onstant g at one loop level,whih is related to the bare oupling gB as follows:
gB = gµǫ/2

[

1 − g2

16π2ǫ

(

11 − 2nF

3

)](for N = 3 i.e. SU(3) olor theory. Here the fator of nF omes from the �eld renormalizationfator ZA for vauum polarization). Using ∂gB

∂µ
= 0, we get

β(g) = µ
∂g

∂µ
= −ǫµ−ǫ g3

16π2ǫ

(

11 − 2nF

3

)38



(Corretions are higher loop order.) So
β(g) = − g3

16π2

[

11 − 2nF

3

]For number of quark �avors nF < 16 (we have only 6) we have β(g) < 0 i.e., a negative βfuntion. This implies that g dereases with inreasing momentum sale and the theory isasymptotially free. g = 0 is an ultraviolet �xed point.From
t
∂g

∂t
= β(g) = − g3

16π2

[

11 − 2nF

3

]

We an solve for g and using g2

4π
= αsWe get

α =
4πα0

4π + α0

(

11 − 2nF

3

) lnQ2

Q2
0with Q2/Q2

o = t2/t2o , where Q is the momentum.Another way of writing α is to de�ne
(

11 − 2

3
nF

)

α0 lnQ2
0 − 4π =

(

11 − 2

3
nF

)

α0 lnΛ2Then we get
αs

(

Q2
)

=
4π

(

11 − 2nF

3

) lnQ2/Λ2

Λ is the QCD sale �xed by various sattering proesses (e.g. high energy e+e− → hadrons).One has αs

(

(100GeV)2) = 0.2 ⇒ Λ = 112MeV for nF = 6.The urrent disussed value of the sale parameter of QCD, ΛQCD ranges from 100 MeVto 300 MeV.Derease of αs with Q2 in QCD is due to antisreening from olored gluons. qq̄ pairsstill give usual sreening [1℄. That is why for a su�iently large value of nF there is noasymptoti freedom. 39



3.10 Running of αs with Momentum SaleImpliations of running oupling onstant in QCD and the QGPWe have seen that the oupling onstant in QCD beomes smaller at large energy salesand the theory is asymptotially free:
αs(q

2) =
4π

(11 − 2nF/3) lnq2/Λ2This means that the interations between quarks and gluons beome weaker at very highenergies, while they are strong at lower energies.Thus a olletion of quarks and gluons interating with eah other with typial momentumtransfer muh larger than Λ should onstitute a weakly interating system of partiles. Aswe mentioned earlier, typial value of Λ (from sattering experiments) is about 200 MeV.Thus, we expet that if a system of quarks and gluon was at a temperature muh higherthan several hundred MeV, then the oupling onstant will be small and the system shouldbehave as an ideal gas. In suh a system we do not expet the e�ets of on�nement ofQCD interation to survive. This system of quarks and gluons where quarks and gluons areno more on�ned within the region of a hadron (∼ 1 fm size) is alled the quark-gluonplasma (QGP).In the other limit, when quark and gluons have small energies, say they are at smalltemperatures, then we expet the oupling onstant to beome strong. This is the domainwhere on�nement takes plae and all quarks and gluons are on�ned inside hadrons.We expet that the transition between this low energy hadroni domain to high en-ergy (temperature) QGP domain is a phase transition. This is alled the on�nement-deon�nement phase transition, or, the quark-hadron phase transition.3.11 High density behaviorEven at su�iently high density, (ompressed baryoni matter) we expet that hadronsshould be almost overlapping. For example, in neutron star ores very high baryon densitiesare ahieved. At suh densities, typial separation between onstituent quarks of di�erenthadrons beome muh less than 1 fm or (200 MeV)−1. This means, again, that the e�e-tive oupling onstant for quark-gluon interation should beome very small at suh highdensities. We an then expet that a state like QGP may exist at very high densities also.40



One needs to be areful here as at suh high densities many body quantum e�ets anplay important role if temperatures are not very high. One expets exoti states like olorsuperondutor to form at very high baryon densities.In this setion we saw that at the most qualitative level, that the asymptoti freedom ofQCD suggest that there should be a domain of QCD where a system of hadrons if heatedto very high temperature (muh above few hundred MeV) should transform to a weaklyinteration system of quarks and gluons, i.e. QGP.This expetation is strongly supported by lattie alulations and other phe-nomenologial approahes, and we will now disuss some of these.What we need is to study the system of quarks and gluons at high temperatures. Thatis QCD at �nite temperatures.4 Field theory at �nite temperatureIn the following, we will disuss the basi formalism for �nite temperature �eld theory[3℄. We will then speialize to our requirement of a system of fermions (quarks) and bosons(gluons) at �nite temperature. Further details of �nite temperature QCD will be disussedwhere and when required.4.1 Partition FuntionWe know that all thermodynami properties for a system in equilibrium an be derived onewe know its partition funtion
Z = Tr e−βH β =

1

Twhere Tr stands for the trae, or the sum over the expetation values in any omplete basis.Thus
Z =

∫

dφa < φa|e−βH |φa >We now reall the expression for the transition amplitude in the path integral formalism
< φ1|e−iH(t1−t2)|φ2 > ≃ < φ(~x1, t1)|φ(~x2, t2) >

= N ′
∫

Dφ eiS41



where φ is the basi quantum �eld variable, N ′ is an irrelevant normalization onstant and
S is the ation

S[φ] =

∫ t1

t2

dt

∫

d3xLwhere L is the Lagrangian density of the system. The funtional integral (path integral) isde�ned over paths whih satisfy
φ(~x1, t1) = φ1, and φ(~x2, t2) = φ2

φ1 and φ2 are the �xed end points.There is no integration over these �xed end points.From the expression of the partition funtion we an easily see that Z an be written interms of a path integral if we identify t1 − t2 with −iβ. Then
Z(β) = Tr e−βH =

∫

dφ1 < φ1|e−βH |φ1 >

= N ′
∫

Dφ e−SEwhere SE is the Eulidean ation (t→ it),
SE =

∫ β

0

dτ

∫

d3xLEFurthermore, in view of Tr, we require that in the path integral the integration is done onlyover those �eld variables whih satisfy periodi boundary onditions
φ(~x, β) = φ(~x, 0)Note that here the end points are also being integrated over as there is a sum over states inTr e−βH . We will see that for fermions one gets antiperiodi boundary onditions. Boundaryonditions on �eld variables an be seen by examining the properties of the thermal Green'sfuntion de�ned by

G(x, y; τ, 0) = Z−1Tr (e−βHT [φ(x, τ)φ(y, 0)]
)where T is the imaginary time ordering operator. We have for bosons

T [φ(τ1)φ(τ2)] = φ(τ1)φ(τ2)θ(τ1 − τ2) + φ(τ2)φ(τ1)θ(τ2 − τ1)42



whereas for fermions we have
T [ψ(τ1)ψ(τ2)] = ψ(τ1)ψ(τ2)θ(τ1 − τ2) − ψ(τ2)ψ(τ2)θ(τ2 − τ1)from the antiommuting properties of fermions.For bosons we see, using the yli property of the trae that

G(x, y; τ, 0) = Z−1Tr
[

e−βHφ(x, τ)φ(y, 0)
]

= Z−1Tr
[

e−βHeβHφ(y, 0)e−βHφ(x, τ)
]

= Z−1Tr
[

e−βHφ(y, β)φ(x, τ)
]

where φ(y, β) = eβHφ(y, 0)e−βH in analogy with the real time Heisenberg time evolution.

