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1 Introdu
tionThe physi
s of the Quark Gluon Plasma (QGP) is being a
tively investigated presentlytheoreti
ally as well as experimentally. The motivation for this 
omes from the 
osmosas well as from attempts to understand the phase diagram of strongly intera
ting matter.The universe 
onsisted of quark-gluon plasma during the early stages when the age of theuniverse was less than a few mi
rose
onds. It is also believed that the 
ores of various 
ompa
tastrophysi
al obje
ts, e.g. neutron stars, may be in the QGP phase. Laboratory experiments
onsisting of 
ollision of heavy nu
lei at ultra-relativisti
 energies are being 
arried out inan attempt to 
reate a transient phase of QGP in tiny regions of spa
e. These le
tures willprovide an overall pi
ture of QGP starting with a basi
 understanding of Quantum ChromoDynami
s (QCD) whi
h is the theory of strong intera
tions. Let us start by re
alling thefour basi
 intera
tions: Ele
tromagneti
, Weak, Strong, and Gravity. We know that the�rst two of these are uni�ed into �Ele
troweak Intera
tion�. There are attempts to unify theele
troweak and strong intera
tions into an, as yet unknown, Grand Uni�ed Theory (GUT).Uni�
ation of all the four basi
 for
es is attempted in String Theories. How well do weunderstand these for
es individually?Ele
tromagneti
: The 
omplete theory of Ele
tromagnetism is provided by QuantumEle
trodynami
s (QED). This theory is well understood and its predi
tions have been veri�edin experiments with very high a

ura
y.Ele
troweak Theory: Of 
ourse, the 
omplete theory of Ele
tromagnetism is givenonly when uni�ed with weak intera
tions. Ele
troweak theory is also well understood, and itspredi
tions are veri�ed in experiments. One major �missing part� of the theory is the Higgsboson whi
h plays a 
ru
ial role in the formulation of the theory (spontaneous symmetrybreaking leading to massive W and Z bosons whi
h are responsible for the �weakness� of theweak for
e).At the present stage this is an experimental problem only. Properties of the Higgsparti
le are predi
ted by the theory (expe
ted mass range, et
.) and it is hoped that at theup
oming Large Hadron Collider (LHC) one may be able to dete
t it. If the Higgs parti
leis not dete
ted at LHC, it will open up mu
h ground for theoreti
al work as theories beyondthe standard model will have to be explored.
5



Gravity: Gravitational intera
tions are very well understood at the 
lassi
al level interms of Einstein's general theory of relativity. However, at present there is no theory ofQuantum Gravity. There are various attempts towards Quantum Gravity. The most popularapproa
h is in terms of String Theories. There are other approa
hes within 
onventionalframeworks, e.g. using 
anoni
al quantization (Loop Quantum Gravity) et
.Strong Intera
tions: Let us now dis
uss strong intera
tions whi
h will be the subje
tof these Le
tures. The theory for strong intera
tions is believed to be �Quantum ChromoDynami
s� (QCD). The basi
 ingredients for QCD were proposed by studying properties ofhadrons whi
h are supposed to be made up of the basi
 degrees of freedom in QCD, namelyquarks. Intera
tions between quarks are mediated by gluons (in the same way as photonsmediate intera
tion between ele
trons).Theoreti
al investigations of QCD show a remarkable property of strong intera
tions.At very high energies, the strength of the intera
tion between quarks be
omes smaller. Inother words, the e�e
tive 
oupling 
onstant of strong intera
tions be
omes smaller at largeenergies, eventually approa
hing zero. This is known as �asymptoti
 freedom�. This behavioris the opposite of the behavior in QED where the 
oupling 
onstant in
reases with energy.Asymptoti
 freedom (for whi
h there was already eviden
e from deep inelasti
 s
atteringexperiments) is well tested in experiments to a high a

ura
y. However the understandingof QCD in the domain of low energy remains poor. This is the domain where hadrons form,and quarks are 
on�ned in these hadrons. Re
all, it was the study of these hadrons whi
hled to the formulation of QCD.Apart from this �
on�nement� there is another domain where QCD is not well understood.This is the domain of high temperature and high density matter. From the theoreti
al sideit is expe
ted, based on asymptoti
 freedom, that at high temperatures the intera
tionsbetween quarks will be
ome weak. Does that mean we should get an ideal gas of quarks andgluons at high temperatures?Some of these questions led to the sear
h for the so 
alled �Quark Gluon Plasma� phase ofQCD. From general physi
al arguments one expe
ts that at su�
iently high temperatures (at
T > Tc ∼ 170 MeV, the de
on�nement temperature) and densities, quarks and gluons are nomore 
on�ned. Essentially at su
h high temperatures and/or densities, one has overlappinghadrons, so it makes no sense to talk about quarks and gluons 
on�ned inside individualhadrons.However, it should be 
lear that at high T or high density ρ, one is inevitably dealing with6



many body e�e
ts. Here the understanding obtained from deep inelasti
 s
attering experi-ments may not be dire
tly appli
able. Also, it appears that the intera
tions between partonsare not weak at temperatures a
hievable in laboratory (in relativisti
 heavy ion 
ollisions).At present, we also do not have theoreti
al tools to properly analyze the behavior of QCDin these domains using analyti
 
al
ulations (ex
ept possibly at ultra high temperatures).Latti
e QCD is the only theoreti
al tool we know for understanding this domain. Results sofar lead to interesting behavior of quarks and gluons in this QGP phase.A dire
t motivation for understanding this high T , ρ domain 
omes from 
osmologyand astrophysi
s. In the standard Big Bang theory of the universe, the temperature of theuniverse was very high initially. When the age of the universe was less than 10−6 se
, itstemperature was higher than about 200 MeV. So we expe
t that the universe was �lled withQGP at those early times. To understand the evolution of the universe at those early timesone must understand the properties of the QGP phase at high T . Further expansion and
ooling of the universe 
onverts QGP to hadrons. This is expe
ted to be a phase transition(or, more likely, a 
ross over) at a 
riti
al temperature of about 170 MeV. If it is a �rst ordertransition then it 
ould have 
onsequen
es for di�erent primordial element abundan
es inthe universe.In the present day universe, there are heavy and superdense obje
ts known as neutronstars. These form at the end of fusion rea
tion 
hains of regular stars whi
h undergo super-nova explosion. The mass density in a neutron star is about 1014 gm/cm3. At the 
enter ofthese neutron stars the density may be even higher, of the order of several times the nu
leardensity. It is expe
ted that in the 
ores of neutron stars hadrons (neutrons/protons) may be
losely pa
ked so that quarks and gluons may be no more 
on�ned, leading to high density(not high temperature) QGP. Various properties of neutron stars (maximum mass, spin,et
.) depend 
ru
ially on the properties of this type of 
ore.All of these are theoreti
al 
onsideration. Even neutron stars are a

essible only throughindire
t observations. The universe at the age of less than 10−6 se
 is in the past and noexperiments are possible for that. So, how do we test our theoreti
al modeling of QGP athigh T and/or high ρ whi
h is relevant for these 
ases?Relativisti
 heavy ion 
ollisions allow us the possibility for doing this. For example, at theRelativisti
 Heavy Ion Collider (RHIC), at Brookhaven, USA, beams of Au-Au are 
ollidedat 200 GeV per nu
leon pair 
enter of mass energy. We �rst dis
uss, brie�y, the physi
s ofthese experiments - a detailed dis
ussion will be provided later. As the nu
lei are a

eleratedto very high energies, spheri
al nu
lei get Lorentz 
ontra
ted. (Note that Lorentz fa
tor ∼7



100 but the Lorentz 
ontra
ted width is not less than 1 fm due to quantum e�e
ts.) At su
hhigh energies nu
lei, or even protons and neutrons for that matter, lose their identity and theintera
tion between nu
lei be
omes e�e
tively quark-quark intera
tions. Due to asymptoti
freedom, this intera
tion is also weak, so most of the quarks go through ea
h other, 
reatingse
ondary partons in the middle. The density of these se
ondary partons grows due tomultiple s
atterings and the system thermalizes. This 
entral thermalized system 
ools asit expands. If its initial temperature is above 200 MeV, we expe
t that it should be in anequilibrated QGP state. On subsequent expansion it should undergo a phase transition to ahadroni
 system.Note that the resulting system is just like what was present in the early universe (apartfrom some di�eren
es like expansion rate, et
.). Thus investigation of this system allows usto probe a part of the early history of our universe.Experiments at lower energies (AGS and future GSI experiments in Germany) lead tohigher baryon densities in the 
enter (as the quark-quark intera
tion is stronger at lowerenergies), though lower temperature. This matter is similar to neutron star 
ore matter and
ould help us in understanding this domain of QCD.Above all, studying the 
reation of QGP and the subsequent phase transition to hadronshelps us in better understanding 
on�ning for
es between quarks be
ause the pro
ess ofhadron formation at the transition stage depends 
ru
ially on that.We will dis
uss these relativisti
 heavy-in 
ollision experiments in these le
tures. Throughthese experiments we 
an probe di�erent parts of the QCD phase diagram. The phaseboundaries in the QCD phase diagram are obtained from several symmetry arguments, or ine�e
tive low energy models. Latti
e 
al
ulation also give us some handle on these (espe
iallyfor zero or small baryon 
hemi
al potential).The plan of the le
tures is as follows. First we will provide a general introdu
tion to QCDleading to the 
on
ept of asymptoti
 freedom and running 
oupling 
onstant [1℄. Sin
e thewhole dis
ussion is based on QCD, we will dis
uss important aspe
ts of QCD in
luding itsbasi
 stru
ture in detail. Then we will sket
h steps to give the basi
 idea of running 
oupling
onstant and asymptoti
 freedom for QCD.Next we dis
uss the predi
tion of QGP phase of QCD [2, 3℄. We will see how generalarguments lead us to the predi
tion of QGP phase of QCD. We will dis
uss arguments basedon running 
oupling 
onstant as well as more detailed ones based on the Bag model ofhadrons leading to the expe
tation that QGP phase should exist at high temperature as well8



as high density.Following this we will dis
uss QGP formation and evolution in relativisti
 heavy-ion
ollisions [4℄. We will dis
uss the Bjorken pi
ture for the evolution and various signals ofQGP [6℄. We will then dis
uss various topi
s su
h as the 
on�nement-de
on�nement phasetransition, et
.2 QCDOur approa
h will not be histori
al. We will list the requirements, from experimentaleviden
e, for the theory of strong intera
tions and then argue that QCD satis�es theserequirements.2.1 Basi
 
ontents1. We know that there are six quarks.
( ud ) , ( 
s ) , ( tb )

u, c, t quarks have 
harges +2
3
e while d, s, b have 
harges −1

3
e.Quark masses Current quark mass Constituent quark massd 15 MeV 330 MeVu 7 MeV 330 MeVs 200 MeV 500 MeV
 1.3 GeV 1.5 GeVb 4.8 GeV 5 Gevt 170 GeV -Note: no free quarks are seen, and we do not list 
onstituent quark mass for t quarkas no hadrons involving t quark are known yet. The 
urrent quark mass is what goesin the QCD Lagrangian. The Constituent quark mass tells us how the quark behaveinside hadrons (i.e, it a

ounts for the 
on�ning for
es)9



2. Quarks are spin 1/2 fermions and have an internal quantum number 
alled 
olor.Hadron spe
tros
opy tells that there are 3 
olors for ea
h quark and that hadrons are
olor singlets (the 
olor wave fun
tion is totally antisymmetri
). This is known as 
olor
on�nement and is required by the fa
t that no isolated quarks are observed. Theyonly appear inside hadrons. There are two types of hadrons made up of quarks.Mesons : qq̄ systems, Baryons : qqq systems, and their antiparti
les.With the above quark 
ontent, we need an intera
tion between quarks with the follow-ing properties:3. The intera
tion should lead to 
olor 
on�nement. Thus the intera
tion should 
orre-spond to the 
olor 
harges of quarks. Following su

ess of QED, we want to 
onstru
ta �gauge theory� of 
olor intera
tion.4. Deep-inelasti
 s
attering of leptons with nu
leons shows Bjorken s
aling whi
h showsthat at short distan
es quarks are almost free: this is the `asymptoti
 freedom'. Thus,we need a theory where the 
oupling 
onstant be
omes small at large energies. In4 dimensions, only Yang-Mills theories show this type of behavior. These are gaugetheories with a non-Abelian gauge group.Combining the requirement of 
olor 
harge intera
tion (with 3 di�erent 
olors), we
ome to a theory of strong intera
tions based on the SU(3) 
olor gauge group. This is
alled Quantum Chromo Dynami
s (QCD) and is believed to be the 
orre
t theory ofstrong intera
tion.To understand this theory, we will �rst re
all basi
s of QED whi
h is a gauge theorybased on the Abelian gauge group U(1). We will then generalize the 
onstru
tion toQCD.2.2 QEDFirst re
all the Lagrangian for a free ele
tron �eld ψ(x)