φ(y, t) = eiHtφ(y, 0)e−iHtThus
G(x, y; τ, 0) = Z−1Tr

(

e−βHT [φ(x, τ)φ(y, β)]
)or, G(x, y; τ, 0) = G(x, y, τ, β)This implies the periodi boundary ondition for bosons is

φ(y, 0) = φ(y, β).It is then straightforward to see that for fermions we will get
G(x, y; τ, 0) = −G(x, y; τ, β)

⇒ ψ(x, 0) = −ψ(x, β)The important lesson for us is that in the funtional integral representation for the partitionfuntion, the integration over the �eld variables is restrited to those �elds whih are1. Bosons : periodi in (imaginary) time with period β.2. Fermions : antiperiodi in (imaginary) time with period β.This will be important to us when we disuss the on�nement - deon�nement phase tran-sition and the Polyakov loop order parameter for that transition.We now ome bak to disussing a system of bosons or fermions. We are familiar fromthe standard results from statistial mehanis that the partition funtion:43



1. For one bosoni degree of freedom (one state of energy w) :
E = wN , and
N = 1

eβ(w−µ)−1
(Bose-Einstein distribution)

N ranges ontinuously from zero to ∞. µ is the hemial potential.2. For fermions
N =

1

eβ(w−µ) + 1
(Fermi-Dira distribution), N ranges from 0 to 1One an re derive these expressions using �nite temperature �eld theory methods.With these, we an obtain various thermodynami properties of a system onsisting offermions or bosons.4.1.1 QuarksLet us write down the expressions for the energy density and pressure for a system onsist-ing of a relativisti gas of fermions (quarks). The number of quarks in a volume V withmomentum p within the interval dp is:

dNq = gqV
4πp2dp

(2π)3

1

1 + e(p−µq)/TThis is the Fermi Dira distribution. µq is the hemial potential (same as the quarkFermi energy) and gq = NcNsNf is the number of independent degrees of freedom of quarks(degeneray of quarks). Let us take the ase of µq = 0, so the density of quark and antiquarksis the same.We an now write down the energy of the massless quarks in the system of volume Vand temperature T .
Eq =

gqV

2π2

∫ ∞

o

p3dp

1 + ep/T
for massless quarks with E ≃ p

=
gqV

2π2
T 4

∫ ∞

o

z3dz

1 + ez

=
gqV

2π2
T 4

∫ ∞

o

z3dze−z

∞
∑

n=0

(−1)ne−nz

=
gqV

2π2
T 4Γ(4)

∞
∑

n=0

(−1)n 1

(n+ 1)444



where Γ is the gamma funtion. It is easy to show that
∞
∑

n=0

(−1)n 1

(n+ 1)4
= (1 − 2−3)ζ(4)where ζ(4) is the Riemann zeta funtion.

ζ(4) =
∑

m=1,2..

1

m4
=
π4

90Thus, we get
Eq =

7

8
gqV

π2

30
T 4We know that for massless fermions and bosons, the pressure is related to the energy density

ρ = E/V as
P =

1

3
ρHene, the pressure due to quarks is

Pq =
7

8
gq
π2

90
T 4Similarly, the pressure due to antiquarks is given by the same expression with gq → gq.We an also obtain the number density of the quarks and antiquarks as

nq = nq =
gq

2π2

∫ ∞

0

p2dp

1 + ep/T

=
gq

2π2
T 33

2
ζ(3)where ζ(3) = 1.20205.4.1.2 GluonsLet us now write down the energy of gluons in a system of volume V and Temperature Tusing the Bose-Einstein distribution for bosons

Eg =
ggV

2π2

∫ ∞

o

p3dp

(

1

ep/T − 1

)

45



where gq is the gluon degeneray gg = number of di�erent gluons × number of polarization
= 8 × 2 = 16.We get

Eg =
ggV

2π2
T 4

∫ ∞

o

z3dz

ez − 1Following earlier steps, we get
Eg =

ggV

2π2
T 4

∫ ∞

o

z3dze−z
∞
∑

n=0

e−nz

=
ggV

2π2
T 4Γ(4)

∞
∑

n=0

1

(n+ 1)4
=
ggV

2π2
T 4Γ(4)ζ(4)or, Eg = ggV

π2

30
T 4Note the absene of fator 7

8
for bosons ompared to fermions.Again, using P = 1

3
ρ, we get the pressure for the gluon gas as:

Pg = gg
π2

90
T 4The number density of gluons is

ng =
gg

2π2

∫ ∞

o

p2dp

(

1

ep/T − 1

)

=
gg

2π2
T 3Γ(3)ζ(3) =

gg

π2
1.202T 3The net energy density of a system of quarks and gluons at temperature T is

ρQGP = ρqq + ρg

=

[

7

8
(gq + gq) + gg

]

π2

30
T 4

gq = gq = NCNSNF = 3 × 2 × 6

NC , NS and NF are the number of Colors, spin and �avor states of the quarks and gg = 16,so
ρQGP =

(

7

8
× 72 + 16

)

π2

30
T 446



Of ourse, this assumes that all the quark �avors an be treated as massless at the temper-ature T. So, the above expression is valid only for T ≫ mtop ≃ 170 GeV.Let us alulate ρQGP near the expeted transition temperature of few hundred MeV, sayat T = 200 MeV. At this temperature, only u and d quarks an be taken to be approximatelymassless.Thus, for T = 200 MeV
gq+q = 2 × 3 × 2 × 2 = 24where the fators orrespond to q and q̄, NC , NS and NF= u, d. So

ρQGP =

(

7

8
× 24 + 16

)

π2

30
T 4or ρQGP =

37π2

30
T 4For T = 200 MeV and using 1 fm = (200 MeV)−1, we get ρQGP ≃ 37

3
(200 MeV)4 ≃

2.5GeV/fm3.This is the energy density of a system of quarks and gluons in thermal equilibrium at atemperature of about 200 MeV.Thus, if we are able to reate a dense system of partons (quarks and gluons) with anenergy density muh above this and one an argue for thermal equilibrium to exist then weshould expet that a state of QGP will be ahieved.This is what is expeted to happen in relativisti heavy-ion ollision experi-ments where the nulei olliding at ultra high energies reate quarks, antiquarksand gluons with a entral density whih is expeted to be muh above 3 GeV/fm3.We saw how asymptoti freedom in QCD leads us to believe in the existene of a QGPstate at high temperatures (and high densities). We will now brie�y disuss here how thepredition of the QGP phase arises in the ontext of phenomenologial models of QCD whihwere used very suessfully to aount for di�erent properties of hadrons.5 Quark on�nementWe know that quarks annot be isolated, and are on�ned inside hadrons. On the other hand,the asymptoti freedom of QCD implies that at very short distanes (or large energies) the47



quark-gluon oupling goes to zero, so quarks beome almost free. There have been manyphenomenologial models whih inorporate these two features and try to alulate propertiesof hadrons [2℄.5.1 Potential modelsHere one assumes a ontribution of −1
r
Coulombi potential and a on�ning potential (+λr)between quarks and alulates the spetrum. (We will disuss this later for the J/ψ suppres-sion signal.) These models work well for heavy quarks but for light quarks the properties ofbound states with a on�ning potential beome di�ult to alulate.5.2 String model of quark on�nementHere one takes hadrons to be string like objets where quarks are bound by `strings' or tubesof olor �ux. This model arose from a ertain property of hadrons known as Regge trajetorybehavior where it is seen that hadrons seem to lie on lines given by J ∼M2 in the J vs M2plane. Here J is the spin and M is the mass of the hadron.It an be shown that a relativisti rotating string leads to this type of relationship between