L0 = ψ(x)(iγµ∂µ −m)ψ(x)

10



L0 has a global U(1) symmetry under the transformation
ψ(x) → ψ′(x) = e−iαψ(x)

ψ(x) → ψ
′
(x) = eiαψ(x)Here α is the parameter of the symmetry transformation. α is independent of x and t andhen
e it is 
alled a global symmetry transformation. We generalize this symmetry to a lo
algauge symmetry when α depends on x and t, so α → α(x). Note:The motivation for this issimply that we know this way we 
an write down theory of ele
tromagneti
 intera
tions of
harged parti
les.With α→ α(x) one says that the symmetry is gauged. So, now we 
onsider the followingtransformation

ψ(x) → ψ′(x) = e−i α(x)ψ(x)

ψ̄(x) → ψ̄′(x) = eiα(x)ψ̄(x)With L0 = ψ̄(x)(iγµ∂µ −m)ψ(x) we see that mψ̄ψ term is invariant under this trans-formation, but the derivative term is not invariant.
ψ̄(x)∂µψ(x) → ψ̄′(x)∂µψ

′(x)

= ψ̄(x)eiα(x)∂µ

(

e−iα(x)ψ(x)
)

= ψ̄(x)∂µψ(x) − iψ(x) (∂µα(x))ψ(x)The se
ond term on the r.h.s. spoils the invarian
e. If instead of ψ(x) ∂µ ψ(x), we had aterm ψ(x)Dµ ψ(x) where Dµ ψ(x) has simple transformation rule
Dµψ(x) → [Dµψ(x)]′ = e−iα(x)Dµψ(x)(i.e. Dµψ(x) transforms in the same way as ψ(x)), then ψ(x) Dµ ψ(x) will be gauge invariant.

Dµψ(x) is 
alled the gauge-
ovariant derivative (or simply 
ovariant derivative) of ψ(x).One 
an realize this requirement of Dµψ(x) by enlarging the theory by in
luding a newve
tor �eld Aµ(x), the gauge �eld. With this,
Dµψ(x) = (∂µ + ieAµ)ψ(x)(where e is a parameter whi
h is identi�ed with the ele
tri
 
hange) One 
an easily 
he
kthat the requirement

[Dµψ(x)]′ = e−iα(x)Dµ(x)ψ(x)11



implies the following transformation property for the gauge �eld:
A′

µ(x) = Aµ(x) +
1

e
∂µα(x)With Aµ transforming like this, the derivative term be
omes invariant

ψiγµ (∂µ + ieAµ)ψ → ψ
′
iγµ
(

∂µ + ieA′
µ

)

ψ′

= ψeiα(x)iγµ (∂µ + ieAµ + i∂µα(x)) eiα(x)ψ(x)

= ψiγµ (∂µ + ieAµ)ψ(x)Thus, the extra term from gauge transformation of Aµ pre
isely 
an
els the extra term when
∂µ a
ts on e−iα(x)ψ(x). This will be important when we dis
uss QCD. Our Lagrangian L0
hanges now to

L = ψiγµ (∂µ + ieAµ)ψ −mψψ

Aµ is the gauge �eld for E.M. intera
tion. To in
lude dynami
s of Aµ, we add
LA = −1

4
FµνF

µν , F µν = ∂µAν − ∂νAµThis leads to the Maxwell equations. With -1
4
normalization one gets the equation

∂µF
µν = −Jµwhere Jµ = eψγµψ is the matter 
urrent. One 
an easily 
he
k dire
tly that F µν is gaugeinvariant.Exer
ise: Che
k

[DµDν −DνDµ]ψ = ieFµνψ(This equation has a ni
e geometri
 meaning in terms of 
urvature.)Using this and the transformation property of Dνψ one 
an show that Fµν is gaugeinvariant. We thus get �nal QED Lagrangian
L = ψiγµ (∂µ + ieAµ)ψ −mψψ − 1

4
Fµν .F

µνNote the following 12



1. A term like m2AµA
µ is not gauge invariant, so the photon is massless. This will remaintrue for all gauge theories, e.g. QCD.2. The 
oupling of the photon to the ele
tron is 
ontained in the Dµψ term. It is 
alledthe `minimal 
oupling'.This will also be used in QCD3. The QED Lagrangian does not have a gauge �eld self 
oupling, i.e., there are no termslike AAA, or AAAA. This is be
ause the photon does not 
arry 
harge.This will not be true for QCD. Gluons (whi
h are the analogs of the photon) 
arry 
olor
harges and hen
e self intera
t. Let us now write down the Lagrangian for QCD with 2
olors. (Hypotheti
al 
ase).2.3 Non-Abelian gauge symmetry: Yang-Mills TheoryThe symmetry group here will be SU(2) (it was U(1) for QED whi
h is Abelian). SU(2)is a non-Abelian group. Let the fermion �elds be a doublet (fundamental representation ofSU(2)):

ψ =

(

ψ1

ψ2

)Note : ea
h 
omponent ψi will be a four 
omponent Dira
 Spinor. Under an SU(2) transfor-mation, ψ will transform as
ψ(x) → ψ′(x) = exp{−i~τ .~θ

2

}

ψ(x)

≡ Uψ(x)where ~τ = (τ1, τ2, τ3) are the usual Pauli matri
es, satisfying the Lie algebra of SU(2)
[τi

2
,
τj
2

]

= iǫijk
τk
2

i, j, k = 1, 2, 3and ~θ = (θ1, θ2, θ3) are the SU(2) transformation parameters.We write the Lagrangian
L = ψ(x) (iγµ∂µ −m)ψ(x)13



This is again invariant under above global SU(2) transformation with ~θ being independentof ~x and t.
ψ → ψ′ = Uψ

ψ → ψ
′

= ψ U † where U †U = 1Now we gauge this symmetry, i.e., make θi spa
e-time dependent. Then
ψ(x) → ψ′(x) = U(θ(x))ψ(x)with
U(θ(x)) = exp{−i~τ

2
.~θ(x)

}Again we 
an easily see that the mass term mψ̄ψ in L is invariant under this symmetrytransformation but the derivative term is not. To make the derivative term also invariantwe will again 
onstru
t a 
ovariant derivative Dµ by introdu
ing new gauge �elds (like Aµwas introdu
ed for QED).Note: The derivative term whi
h spoils gauge invarian
e has term ∂µU(θ), i.e.,
∂µ

{exp(−iτa

2
θa(x)

)}

∼ τa∂µθ
a(x)exp(...)for a = 1, 2, 3. It is these terms whi
h spoil the invarian
e of L when θa depend on ~x and t.Using gauge �elds we have to 
ompensate for these derivatives.Sin
e τa, a = 1, 2, 3 are linearly independent, to 
an
el ea
h derivative, su
h as τ1∂µθ

1,one will need a gauge �eld. That is, we will need a term like τaAa
µ, a = 1, 2, 3 with ea
hgauge �eld transforming with appropriate θ (as we see below). Thus the number of gauge�elds to be introdu
ed = number of generators = 3 for SU(2).Note: When we 
onstru
t a gauge theory for SU(3), i.e. real QCD, then we need number ofgauge �elds = number of generators of SU(3) = 8. (For SU(N) , Number of generators =N2-1). Ea
h gauge �eld is like an independent photon. These are the gluons (massless gaugebosons). Thus we will need 8 gluons for QCD.We go ba
k to the 
ase of 2 
olor QCD with gauge group SU(2). Again, to have the deriva-tive term gauge invariant, we need the following transformation property for the 
ovariantderivative:

Dµψ(x) → [Dµψ(x)]′ = U(θ)Dµψ(x)14



when ψ(x) → ψ′(x) = U(θ)ψ(x)Clearly, then with ∂µ repla
ed by Dµ we get
L = ψ(x) (iγµDµ −m)ψ(x)whi
h will be gauge invariant.We write Dµψ(x) as

Dµψ(x) =

[

∂µ − ig
τa

2
Aa

µ

]

ψ(x)where g is the 
oupling 
onstant.One 
an 
he
k that the requirement of [Dµψ(x)]′ = U(θ)Dµψ(x) implies the followingtransformation properly for the gauge �elds:
τa

2
Aa′

µ = U(θ)
τa

2
Aa

µU(θ)−1 − i

g
[∂µU(θ)]U−1(θ)Re
all : For QED also, we had

ψ(x) → ψ′(x) = e−iα(x)ψ(x)

≡ U(α)ψ(x)Transformation of Aµ is then
A′

µ = U(α)AµU
−1(α) − i

e
[∂µU(α)]U−1(α)

= Aµ − i

e
(−i∂µα(x)) = Aµ − 1

e
∂µα(x)whi
h is the familiar transformation for QED (with negative ele
tri
 
harge).2.3.1 Self intera
tion of gauge �eldsOne 
ru
ial di�eren
e between QED and Yang-Mills gauge theories is that for the non-Abelian 
ase gauge �elds have self intera
tion whereas in QED, photons do not have selfintera
tion. Su
h intera
tions do not exist for photons but they do exist for gauge �elds inYang-Mills theories, e.g. in QCD. To understand the basi
 physi
al reason for this, let us goba
k to the SU(2) gauge theory 
ase and 
onsider in�nitesimal gauge transformation for theve
tor potentials.For θ(x) ≪ 1 we write

U(θ) = exp

{

−i~τ
2
.~θ(x)

}

≃ 1 − i
~τ .~θ(x)
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Exer
ise: Using this in the transformation law for Aa
µ, and negle
ting θ2 terms showthat one gets

τ c

2
A′c

µ =
τ c

2
Ac

µ + θa(x)Ab
µǫ

abc τ
c

2
− 1

g

τc
2
∂µθ

c(x).Sin
e τa are linearly independent, we get
A′c

µ = Ac
µ + ǫabcθaAb

µ − 1

g
∂µθ

c

ǫabc 
omes from
[

τa

2
,
τ b

2

]

= iǫabc τ
c

2Consider global transformations, so ∂µθ
c = 0, we get

A′c
µ = Ac

µ + ǫabcθaAb
µThis shows that Ac

µ transforms in the adjoint representation of SU(2). Several importantresults follow from this expression. Re
all Noether's theorem : One 
an 
al
ulate a symmetry
urrent and the asso
iated 
harge. For example, re
all the 
ase of QED.
ψ → ψ′(x) = e−iα(x)ψ(x)

Aµ → A′
µ(x) = Aµ(x) +

1

e
∂µα(x)For global transformation, α(x) = α we get

ψ′(x) = e−iαψ(x) & A′
µ(x) = Aµ(x)So, under global U(1) (
ontinuous) symmetry transformation, ψ(x) transforms non-trivially.The asso
iated 
harge is the "ele
tri
 
harge" of �eld ψ(x). However, Aµ(x) transformstrivially under global U(1) transformations. So in QED, the photon does not 
arry anyele
tri
 
harge (the symmetry 
urrent will give zero 
harge). As the photon does not haveele
tri
 
harge, it does not have self 
ouplings like AAA or AAAA. Now, for the SU(2) 
asewe noted the transformation of Aa

µ for 
onstant SU(2) transformation
A′c

µ = Ac
µ + ǫabcθaAb

µThus, under global SU(2) transformation, Aa
µ transforms non-trivially. Hen
e there will bea non-zero Noether 
harge asso
iated with Ac
µ. Due to this we expe
t self 
oupling. Indeed,16



we will see that for every Yang-Mills theory there are self 
oupling like AAA and AAAA.Note : So far we have the Lagrangian for the SU(2) 
ase
L = ψ(x) (iγµDµ −m)ψ(x)We are missing a term analogous to FµνF

µν for the QED 
ase. To write su
h a term were
all the following relation from QED
(DµDν −DvDµ)ψ(x) = ieFµνψ(x)We will use this type of expression for de�ning the appropriate expression for Fµν for theSU(2) 
ase. Sin
e

Dµψ =

(

∂µ − ig
~τ

2
. ~Aµ

)

ψinvolving Pauli matri
es, we extend the above relation appropriately
[DµDν −DνDµ]ψ ≡ −ig

(

τa

2
F a

µν

)

ψNote: This expression here is used to de�ne F a
µν .Exer
ise : Show that the evaluation of the L.H.S. gives

F c
µν = ∂µA

c
ν − ∂νA

c
µ + gǫcabAa

µA
b
νThis is the expression for �eld strength F c

µν for the non-Abelian 
ase.We 
an write
Aµ ≡ Aa

µ

τa

2
and Fµν ≡ τa

2
F a

µν and Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]Exer
ise : In QED, Fµν was gauge invariant. Show that, for SU(2), we �nd under gaugetransformation
τaF a

µν → τaF a′
µν = U(θ)τ bF b

µνU(θ)−1.Thus, to 
onstru
t analog of FµνF
µν term here, we writeTr{(~τ . ~Fµν

)

(~τ .F µν)
}This will be gauge invariant due to the 
y
li
 properly of the tra
e.Note: Tr{τaF a