J and M2. This gave birth to the string model of hadrons.It was this string model whose attempted quantization and subsequent developmenteventually led to the modern string theory where every elementary partile is supposed toorrespond to a fundamental strings. In the present form it does not have anything inommon with the initial string model of hadrons. (Though, it has been reently suggestedthat these may be intimately onneted at a deeper level.)The string model of hadrons still provides a good desription of ertain properties ofhadrons and of hadron prodution. For example, in sattering experiments, the prodution ofhadrons is often modeled using a phenomenologial string model. As q and q̄ reated in e+ e−annihilations separate with ultrahigh energies, a string strethes between them. After somestrething, it beomes unfavorable for the string to streth further and it breaks by reatinga q q̄ pair. Now the individual string piees keep strething and further keep breaking.Eventually relative veloities between a q q̄ pair onneted to a single string segment beomesvery small so that no further string breaking is possible. The resulting system onsists ofhadrons.The reation of qq and qq pairs by string breaking leads to the formation of baryons.Suh string models of hadron formation are usually alled fragmentation models and48



are widely used in various Monte Carlo programs simulating hadron prodution in e+ e− orhadron-hadron sattering experiments.These models are espeially suessful in desribing the prodution of jets in these ex-periments.Note:1. In the string model of on�nement, the potential energy of q q̄ pair inreases withdistane as λr, where λ is the mass per unit length of the string. This is exatly likethe linear term in the potential models. So for a q q̄ system
V (r) = −a

r
+ λr2. QCD strings to fundamental strings : The appearane of a spin-2 massless partilein the spetrum of strings ould be possibly understood as a ertain pomeron exita-tion in QCD. But there were problems with the requirement of 26 dimension for theQCD string model. For fundamental string theory models this spin-2 massless parti-le provided additional motivation as it ould be identi�ed with the graviton. Thusthe fundamental string ould naturally inorporate gravity along with other types ofelementary partiles.5.3 Bag modelsWe now disuss another lass of phenomenologial models whih aount for the on�nementof quarks inside hadrons as well as the physis of asymptoti freedom. We will then use thesemodels to reah a de�nite quantitative predition of the transition to a QGP state.There are many di�erent versions of the Bag model. Here we will desribe the MIT Bagmodel whih ontains the essential harateristis of the phenomenology of quark on�nement[5℄. We will also use it to understand the irumstanes of how quarks an beome deon�nedin the new QGP phase.In this model one assumes that quarks are on�ned within a sphere of radius R. Quarksare assumed to be free inside the sphere, whih is in the spirit of asymptoti freedom. (Rwill be less than 1 fm, so the oupling onstant should be small for suh short distanes). Itis further assumed that quarks annot go outside this sphere, i.e. they are in�nitely heavy49



outside. This aptures the physis of on�nement of quarks inside hadrons (the ouplingonstant is large for large distanes).One therefore solves the Dira equation for a free fermion of mass m
iγµ∂µψ(x) = mψ(x)This equation is solved in a spherial region of spae of radius R. By using appropriateboundary onditions, i.e, no urrent �ows aross the surfae of suh a sphere we get quantizedenergy levels
ω =

(

m2 +
x2

R2

)1/2using spherial Bessel funtion jl. Here x ≃ 2.04 for the lowest level with l = 0.For a system of several quarks with di�erent �avors and masses mi, the total energy ofthe quark system is
E =

∑

i

(

m2
i +

x2
i

R2

)1/2

Niwhere Ni is number of quarks of the same type.We note that this energy an be lowered by inreasing R. Thus, there is no automation�nement in the model, unless one arti�ially �xes the value of R.To prevent an inrease in R one introdues a `pressure' term B whih stabilizes thesystem. This is the essential feature of the MIT Bag model [5℄This bag pressure is direted inwards, and is a phenomenologial quantity introdued totake into aount the non-perturbative e�ets of QCD. Quarks and gluons are all on�nedinside the bag. In this desription, the total matter inside the bag must be olorless by virtueof Gauss's law. We know that this allows for qqq and qq states inside the bag.With this bag pressure, the total energy beomes
E(R) =

∑

i

Ni

(

m2
i +

x2
i

R2

)1/2

+
4πR3

3
BOne an now minimize E(R) w.r.t R to get the equilibrium on�guration.Sine u, d are light, we may set mu = md = 0 and get

E(R) =
2.04

R
N +

4πR3

3
B50



(Reall, 1
R

is the harateristi momentum and hene the energy for a massless partileon�ned in a region of size R). Then
∂E

∂R
= 0 ⇒ −2.04

R2
N + 4πR2B = 0or R =

(N × 2.04)1/4

(4πB)1/4Putting this bak into the expression for E(R) we get
E =

4

3
(4πB)1/4(N × 2.04)3/4From the relation between R and B, if we take the on�nement radius to be 0.8 fm for a 3quark system in a baryon then we get (say for uud or udd, i.e. proton or neutron)
B1/4 = 206 MeVThe value of the bag pressure B1/4 ranges from about 145 MeV to 235 MeV.5.4 Transition to the QGP state in the Bag modelThe physis of the Bag model implies that if the pressure of the quark matter inside the bagis inreased, there will be a point when the pressure direted outward will be greater thanthe inward bag pressure.When this happens, the bag pressure annot balane the outward quark matter pressureand the bag annot on�ne the quark matter ontained inside. A new phase of matterontaining the quarks and gluons in an unon�ned state is then possible. This is the QGPphase.The main ondition for a new phase of quark matter (QGP) is the ourrene of a largepressure exeeding the bag pressure B.A large pressure of quark matter arises in two ways1. When the temperature of the matter is high (this is when QGP forms at high temper-ature as in the early universe).2. When the baryon density is high (this is when QGP forms at high baryon density, aspossibly in the ores of neutron stars). 51



5.4.1 QGP at high temperatureLet us reall the pressure of a quark-gluon system at temperature T . The total pressure is
P = gtotal

π2

90
T 4

gtotal =

[

gg +
7

8
× (gq + gq)

]

By taking only light u and d quarks, we have seen that gtotal= 37, so we get
P = 37

π2

90
T 4By equating it to the Bag pressure B, we an get an estimate of the ritial temperature forthe transition to QGP state

37
π2

90
T 4

c = B

⇒ Tc =

[

90

37π2

]1/4

B1/4For B1/4 = 206 MeV, we get Tc ≃ 144 MeV.We will later disuss that the urrent estimates for Tc from lattie omputations are near170 MeV. Note that this is of the same order as expeted from the running oupling onstantargument when αs beomes small near q2 ∼ (200MeV)25.4.2 QGP with high baryon densityWe now disuss the possibility where the pressure inside a bag an be large enough to leadto the deon�ned QGP state even at T = 0 due to high baryon density. In this ase thepressure arising from the Fermi momentum of quarks will be large enough to balane thebag pressure, leading to the QGP state. Sine this situation arises when the baryon numberdensity is very high, we neglet e�ets of antiquarks and gluons. Again, the number of statesin a volume V with momentum p within the momentum interval dp is
gqV

(2π)3
4πp2dp52



As eah state is oupied by one quark, the total number of quarks, upto the quark Fermimomentum µq (i.e., the hemial potential) is
Nq =

gqV

(2π)3

∫ µq

0

4πp2dp

=
gqV

6π2
µ3

qThus the number density of quarks (N/V ) is
nq =

gq

6π2
µ3

q[Note:
dp nq =

gq

(2π)3
4πp2dp

[

1 + exp

(

p− µq

T

)]−1

dp nq =
gq

(2π)3
4πp2dp

[

1 + exp

(

p+ µq

T

)]−1Consider the ase of very large value of µq, µq

T
≫ 1. Then we see that

nq dp ≃
gq

(2π)34πp2dp

(

1

1 + exp
(p−µq

T

)

) (1)The fator in braket is 1 for p < µq

T
and approximately 0 for p > µq

T
, whereas nq dp ≃ 0always as p > 0Thus, for the ase of omplete degeneray i.e. µq

T
≫ 1 we have (starting with a Fermi-Dira distribution, )

nq dp ≃ gq

(2π)3
4πp2 dp for p < µq

≃ 0 for p > µqand nq dp ≃ 0 always.The energy of the quark gas in volume V is
Eq =

gqV

(2π)3

∫ µq

0

(4πp3)dp

=
gqV

8π2
µ4

q53



So the energy density is
ρq =

gq

8π2
µ4

qAgain, for massless quarks, the pressure is
P =

1

3
ρ =

gq

24π2
µ4

qThe transition to the QGP state will be ahieved at a ritial value of µq ≃ µc when thispressure is balaned by the bag pressure. This gives
P = B =

gq

24π2
µ4

c

⇒ µc =

[

24π2

gq

]1/4

B1/4Using this for nq, we get a ritial number density of quarks as
ncritical

q = 4
( gq

24π2

)1/4

B3/4The orresponding ritial baryon density beomes
ncritical

B =
4

3

( gq

24π2

)1/4

B3/4Again, taking only u, d �avors, we take gq = 3× 2× 2 = 12 for 3 olors, 2 spin and 2 �avors
u and d.Using B1/4 = 206 MeV we get ncritical

B = 0.72/fm3 orresponding to the ritial value ofthe hemial potential µc = 434 MeV.These values for the transition to the QGP state should be ompared with the nuleonnumber density nB = 0.14/fm3 for normal nulear matter in equilibrium.Thus, the ritial baryon density is about 5 times the normal nulear matter density.When the density of baryons exeeds this ritial density, the baryon bag pressure is notstrong enough to withstand the pressure due to the degeneray of quarks and a transitionto a new deon�ned QGP state is possible.Note that all these estimates for Tc, nc, µc, are based on the phenomenologial Bagmodel and not from detailed alulations from QCD. Suh alulation are possible fromlattie gauge theories and they show that these estimates are roughly orret.54



We are now in a position to have a rough piture of the phase diagram of stronglyinterating matter. For low temperatures T and hemial potential µb we have hadronimatter while at high temperatures and/or µb we get QGP. Later we will disuss this QCDphase diagram in more detail and disuss various interesting phases and expeted phasetransitions. At present we note that our searh for the QGP state leads us to onsider whereone an reate high temperature and/or high density matter.6 Relativisti Heavy-ion ollisionsWe will now disuss relativisti heavy-ion ollisions where suh onditions are expeted toarise [4℄. Let us �rst disuss some useful variables whih will be needed to desribe partileprodution and evolution in relativisti heavy-ion ollision experiments (RHICE). (We willreserve RHIC for the Relativisti Heavy Ion Collider at Brookhaven National Laboratory,USA).6.1 Rapidity VariableRapidity is a very useful variable to desribe partile prodution in sattering experiments.It is de�ned as
y =

1

2
ln(P0 + Pz

P0 − Pz

)

where P0 and Pz are time and z omponents of the momentum of the partile. The z-axis istypially taken along the beam diretion. Depending on the spin of Pz, y an be positive ornegative.Exerise 1 : In the non-relativisti limit the rapidity of a partile traveling in thelongitudinal diretion (we take this to be along z axis) is equal to v/C, as an be easilyheked.Exerise 2 : y depends on the referene frame in a simple manner. One an show thatunder a Lorentz transformation from the laboratory frame F to a new oordinate frame F ′moving with a veloity β in the z-diretion, the rapidity y′ of the partile in the new frame
F ′ is related to the rapidity y in the old frame F by

y′ = y − yβ where yβ =
1

2
ln

(

1 + β

1 − β

)55



yβ is alled the rapidity of the moving frame.For a free partile whih is on mass-shell, its four momentum has only three degrees offreedom and an be represented as (y, PT ), where PT is the transverse momentum (transverseto the z-axis). The z-axis will later be hosen to be along the beam diretion in RHICE.Exerise 3 : We an relate the 4-momentum: (P0, ~P ) and (y, PT ) as below. From thede�nition of rapidity, we have
ey =

√

P0 + Pz

P0 − Pz

and e−y =

√

P0 − Pz

P0 + PzAdding these equations we get
P0 = mT cosh(y)where mT is the transverse mass of the partile
m2

T = m2 + P 2
TSubtrating the above two equations gives

Pz = mT sinh(y)Thus, the information ontained in (P0, ~P ) is all ontained in (y, PT ).We saw that the rapidity of a partile in a moving frame is equal to the rapidity in thelaboratory frame minus the rapidity of the frame. This is quite like the law of addition ofveloities is Galilean relativity. Thus, it is often useful to treat the rapidity variable as aRelativisti measure of the veloity of the partile.6.2 Pseudorapidity variableTo haraterize the rapidity of a partile, it is neessary to measure two properties of thepartile, suh as its energy and its longitudinal momentum.In many experiments it is only possible to measure the angle of the deteted partilerelative to the beam axis. In that ase, it is onvenient to utilize this information by usingthe Pseudorapidity variable η to haraterize the deteted partile. η is de�ned as:
η = −ln[tan(θ/2)]56



where θ is the angle between the partile momentum ~P and the beam axis. In terms of themomentum, the pseudorapidity variable an be written as
η =

1

2
ln[ | ~P | +PZ

| ~P | −PZ

]By omparing the expression for the rapidity y, we see that η oinides with y when themomentum is large, i.e. when |~P | ≃ P0.By transforming variables from (y, PT ) to (η, PT ) we an transform rapidity distributionsand pseudorapidity distributions to eah other.6.2.1 Mandelstam variablesFor a sattering proess, AB → C D, the Mandelstam variables s, t, u are de�ned as
s = (PA + PB)2 , t = (PA − PC)2

u = (PA − PD)2

√
s is the enter of mass energy. For enter of mass(CM) frame ~PB = −~PA

s = (PA + PB)µ (PA + PB)µ

= (EA + EB)2 −
(

~PA − ~PA

)2

= 4E2 if MA = MB

⇒
√
s = 2EIf A and B have the same mass, say M , then laboratory energy Elab (where one partile isat rest) is related to ECM by