µντ
bF bµν

}

= Tr τaτ bF a
µνF

bµν = 2F a
µνF

aµν17



using Tr[τaτ b] = 2δab.Now, we 
an write down the 
omplete gauge invariant Lagrangian for the SU(2) 
olorgauge theory with the doublet �eld ψ
L = −1

4
F a

µνF
aµν + ψiγµDµψ −m~ψψ2.3.2 Generalization to other Lie GroupsOne 
an generalize this 
onstru
tion to any other Lie group. Essentially, one has torepla
e τ i by appropriate generators and ǫabc by 
orresponding stru
ture 
onstants.We will�rst dis
uss the general 
ase of a simple Lie Group and then write down the Lagrangian forQCD with 3 
olors. Suppose G is a simple Lie Group (essentially meaning that it is not adire
t produ
t of other groups).Let F a be the generators of the group, satisfying the Lie algebra

[

F a, F b
]

= ifabcF cwhere fabc are totally antisymmetri
 stru
ture 
onstants (fabc are real). For SU(2) we had
[

τa

2
,
τ b

2

]

= iǫabc τc
2Suppose ψ transforms under some representation of G with representation matri
es T a, i.e.,under a gauge transformation

ψ(x) → ψ′(x) = exp
{

−i~T .~θ(x)
}

ψ(x)

≡ U(θ)ψ(x)Thus
[

T a, T b
]

= ifabcT cRe
all: For SU(2) 
ase, ~T were ~τ
2
and fabc was ǫabc. The 
ovariant derivative then is

Dµψ =
(

∂µ − igT aAa
µ

)

ψThe �eld strength tensor is
F a

µv = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν18



The gauge transformation for Aa
µ is

~T . ~Aµ(x) → T.A′
µ(x) = U(θ)T.AµU

−1(θ) − i

g
[∂µU(θ)]U−1(θ)Again, all these are exa
tly same as SU(2) 
ase with repla
ement

~T → ~τ

2
and fabc → ǫabcAlso the number of Aa

µ is equal to the number of generators T a. We 
an write the 
ompleteLagrangian as
L = −1

4
F a

µνF
aµν + ~ψ (iγµDµ −m)ψ2.3.3 Self intera
tionNote : F a

µνF
aµν term has following types of terms

g∂νA
a
µf

abcAµbAνcand
g2fabcfalmAb

µA
c
νA

µlAνmCorresponding Feynman diagrams have three point and four point verti
es. Thus, everygauge theory with a non-Abelian gauge group has self 
oupling for the gauge �elds. Thiswas expe
ted sin
e we saw that gauge bosons here 
arry 
harges. In 
ontrast, in QED(Abelian Group U(1)) photons have no self intera
tion.It is straightforward now to write the Lagrangian for QCD. We have six types of quarks(�avors u, d, s, et
). The gauge group is SU(3) 
olor. Ea
h quark 
omes in 3 
olors. That is,quarks are taken to transform as the 3-dimensional fundamental representation of the SU(3)
olor group. SU(3) has 8 generators, so we need 8 gauge �elds Aa
µ, a = 1,...8. These are 8gluons.We 
an write down the Lagrangian:

LQCD = −1

4
F a

µνF
aµν +

∑

α

ψα (iγµDµ −mα)ψαwhere α = u, d, c, s, t, b is the �avor index for quarks.19



As ψα is taken to be in the 3-dimensional fundamental representation of SU(3)c,
ψα =







rbg 
α







redbluegreen  (for example)Thus, we take the following representation for the generators of SU(3):
λa are Gell-mann matri
es:

T a =
λa

2
, a = 1, 2...8

[

T a, T b
]

= ifabcT cis the Lie algebra of SU(3) with stru
ture 
onstants fabc as:
f 123 = 1, f 458 = f 678 =

√
3/2the remaining independent fabc are 1/2.Gell-mann matri
es λa are given by

λ1 =







0 1 0

1 0 0

0 0 0






, λ2 =







0 −i 0

i 0 0

0 0 0







λ3 =







1 0 0

0 −1 0

0 0 0

,






, λ4 =







0 0 1

0 0 0

1 0 0







λ5 =







0 0 −i
0 0 0

i 0 0,






, λ6 =







0 0 0

0 0 1

0 1 0







λ7 =







0 0 0

0 0 −i
0 i 0






, λ8 =







1/
√

3 0 0

0 1/
√

3 0

0 0 −2/
√

3





With T a = λa

2
, the 
ovariant derivative is

Dµψα =
(

∂µ − igsT
aAa

µ

)

ψα

gs is the strong intera
tion 
oupling 
onstant. The expression for F a
µν et
. are the same asgiven for general 
ase of group G with T a = λa

2
. We thus 
on
lude that gluons 
arry 
olor
harges and hen
e they have self intera
tion.20



2.4 Symmetries of QCDApart from the gauge SU(3) symmetry of QCD whi
h is exa
t, QCD posses approximateglobal symmetries2.4.1 Isospin SymmetryThis played a 
ru
ial role in the early stages of development of QCD in terms of hadronspe
tros
opy.Suppose, if mα ≃ m for 
ertain α, say α = u, d, s, then we 
an write
ψ =







u

d

s






ψ =

(

u d s
)

⇒ L = ψ (iγµDµ −m)ψ +
∑

ψβ (iγµDµ −mβ)ψβ β = c, t, bThis is invariant under SU(3) global symmetry transformation a
ting on






u

d

s





This is known as the isospin �avor symmetry and originally it led to the dis
overy of thequark model.2.4.2 Chiral symmetryThis is a very important symmetry of QCD whi
h arises if mα ≃ 0 for 
ertain α, leading tode
oupled left handed and right handed 
omponents of quarks.2.5 Feynman rules for QCDEssentially, the only di�eren
e from the 
ase of QED is that for QCD we have 
olor fa
tors(
olor states C & C†) and λ matri
es. Also, for QCD we have 3-gluon and 4-gluon verti
eswhi
h are not there for QED. For example, 21



1. The gluon propagator is (in Lorentz gauge)
−i g

µν

q2
δαβwhere α, β are 
olor indi
es for gluons (α, β = 1,2,..8).Re
all: The propagator in QED for photon is

−i g
µν

q2Note: One may expe
t 9 gluon states : 3 ⊗ 3, rr, rb, rg, et
. However 3 ⊗ 3 = 1 + 8,where 1 is 
olor singlet. The gluon 
annot be a 
olor singlet otherwise it does notintera
t via the 
olor intera
tion. Hen
e there are only 8 (o
tet) of gluons. Colorstates C for quarks are given by a 3 ve
tor
C :







100  ∼ red, 





010  ∼ blue, 





001  ∼ greenSimilarly, we have an eight element 
olumn ve
tor for gluons
α :





















1...:0




















for |1 >, ....



























00.;010


























for |7 >, etc.

2. Quark propagator:
i
(γµqµ +m)

q2 −m2
δabwhi
h apart from δab is the same as in QED for ele
trons.3. Quark-gluon vertex:Note: The quark-gluon intera
tion term in the QCD Lagrangian is

Lint = ψgs
λa

2
γµA

aµψ22



(a is the 
olor index). Thus the quark-gluon vertex is given by
−igsλ

a

2
γµIn QED, the ele
tron-photon vertex is igeγ

µ.4. Three gluon vertex: The relevant term in L is
−gs

(

∂µA
a
ν − ∂νA

a
µ

)

fabcAbµAcνThe vertex is
−gsf

abc
[

gµν (k1 − k2)λ + gνλ (k2 − k3)µ + gλµ (k3 − k1)ν

]where ki are the relevant momenta.5. Four gluon vertex:The intera
tion term in L is
g2

sf
abcAb

µA
c
νf

adeAdµAeνSo, the vertex is
−ig2

s

[

fαβηfγδη (gµλgνρ − gµρgνλ) + fαδηfβγη (gµνgλρ − gµλgνρ) + fαγηf δβη (gµρgνλ − gµνgλρ)
]In these verti
es, various indi
es are a

ording to the indi
es asso
iated with the linesmeeting at the vertex.6. External lines: quarks and anti-quarksExternal quark with momentum p, spin s, and 
olor C:In
oming quark: u(s)(p)C while for QED we have u(s)(p).Outgoing quark: u(s)(p)C† while for QED we have u(s)(p).For an external antiquark:In
oming antiquark: v(s)(p)C†while for QED we have v̄s.Outgoing antiquark: v(s)(p)C while for QED we have vs.Here C represents the 
olor of the 
orresponding quark.7. For an external gluon of momentum p, polarization ǫ, 
olor a:In
oming gluon: ǫµ(p) aα while for QED(photon) we have ǫµ.Outgoing gluon: ǫ∗µ(p) aα† while for QED(photon) we have ǫµ∗.23



3 Running 
oupling 
onstant in QCD3.1 Physi
al Pi
tureLet us re
all, how a `s
reened' 
harge appears in an ordinary diele
tri
 medium, like water.Test 
harge +q in a polarisable diele
tri
 medium is s
reened from outside. There will be anindu
ed dipole moment ~P per unit volume, and the e�e
t of ~P on the resultant �eld is thesame as that produ
ed by a volume 
harge density equal to -~∇. ~P .For linear medium, ~P is proportional to ~E so, ~P = χǫo ~E. Gauss's law is then modi�edfrom:
~∇. ~E = ρfree/ǫoto

~∇. ~E =
ρfree −∇. ~P

ǫoTaking χ to be approximately 
onstant, we get
~∇. ~E =

ρfree

ǫo
− χ~∇. ~E

⇒ ~∇. ~E =
ρfree

ǫwhere ǫ = (1 + χ)ǫo is the diele
tri
 
onstant of the medium, (ǫo being that of va
uum).Thus, the ele
tri
 �eld is e�e
tively redu
ed by the fa
tor (1 + χ)−1.However, this is ma
ros
opi
 treatment, the mole
ules being repla
ed by a 
ontinuousdistribution of 
harge density −~∇. ~P . For very small distan
es (∼ mole
ular distan
es), thes
reening e�e
t will be redu
ed.Thus, we expe
t that ǫ should be a fun
tion of r, distan
e from the test 
harge. Ingeneral, the ele
trostati
 potential between two test 
harges q1, and q2 in a diele
tri
 
an berepresented phenomenologi
ally by
V (r) =

q1q2
4πǫ(r)rwhere ǫ(r) varies with r. We 
an de�ne an e�e
tive 
harge

q′ =
q

√

ǫ(r)for ea
h test 
harge. 24



3.1.1 E�e
tive 
harge in QEDIn quantum �eld theory, the polarisable medium is repla
ed by the va
uum. We know aboutva
uum polarization arising from va
uum �u
tuations whi
h are always there. Produ
ed
e+e− align in the presen
e of a test 
harge. Thus, near a test 
harge, in va
uum, 
hargedpairs are 
reated. They exist for ∆t ∼ h̄/mc2. They 
an spread to a distan
e of about c∆t(i.e. the Compton wavelength λc). This distan
e gives a measure of the mole
ular diameter(for diele
tri
 medium). Virtual e+e− pairs are e�e
tively dipoles of length λc ∼ 1

m
.Again, due to s
reening e�e
ts of these va
uum �u
tuations, e�e
tive 
harge will dependon the distan
e.3.1.2 Meaning of the familiar symbol eThis is simply the e�e
tive 
harge as r → ∞, or in pra
ti
e, the 
harge relevant for distan
esmu
h larger than the parti
le's Compton wavelength. For example, it is this large distan
evalue whi
h is measured in Thomson s
attering. Distan
e (or momentum) dependent 
ou-pling 
onstant is 
alled the `Running 
oupling 
onstant'. It arises due to renormalizationwhi
h we dis
uss in the next se
tion.3.2 β fun
tion in QFTWe will see that due to renormalization in QFT, one gets a running 
oupling 
onstant

g(t)where t is the momentum (distan
e−1) s
ale. The behavior of g(t) as a fun
tion of t isdetermined by the β fun
tion
t
dg(t)

dt
= β(g) .On
e we know the β fun
tion of a theory, we 
an immediately get the running 
oupling
onstant of the theory.How does one 
al
ulate β(g)? Let us sket
h the important steps for a s
alar theory. We willthen dis
uss results for QED and QCD.
25



3.2.1 Divergen
es and Renormalization in QFTNote: Renormalized g arises due to va
uum �u
tuations. These also lead to divergen
es.Hen
e the two are intimately 
onne
ted.First take the 
ase of s
alar �eld theory with a φ4 intera
tion.
L =

1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4The propagator and vertex of this theory are given by

i

p2 −m2
and − igDivergen
es arise from loop integrals. For example : Self energy 
ontribution at one looplevel to the free parti
le propagator

g

∫

d4q

(2π)4

1

q2 −m2This is ultraviolet divergent as there are 4 powers of q in the numerator and 2 in thedenominator.Similarly, 
onsider the 1 - loop 
ontribution to the 4 - point vertex fun
tion.
g2