Elab =
E2

CM

2M
−MFor RHICE, M should be the mass of a single proton. Then

ECM =
√
s =

√

2M2 + 2M Elab ≃
√

2M ElabFor example: for 200 GeV Pb206 on Pb206 ollision in lab frame
ECM =

√
2 × 1GeV × 200GeV ≃ 20 GeVIn the laboratory frame muh of the energy goes in generating momenta of �nal partiles,whereas in the enter of mass frame the entire energy an be spent in reating �nal partileswhih an have even zero momenta. That is why beam-beam ollisions are preferred.57



7 Bjorken's piture of relativisti heavy-ion ollisionsBjorken gave a simple piture of QGP formation in relativisti heavy ion ollision experiments[6℄. As we mentioned earlier, at ultra-high energies the initial nuleons, ontaining the initialquarks, primarily go through eah other due to asymptoti freedom. As Lorentz ontratednulei go through eah other, the intermediate region is �lled with seondary partons that areprodued. The early evolution is dominated by longitudinal expansion. Note that the stritlylongitudinal expansion assumption is valid only for t ≪ R, the nuleus size. Overlap of thenulei is taken to be at time t = 0 in enter of mass frame. This results in a longitudinallyexpanding plasma with the �uid in the middle being at rest. Net baryon number is ontainednear the reeding nulei.At the simplest level we assume that during the ollision eah of the nuleon in onenuleus has undergone a ollision. Essentially, one an sit in the rest frame of one nuleus,and see eah nuleon being struk as the other highly Lorentz ontrated nuleus passesthrough it.Produed partons equilibrate in a ertain time sale t0 and the system thermalizes. Thevalue of t0 is extremely ruial for the estimate of the energy density and further evolution.7.1 Estimates of the entral energy densityWe will make an estimate of the energy density arising in the entral region by assumingthat partons in this region simply arise from individual nuleon - nuleon ollisions. Thatis, we just add the ontribution of all the nuleons to get the partile and energy densityin the entral region. To do that, we need to know the behavior of partile prodution inindividual nulear-nulear ollisions. The essential features of the hadron prodution in, forexample, proton-proton ollisions are the following:At high energy, (e.g. √
s ∼ 200 GeV ), there exists a `Central-Plateau' struture in thepartile density as a funtion of the rapidly variable. This entral plateau region plays aentral role in developing an elegant piture of the evolution of QGP in Bjorken's Boostinvariant hydrodynami model.We note that the rapidity variable in a moving frame y′ is related to the rapidity y inthe original frame by
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y′ = y + yframe where yframe is the frame rapidity yβ

yβ =
1

2
ln(

1 + β

1 − β
)Due to the entral plateau struture, we note that partile prodution (i.e. dNch

dy
) will appearthe same to di�erent Lorentz observers as long as y′ and y remain in `The entral rapidityregion'. In this entral rapidity region, the desription of QGP (in terms of density, et.)will be invariant under a Lorentz boost. This is alled Bjorken's Boost invariant model.Reall now the relation between (P0, ~P ) for a partile and (y, PT )

Pz = mT sinh y

m2
T = m2 + P 2

Tand P0 = mT cosh yThe veloity of the partiles in the longitudinal diretion is therefore
vz =

Pz

P0
= tanh yFor a partile starting from the origin z = 0 at t = 0 (x, y are arbitrary), we have

z

t
= vz = tanh yFrom these one an show that

z = τ sinh y and t = τ cosh ywhere τ is the (�uid) proper time variable de�ned by τ =
√
t2 − z2.Note : This is the proper time for the �uid element and not for individual partiles whihhave nonzero pT . Equivalently we an show that

y =
1

2
ln t+ z

t− z
=

1

2
ln1 + vz

1 − vz(Reall the frame rapidity)Chek:
z

τ
=
z

t

t

τ
= tanh(y)

t√
t2 − z2or z

τ
= tanh(y)

1
√

1 − z2/t259



Again
1 − z2

t2
= 1 − tanh2 y =

1

cosh y2So z

τ
=

sinh y

cosh y
cosh yor z = τ sinh(y)Clearly

t

τ
=

1
√

1 − z2/t2
= cosh yCalulate:

t+ z

t− z
=

τ(cosh y + sinh y)

τ(cosh y − sinh y)

=
ey + e−y + ey − e−y

ey + e−y − ey + e−y
=

2ey

2e−y
= e2y

⇒ y =
1

2
lnt+ z

t− z

or y =
1

2
ln1 + vz

1 − vzThis is like frame rapidity, though here we have partile veloity.7.1.1 Central rapidity regionIn the enter of mass system, the region of small rapidity is alled �The entral rapidityregion". We have z = τ sinh y ≃ τy for y ≪ 1. This means for a given proper time τ , asmall value of rapidity y is assoiated with a small value of z. Hene the entral rapidityregion is assoiated with the entral spatial region around z ∼ 0 where the nuleon-nuleonollision has taken plae.With a relation like z = τ sinh y, the rapidity distribution dN
dy

of partiles an be tran-sribed as a spatial distribution from whih the initial energy density an be inferred.It is easier to measure pseudo rapidity variable
η = −ln(tan(θ/2))For ultra relativisti partiles η ≃ y
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7.1.2 Energy density estimateIn the enter of mass frame the �uid is at rest at z = 0. The volume of the region underonsideration is S ×∆z where S is the transverse area of the Lorentz ontrated nulei. We�x our onsideration to the proper time τ0 at whih a QGP system may have formed byequilibration.So τ0 is the time at whih the initial system of quarks and gluons ahieves thermalequilibrium. It is a very important quantity for whih various estimates exist. This plays aruial role in the evolution of plasma.The number density of partiles in this region at time τ0 is
∆N

S∆z
|z=0 =

1

S

dN

dy

dy

dz
|y=0where dN

dy
refers to the observed hadrons (number of partiles) per unit rapidity. From z =

τ sinh y we have
dy

dz
|z=0 =

1

τ0 cosh y
|y=0 at τ = τ0So the number density is (at τ = τ0):

n0 =
1

S

dN

dy

1

τ0 cosh y
|y=0We have seen that the energy of a partile P0 is

P0 = mT cosh y where m2
T = m2 + p2

T

mT is the transverse mass. So the energy density at time τo is
ǫ0 = ρ0 n0 =

mT

Sτ0

dN

dy
|y=0This estimate was �rst given by Bjorken. Here one an either estimate dN

dy
by ombining theexpeted dN

dy
resulting from eah nulear-nulear ollision, or, one an take dN

dy
|y=0 from someexperiment and from that dedue ǫ0 at time τ0. From that estimate one an then deidewhether a QGP state is expeted to have formed at τ0 (i.e. if ǫ0 > 2.5GeV/fm3 from thebag model, for example).Estimates of τ0 range from those based on ross-setion alulations to those oming fromMonte-Carlo simulations. It is expeted that for ollision at higher enter of mass energy τ0will be smaller. 61



For SPS experiment at CERN in the ollision of 16O on Au at 200 GeV (Lab frame)
dNch

dη

(

∼ same asdNch

dy

)