∫

d4q

(2π)4

1

(q2 −m2)
(

[p1 + p2 − q]2 −m2
)Here there are 4 powers of q in both numerator and denominator, so we have a logarith-mi
 divergen
e.3.2.2 1PI DiagramsFor studying renormalization we fo
us on the one-parti
le- irredu
ible (1PI) diagrams.These are the 
onne
ted Feynman diagrams, whi
h 
annot be dis
onne
ted by 
utting anyone internal line. Correspondingly, we de�ne the 1PI Green's fun
tion Γ(n) (p1, ..pn) whi
hhave 
ontributions from 1PI diagrams only. 26



The reason for sele
ting 1PI diagrams is that every other diagram 
an be de
omposedinto 1PI diagrams without further loop integration. So, if we know how to take 
are of thedivergen
es of 1PI diagrams, we 
an then handle other diagrams also.
3.3 RegularizationOne needs to isolate the divergen
es in these divergent integrals. Eventually, these diver-gen
es are absorbed by re-de�ning various parameters of the theory, i.e. by Renormaliza-tion. There are various te
hniques for regularizing a divergent Feynman diagram.3.3.1 Pauli-Villars regularizationHere the propagator is modi�ed by using

1

p2 −m2
− 1

p2 −M2
=

m2 −M2

(p2 −m2) (p2 −M2)As now the propagator behaves as 1
p4 , integrals usually 
onverge. When we take M2 → ∞,the original theory is restored.3.3.2 Cut-o� regularizationOne 
an use a 
ut o� Λ in the momentum integral. Eventually Λ → ∞ limit is taken.All these methods be
ome problemati
 when non-Abelian gauge theories are 
onsidered.3.3.3 Dimensional RegularizationThis is the most versatile regularization te
hnique. Here the a
tion is generalized to ar-bitrary dimensions d where there are regions in 
omplex d spa
e in whi
h the Feynmanintegrals are all �nite. Then as we analyti
ally 
ontinue d to 4, the Feynman graphs pi
k up27



poles in d spa
e, allowing us to absorb the divergen
es of the theory into physi
al parameters.
3.4 S
alar TheoryLet us 
onsider dimensional regularization for the s
alar theory.

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4We �rst generalize this theory to arbitrary d dimensions. As S =

∫

Lddx is dimensionless(S should have units of h̄ = 1), we have, from the �rst term in L,
1

L2
Ld[φ]2 = 1

⇒ [φ] = L
2−d
2where L denotes the length dimension (same as mass−1 dimension in natural units). Sothe mass dimension of φ = d

2
− 1.The gφ4 term has mass dimension [g℄ M2d−4 This needs to be [M ℄d.To keep g dimensionless, we need to introdu
e a fa
tor µ4−d to 
an
el (2d−4−d) in gφ4.Thus we get

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − µ4−dg

4!
φ4Note the presen
e of the arbitrary mass s
ale µ.With this L we 
an 
al
ulate the divergent 1-loop diagrams. The self energy is

∑

=
1

2
gµ4−d

∫

ddp

(2π)d

1

p2 −m2These integrals 
an be 
al
ulated using the gamma fun
tion.
∑

=
−ig
32π2

m2

(

4πµ2

m2

)2−d/2

Γ (1 − d/2)28



The gamma fun
tion Γ has poles at zero and negative integers, so, we see that thedivergen
e of the integral manifests itself as a simple pole as d → 4. Using ǫ = 4 − d

Γ(1 − d/2) = Γ
(

−1 +
ǫ

2

)

=
−2

ǫ
− 1 + γ +O(ǫ)where γ = 0.577 is the Euler-Mas
heroni 
onstant.Thus expanding the above expression about d=4 using aǫ = 1 + ǫ ln a +...., we get

∑

i
=

igm2

16π2ǫ
+
igm2

32π2

[

1 − γ + ln
(4πµ2)

m2

]

+O(ǫ)

=
igm2

16π2ǫ
+ �niteSimilarly, the 4-point fun
tion to order g2 is

1

2
g2(µ2)4−d

∫

ddp

(2π)d

1

(p2 −m2)

1

[(p− q)2 −m2]Again using the Γ fun
tion one 
an get it as
ig2µǫ

16π2ǫ
− finite partWe 
an now obtain the vertex fun
tions (with amputated legs).2-point fun
tion:

Γ(2)(p) = p2 −m2 −
∑

(p2)(apart from inverse of bare propagator it 
ontains only 1PI graphs)
= p2 −m2

(

1 − g

16π2ǫ

)

neglecting finite term4-point fun
tion:
Γ(4)(pi) = −igµǫ

(

1 − 3g

16π2ǫ

)

+ �nite ≡ −igR29



3.4.1 RenormalizationConsider now the vertex fun
tion Γ(2) and Γ(4) to one loop approximation
Γ(2)(p) = p2 −m2 −

∑

∑

=
−gm2

16π2ǫ(ignoring �nite parts), where ǫ = 4 − d. We write it as
Γ(2)(p) = p2 −m2

1where
m2

1 = m2
(

1 − g

16π2ǫ

)

=
m2

(1 + g/16π2ǫ)

m1 is taken to be �nite, representing the physi
al mass. This is 
alled theRenormalizedmass. ∑ is divergent (with ǫ→ 0) so m (bare mass) is taken to be appropriately divergentso that m1 is �nite.The renormalized mass m1 is given by,
m2

1 = −Γ(2)(0)Note: This is the renormalization 
ondition where physi
al mass is de�ned at p = 0. It
ould very well have been de�ned at some other value of p.Similarly, 
onsider Γ(4)

iΓ(4)(pi) = gµǫ − g2µǫ

16π2

[

3

ǫ
+ �nite Γ̃(pi)

]De�ne a new parameter g1, the renormalized 
oupling 
onstant, by
g1 = gµǫ − g2µǫ

16π2

[

3

ǫ
+ Γ̃(0)

]Again, note here that g1 is being de�ned at point pi=0. An alternative is to de�ne it atthe symmetri
al point, p2
i = m2, so s, t, u = 4m2/3.30



These are the results upto 1-loop level. It turns out that when 2-loop diagrams are
al
ulated then using renormalization of the m and g parameters, Γ(4) is �nite, but Γ(2) re-mains divergent. This is due to overlapping divergen
e at 2-loop level. So, 
oupling 
onstantand mass renormalization do not remove this additional divergen
e at 2-loop level. It is re-moved by absorption in a multipli
ation fa
tor and we de�ne a renormalized 2-point fun
tion
Γ(2)

r = Zφ(g1, m1, µ)Γ(2)(p,m1, µ)