≃ 160Various estimates give τ0 ∼ 0.4 fm for these energies and mT ≃ 400 MeV. Then
ǫ0 ≃

0.4GeV (×160)

0.4 fm SFor a nuleus of mass number A the radius is given by
r ≃ 1.2A1/3fmSo area S = (1.2)2A2/3 fm2.Putting this value we get

ǫ0 ∼ 3 − 4GeV/fm3This energy is high enough that we expet that QGP may have formed. Now one seesthe importane of τ0.If τ0 is larger by a fator 3, say τ0 ∼ 1.2fm, then ǫ0 ∼ 1GeV/fm3 and one does notexpet QGP.7.2 Evolution of QGPBjorken's piture respets boost invariane for boosts along the z axis. So physial quantitiesshould depend only on proper time τ . That is, we say that the energy density ǫ(τ) has avalue ǫ0 at τ = τ0.Reall that τ =
√
t2 − z2So a given τ0 is ahieved at di�erent values of t at di�erent z (where t is the laboratorytime, or the proper time measured at z = 0).We an then write down a piture of the evolution of QGP in Bjorken's model. The QGPis modeled as an ideal �uid with 4-veloity uµ (uµu

µ = 1). The energy momentum tensor is
Tµν = (ǫ+ P )uµuν − gµνPwhere ǫ=ǫ(τ) and P = P (τ) are the energy density and pressure (they only depend on τ).The energy-momentum onservation equation is (negleting e�ets of visosity),62



∂Tµν

∂xµ

= 0With initial onditions ǫ(τ0) = ǫ0, and uµ(τ0) = 1
τ0

(t, 0, 0, z)Exerise: Show that the energy density evolves as
dǫ

dτ
= −ǫ+ P

τUsing the relation P = ǫ
3
we get ǫ(τ) ∼ τ−4/3 and using ideal gas equation T (τ) ∼ τ−1/3.Further, one an show that

d

dτ

(

dS

dy

)

= 0where ds
dy

is the entropy per unit rapidity whih is onstant under evolution.As the QGP system expands, it ools and eventually hadronizes at τ = τh when itstemperature falls below the quark-hadron transition temperature Tc (present lattie estimatessuggest a value of about 170 MeV for Tc). Note that we only get hadrons from the freezeout surfae, i.e. after the proper time when hadrons stop interating. From these hadronswe have to dedue about the transient stage of QGP between τ0 < τ < τh. This is almostlike looking at osmi mirowave bakground photons from the surfae of last sattering. Wehave to dedue what happened at in�ation, et. from these photons.This brings us to the issue of signals of QGP.8 QGP SignalsWe need signals of the intermediate, transient stage of QGP. This an only be in terms ofsome speial properties of the �nally deteted partiles [4℄.We will disuss some important signals whih have been proposed for the detetion ofQGP.8.1 Prodution of Dileptons and photons in QGP
qq → γ∗ → l+l− (Drell - Yan proess)63



The lepton ross-setion with quarks in the QGP is eletromagneti ∼
(

α√
s

)2 (with
α = 1

137
and √

s the enter of mass energy) and is muh smaller than the strong ross-setion. Therefore leptons after prodution do not further interat with QGP and diretlyreah the detetor.On the other hand, the prodution rate and the momentum distribution of the produed
l+l− pairs depend on the momentum distribution of quarks and antiquarks in the plasma,whih are governed by the thermodynami ondition of the plasma. Therefore, l+ l− pairsarry information on the thermodynami state of the medium at the moment of their pro-dution and an help us to detet whether a QGP state has been ahieved.Suh prodution also happens by hadroni interation. So, one needs to alulate allontributions and then ompare with the data.Photon prodution:

q + q → γ + g

qq → γγ has a smaller ross-setion ompared to qq → γg by a fator (αe

αs

).Detetion of the photon has exatly similar information as Dileptons beause photonsalso do not further interat with the QGP after their prodution.8.2 J/ψ Suppression
J/ψ partile is a bound state of cc quark-antiquark system (Charmonium states). As the cquark is heavy, the bound state has a small radius. (Reall mc ∼ 1.3 GeV.)These Charmonium states are well desribed by a potential model where the potentialbetween c and c is taken as

V (r) = −αeff

r
+KrFitting with cc states gives αeff = 0.52, K = 0.926 GeV/fm with mc = 1.84 GeV. When thesestates are formed during the early stages of ollision, then they have to survive through aQGP state if they have to be �nally deteted.We know that quarks are not on�ned in the QGP phase so all hadrons should disappear.But that depends on the temperature sale of the QGP and the time available before theQGP hadronizes. 64



In the QGP phase the QCD string disappears so there is no Kr term in V (r). Howeverthe Coulomb part ould still let cc system remain bound. However, this Coulomb interationis modi�ed beause of Debye sreening of harges in the plasma
V (r) ∼ e−r/λd

rwhere λd is the Debye sreening length.If λd < rbound where rbound is the bound state size for the cc state, then the Coulombattrative part between the cc pair is also seriously modi�ed. (Reall that the Kr part hasanyway disappeared due to the QGP.) In that ase the cc state will melt away. This willlead to the suppression of J/ψ prodution.Note : If the QGP never forms then this suppression mehanisms will not be operativeand one should expet a larger number of J/ψ partiles.Also for lighter mesons (made up of u, d, s) this type of signal an not be used sinethey are abundantly produed in thermal proesses near T ∼ Tc. The cc are too heavy tobe produed like that.8.3 Ellipti FlowThis signal has yielded very useful and surprising information about the equation of state ofmatter ahieved at RHIC showing that it is like an ideal liquid.For non entral ollisions with non zero impat parameter, one gets a QGP formed whihis not spherial but has an ellipsoidal shape. After thermalization there is some entralpressure while P = 0 outside the QGP region.Clearly the pressure gradient is larger along smaller dimension of the ellipsoid. Thisfores the plasma to undergo hydrodynami expansion at a faster rate in that diretionompared to the other (transverse) diretion. Thus partiles produed have larger momentumin that diretion than in the other diretion. In other words, the spatial anisotropy getstransferred to the momentum anisotropy due to hydrodynamial �ow. This learly dependsruially on the equation of state relating pressure to energy density. Thus, the observedmomentum anisotropy of partile distribution an be used to extrat useful informationabout hydrodynami �ow at very early stages probing diretly the equation of state of theQGP. 65



If thermalization is delayed by a time ∆τ , any ellipti �ow would have to buildon a redued spatial deformation and would ome out smaller.The data seems to be in very good agreement with the predition of ideal �uid hydrody-namis pointing to a very low visosity of the QGP produed. The QGP does not behave asa weekly interating quark-gluon gas as suggested by naive perturbation theory, nor does itbehave like visous honey (as suggested by some alulations). This is termed as sQGP :Strongly Coupled QGP, with a strong non-perturbative interation.9 Phase TransitionsNote that the signals disussed above depend on the existene of the QGP phase. We knowthat as the QGP expands it undergoes a phase transition to the hadroni phase (quark-hadron phase transition). Suh a phase transition an have its own interesting signatures onthe �nal partile (hadron) distribution. For suh signals we should understand the nature ofthe phase transition expeted as the QGP hadronizes.From the partition funtion we get the free energy:
F = −T lnZ. Now we onsider di�erent types of phase transitions.9.1 First order phase transitionHere the free energy F is ontinuous but ∂F

∂T
is disontinuous. Reall that

F = E − TS, S =
∂F

∂T

ǫ =
E

V
=
F + T ∂F

∂T

VAs F is ontinuous but ∂F
∂T

is disontinuous, we onlude that the energy density ǫ is dison-tinuous as a funtion of temperature during a �rst order phase transition. The di�erene ofthe energy density ǫ at the disontinuity gives the value of the latent heat.66



9.2 Seond order phase transitionHere the free energy F and ∂F/∂T are ontinuous while ∂2F/∂T 2 is disontinuous (or diver-gent) at T . Beause the spei� heat at onstant volume is related to ∂E
∂T

or ∂2F
∂T 2 , a seondorder phase transition is haraterized by a ontinuous free energy and energy density but adisontinuous (or divergent) spei� heat at onstant volume.Seond order transitions are also alled as ontinuous phase transition. Here the orderparameter goes to zero ontinuously as T → TC , the phase transition temperature. Inontrast, the order parameter hanges disontinuously as T → TC for a �rst order transition.9.3 Order ParameterThe order parameter is a quantity (thermodynami variable) whih is typially zero in onephase, the disordered phase whih has higher symmetry, and is non-zero in the ordered phasehaving lower symmetry. (It may happen that the symmetry does not hange during a phasetransition, as in a liquid-gas transition.)The free energy density plot for a seond order phase transition has minimum of the freeenergy at zero order parameter for T > TC while for T < TC the minimum of the free energyshifts ontinuously away from the zero order parameter value. An example is given by thefollowing free energy density,

F = −aφ2 + bφ4, where a < 0 for T > TC while a > 0 for T < TC .For a �rst order transition the order parameter hanges disontinuously through TC .Here the transition proeeds via bubble nuleation. Following gives an example of freeenergy density for this ase
F = aφ2 + bφ3 + cφ4where a, c > 0 and b hanges sign through TC , being positive for high T .
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9.4 Landau Theory of Phase TransitionThis is a phenomenologial theory. This postulates that one an write down a funtion Lknown as the Landau free energy whih depends on the oupling onstants Ki and the orderparameter η. L has the property that the state of the system is spei�ed by the absolute(i.e. global) minimum of L w.r.t. η. L has dimensions of energy, and is related to the Gibbsfree energy of the system. Importantly it is NOT the same as Gibbs free energy, hene thereis no requirement for it to be onvex funtion of the order parameter.We assume that thermodynami funtions of state an be omputed by di�erentiating L,as if it were indeed the Gibbs free energy.To speify L it is su�ient to use the following onstraints on L (it is not ertain whetherall these are neessary).1) L has to be onsistent with the symmetries of the system.2) Near TC , L an be expanded in a power series in η i.e., L is an analyti funtion ofboth η and the parameters [K]. In a spatially uniform system of volume V , one an expressthe Landau free energy density L as:
L =

L

V
=

∞
∑

n=0

an([K], T )ηn3) In an inhomogeneous system, with a spatially varying order parameter pro�le η(r), L is aloal funtion, i.e. it depends only on η(r) and a �nite number of derivatives.4) In the disordered phase of the system, the order parameter η = 0, while it is small andnon-zero in the ordered phase, near to the transition point. Thus, for T > TC , η = 0 solvesthe minimum equation for L; for T < TC , η 6= 0 solves the minimum equation. Thus, for ahomogeneous system:
L =

4
∑

n=0

an([K], T )ηnwhere we have expanded L to O(η4) in the expetation that η is small, and all the essentialphysis near TC appears at this order. Whether or not the trunation of the power seriesfor L is valid will turn out to depend on both the dimensionality of the system and the odimension of the singular point of interest.
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9.5 Constrution of LConsider
∂L

∂η
= a1 + 2a2η + 3a3η

2 + 4a4η
3 = 0Sine for T > TC , η = 0, a1 = 0Note: This is not true when the symmetry is also broken expliitly in whih ase theorder parameter never ompletely vanishes.If η → −η is a symmetry of the free energy; then a3 = a5 = a7 = .. = 0. So

L = a0([k], T ) + a2([K], T )η2 + a4([K], T )η4Note that the requirement that L be analyti in η preludes terms like |η| in L. Also notethat �niteness of L requires a4 > 0.Coe�ients an([K], T ) :
a0([K], T ) is simply the value of L in the high temperature phase, and we expet it tovary smoothly through TC . It represents the degrees of freedom in the system whih arenot desribed by the order parameter, and so may be thought of as the smooth bakground,on whih the singular behavior is superimposed. It may be said that L − a0 represents thehange in the Gibbs free energy due to the presene of the ordered state, apart from the fatthat L is not exatly the Gibbs free energy.For disussing the order parameter, one may set a0 = 0.We expand a2 and a4 as

a4 = a0
4 + (T − TC)a1

4 + ...It will be su�ient to just take a4 to be a positive onstant. The temperature dependeneof this equation will turn out not to dominate the leading behavior of the thermodynamisnear TC .
a2 = a0

2 +

(

T − TC

TC

)

a1
2 + 0

(

(T − TC)2
)Continuous phase transition:

L = atη2 + bη4

t =
T − TC

TC69



First order transition:
L = atη2 + bη4 − cη39.6 Con�nement-deon�nement transitionConsider the ase of SU(3) gauge theory at �nite temperature without dynamial quarks.We will alulate the free energy for this system with a single, in�nitely heavy, test quark atposition r0. (In this setion we follow the disussion in ref. [7℄.) We start with the evolutionequation for the �eld operator ψ(r0, t) of this stati quark (suppressing the olor label),

(

−i ∂
∂t

− gA0(r0, t)

)

ψ(r0, t) = 0where A0 ≡ T.A0 (see Set. 2.3.1). This equation gives
ψ(r0, t) = T exp(ig

∫ t

0

dt′A0(r0, t
′))ψ(r0, 0).Here T denotes time ordering. Now, the partition funtion for this system is given by

Z = e−βF (r0) =
1

N

∑

s

< s|e−βH |s >where the 1/N fator (N = 3 for QCD is the number of olors) is introdued to ompensatefor the olor degeneray fator for the stati quark, and the sum is over all the states of thesystem with the in�nitely heavy quark at r0. Using the quark �eld operator ψ(r0, t), we anwrite it as
e−βF (r0) =

1

N

∑

sg

< sg|ψ(r0, 0)e−βHψ†(r0, 0)|sg >where, now, the sum is over all states |sg > with no quarks, that is, over states of pure gluetheory.Reall, from Set. 4.1, for Eulidean time t,
eβHψ(r0, 0)e−βH = ψ(r0, β)Thus, we get 70



e−βF (r0) =
1

N

∑

sg

< sg|e−βHψ(r0, β)ψ†(r0, 0)|sg >We introdue the Wilson line,
L(r) =

1

N
TrT exp(ig

∫ β

0

dtA0(r0, t)).With this, using the solution ψ(r0, t) of the time evolution equation above, and theequal time anti-ommutation relation of the fermion �elds (with disrete spae labeling, forsimpliity), we an write
e−βF (r0) = Tr [e−βHL(r0)]where the trae is over all states of the pure glue theory. Dividing this by the free energywithout any heavy fermion, we get the di�erene in the free energy, ∆Fq, due to introdutionof the in�nitely heavy quark at r0 as
e−β∆Fq =< L(r0) >where < .. > denotes the thermal expetation value.Reall that A0(r0, t) must be periodi in the Eulidean time t.

A0(r0, 0) = A0(r0, β)Thus the dt integral in the expression for the Wilson line is atually a loop integral. This isalso alled as the `Polyakov Loop'.
〈L(r0)〉 is an order parameter for the on�nement - deon�nement phase transitionCon�ning phase:We expet the free energy with an isolated quark to divergei, i.e., ∆F = ∞ ⇒< L >= 0.Deon�ning phase:Here isolated quarks an exist, leading to a �nite hange in the free energy w.r.t. thepure glue bakground, i.e., ∆F is �nite ⇒< L >= e−β∆F 6= 0.Thus < L > is an order parameter for the deon�nement - on�nement (D-C) phasetransition. 71



9.7 D-C transition as a symmetry breaking transitionReall the gauge transformation,
Aµ → UAµU

−1 + iU∂µU
−1

U(x, t) ∈ SU(N)

where Aµ ≃ Aµ
λa

2Under the gauge transformation,
L ∼ Tr [T exp

(

ig

∫ β

0

dτA0(x, τ)

)]

≃ TrΩ(x)will transform as
L(x) → TrU(x, β)Ω(x)U †(x, 0)This an be heked by expanding the time ordered exponential. Thus L is invariant when

U is periodi,
U(x, 0) = U(x, β)(using the yli property of the trae).However, we note that the Eulidean ation

SF =
1

4

∫

d3x dτ F a
µν F

aµνis in fat invariant under a larger group than the periodi gauge transformations. Theonly physially important onstraint is that Aµ (~x, t) remain periodi in τ when gaugetransformed. Consider, e.g.,
Aµ(x, 0) = Aµ(x, β)Under a gauge transformation

A′
µ(x, 0) = U(x, τ)Aµ(x, 0)U−1(x, τ) + iU(x, τ)∂µU

−1(x, τ)|τ=072



Similarly,
A′

µ(x, β) = U(x, τ)Aµ(x, β)U−1(x, τ) + iU(x, τ)∂µU
−1(x, τ)|τ=βor,

A′
µ(x, β) = U(x, τ)Aµ(x, 0)U−1(x, τ) + iU(x, τ)∂µU

−1(x, τ)|τ=βFirst take U(x, β) = U(x, 0) due to the identi�ation of points τ = 0 and τ = β. Then,
A′

µ(x, β) = U(x, τ)Aµ(x, 0)U−1(x, τ) + iU(x, τ)∂µU
−1(x, τ)|τ=0

= A′
µ(x, 0)Hene A′

µ also remains periodi and hene single valued.Now note that in the above argument we ould take
U(x, β) = ZU(x, 0)where Z ∈ SU(3) (or Z ∈ SU(N) in general) suh that Z U = U Z for every U ∈ SU(N)(so that U AU−1 → Z U AU−1Z−1 = U AU−1) and Z is spae time independent.Thus, as long as Z ommutes with every element of SU(N), Aµ

′ remains periodi in τ if
Aµ is.Elements Z onstitute the enter of SU(N) by de�nition

Z = exp(2π i n

N

)

∈ Z(N)where Z(N) is the yli group of order N and n = 1, 2...N , n = N being the identity of
SU(N).Note that DetZ = exp

(

2πin

N
×N

)

= 1So Z ∈ SU(N) (learly Z†Z = 1).For QCD we have
Z ∈ Z373



Thus, we onlude that �nite temperature SU(N) gauge theory (Eulidean ation) has ZNsymmetry (Z3 for QCD) as the Eulidean ation (or the partition funtion and hene thefree energy) is invariant under ZN transformations of the basi variables Aµ(x).(Quarks break this ZN symmetry expliitly beause fermions obey an antiperiodi bound-ary ondition ψ(x, β) = −ψ(x, 0).)Though the Eulidean ation is invariant under this extra ZN transformations, the orderparameter L(x) is not. Reall that
L(x) = Tr( T exp

[

ig

∫ β

0

dτA0(x, τ)

])

≡ TrΩ(x).Under gauge transformation U(x, τ) we have
L(x) → L′(x) = Tr[U(x, β)Ω(x)U−1(x, 0)].If U(x, β) = Z U(x, 0), we get

L′(x) = Z Tr[U(x, 0)Ω(x)U−1(x, 0)] = Z Tr Ω(x) = Z L(x)So, while under periodi gauge transformation, L → L, under an aperiodi gauge transfor-mation U(x, β) = ZU(x, 0)

L→ Z L where Z ∈ Z3Con�ning Phase:With < L >= 0 (orresponding to e−β∆F ,∆F = ∞), the system respets Z3 symmetryas < L >= 0 is invariant under L → Z L transformation.Deon�ning Phase:With < L > 6= 0, the system is NOT invariant under Z3 transformation. There are 3equivalent phases haraterized by < L >, < Z L >, and < Z2 L > whih all orrespond tophysially the same deon�ning phase. We onlude that in the deon�ning phase the Z3symmetry is spontaneously broken.Here the symmetry restored phase is the low temperature on�ning phase. This is inontrat to most ases, where the symmetry restoration happens in the high temperaturephase.The symmetries of the order parameter an be used to haraterize the phase transitionin the Ginzburg-Landau approah. 74



The order parameter for SU(2) gauge theory has the same symmetry as the Ising modelwhih has a global Z2 symmetry. In 3 + 1 dimensions,the Ising model undergoes a seondorder transition. Hene we expet that SU(2) gauge theory exhibits a seond order transition.Similarly, Z(3) spin models in 3 + 1 dimensions display a �rst order transition. Hene weexpet that pure SU(3) QCD will give a �rst order transition. Lattie alulations on�rmthese expetations.Clearly, for QCD, L3 → Z3L3 = L3.Thus, in the onstrution of L and free energy, one an write down
V (L) = a|L|2 + b|L|4 + C(L3 + L∗3)The L3 term makes the transition �rst order.Note : For SU(2) gauge theory this term annot be written down. One an write downa term Re L2 whih makes the transition seond order.9.8 Con�nement - Deon�nement transition with dynamial quarksAs mentioned above, with quarks, Z(N) symmetry is broken expliitly (similar to expli-itly breaking of hiral symmetry, in some sense.) < L > is non-zero even in the on�nedphase. The on�nment-deon�nement transition whih is �rst order for pure gauge theory,is smoothed into a ross-over when light quarks are present. Lattie results seem to suggestno �rst order transition.An important point to note is that with quarks, no appropriate order parameter is known.In losing we mention that in disussing di�erent phase transitions in QCD one is invari-ably in the non-perturbative regime, where reliable alulations annot be performed. Heneone either has to do lattie alulations, or use e�etive models using symmetry onsidera-tions (as we did above for the D-C transition).Thus, many theoretial disussions about the nature of the phase transition in QCD arebased on the Landau theory of phase transitions. In addition, one may use Random Matrixmodels or spei� e�etive models.
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