Γ
(2)
r is now �nite with Zφ in�nite. √Zφ is 
alled the wave fun
tion (or �eld) renormal-ization 
onstant.Field renormalization is φ = Z

−1/2
φ φ0, where φ0 is the unrenormalized �eld.So, the 2-point fun
tion is

< 0|T (φ(x1)φ(x2)|0) >= Z−1
φ < 0|T (φ0(x1)φ0(x2)|0 >)where the 2-point fun
tions on the L.H.S. and the R.H.S. are G(2)

R (x1, x2) and G(2)
(0)(x1, x2)respe
tively.Thus, in general, the renormalized �eld φ de�nes the renormalized Green's fun
tions G(n)

Rwhi
h are related to the unrenormalized ones by
G

(n)
R (x1....xn) = < 0|T (φ(x1)...φ(xn)|0 >

= Z
−n/2
φ 〈0|T (φ0(x1)...φ0(xn)|0〉

= Z
−n/2
φ G

(n)
0 (x1...xn)In momentum spa
e, we get

G
(n)
R (p1..pn) = Z

−n/2
φ G

(n)
0 (p1...pn)Now, to go from the 
onne
ted Green's fun
tions given above to the 1PI (amputated)Green's fun
tion, we have to eliminate the one-parti
le redu
ible diagrams. But more im-portantly for us, we have to remove the propagators for the external lines in the1PI Green's fun
tions (to get amputated Green's fun
tion).31



Thus, we need to remove ∆R (pi) from G
(n)
R (p1..pn) and ∆(pi) from G

(n)
0 (pi)Now

∆R(pi) = Z−1
φ ∆(pi)where the propagators on the L.H.S. and R.H.S. are G(2)

R and G(2)
0 respe
tively.Thus, we get

Γ
(n)
R (pi) = [∆R(pi)]

−nG
(n)
R (pi)

= Zn
φ (∆(Pi))

−n Z
−n/2
φ G

(n)
0 (pi)or Γ

(n)
R (pi) = Z

n/2
φ [∆(pi)]

−nG
(n)
0 (pi)so Γ

(n)
R (pi) = Z

n/2
φ Γ(n)(pi)Thus, �nally using renormalized quantities, et
., we 
an write

Γ
(n)
R (p1, ..pn; gR, mR, µ) = Z

n/2
φ Γ

(n)
0 (p1..pn, g0, m0)Note: Γ

(n)
0 (pi, g0, m0) will be divergent. Some divergen
e will be removed by using renor-malized mR and gR, remaining divergen
e will be removed by multiplying by Zn/2

φ .
3.5 Renormalization groupWe have

Γ
(n)
R (pi, gR, mR, µ) = Z

n/2
φ Γ

(n)
0 (pi, g0, m0)or

Γ
(n)
0 (pi, g0, m0) = Z

−n/2
φ Γ

(n)
R (pi, gR, mR, µ)Now the unrenormalized vertex fun
tion Γ

(n)
0 should be independent of µ, so

µ
d

dµ
Γ

(n)
0 = 0(Note Γ0 is divergent, here it is used with proper regularization, e.g, dimensional regulariza-tion with ǫ 6= 0. Γ0 diverges in ǫ→ 0 limit). 32



We get
µ
d

dµ

[

Z
−n/2
φ Γ

(n)
R (pi, gR, mR, µ)

]

= 0where gR and mR depend on µ,
⇒ −n

2
Z

(−n/2−1)
φ µ

∂Zφ

∂µ
Γ

(n)
R + Z

(−n/2)
φ

[

µ
∂

∂µ

+ µ
∂gR

∂µ

∂

∂gR

+ µ
∂mR

∂µ

∂

∂mR

]

Γ(n)R = 0Above ×Zn/2
φ ⇒

[

−nµ ∂

∂µ
ln
√

Zφ + µ
∂

∂µ

+ ...

]

Γ
(n)
R = 0De�ne

µ
∂

∂µ

ln√Zφ = γ(g)

β(g) = µ
∂g

∂µ

mγm(g) = µ
∂m

∂µWe thus get the renormalization group (RG) equation:
[

µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) +mγm(g)

∂

∂m

]

Γ(n) = 0

β(g) is 
alled the β fun
tion of the theory.Renormalization group equation expresses how the renormalized vertex fun
tions 
hangewhen we 
hange the arbitrary s
ale µ.We are interested in knowing the behavior of 
oupling 
onstants et
. under the 
hange ofmomentum s
ale, be
ause we want to understand the behavior of the theory at high energies.We therefore make the following s
ale transformations and desire a slightly di�erent
onstraint on the vertex fun
tion.Consider pi → tpi res
aling of all momenta by t.Then
Γ(n)(tpi, g,m, µ) = tDΓ(n)

(

pi, g, t
−1m, t−1µ

)

,33



where D is the mass dimension of the vertex fun
tion Γ(n), or
Γ(n) (tpi, g,m, µ) = µDf

(

g,
t2p2

i

mµ

)

≡ µDf(g, α)This is be
ause Γ is Lorentz invariant, and hen
e 
an only be a fun
tion of various dotprodu
ts pi.pj . To 
reate a dimensionless quantity, we divide by µm. The overall s
alingquantity µD means that the fun
tion has mass dimension D. Let us 
al
ulate
µ
∂

∂µ
Γ(n) (tpi, g,m, µ) = µDµD−1f + µD+1 ∂f

∂α

(−t2p2
i

mµ2

)Similarly,
t
∂Γ

∂t
= tµD ∂f

∂α

(

2tp2

mµ

)

m
∂Γ

∂m
= mµD ∂f

∂α

(−t2p2

m2µ

)

Summing all these terms, we get
[

t
∂

∂t
+m

∂

∂m
+ µ

∂

∂µ
−D

]

Γ(n) = µD ∂f

∂α

[

−t
2p2

mµ
+

2t2p2

mµ
− t2p2

mµ

]

= 0We now have two di�erent equations for Γ(n). Note that for the RG equation also, we 
an
onsider Γ(n) (tp, g,m, µ). We 
an eliminate µ ∂
∂µ

term from the above equation and the RGequation. We get
[

β(g)
∂

∂g
− nγ(g) +mγm(g)

∂

∂m
− t

∂

∂t
−m

∂

∂m
+D

]

Γ(n) = 0or
[

β(g)
∂

∂g
− t

∂

∂t
− nγ(g) +m (γm(g) − 1)

∂

∂m
+D

]

Γ(n)(tp, g,m, µ) = 0This equation dire
tly gives the e�e
t of s
aling up the momenta by a fa
tor t.Important : This equation expresses the fa
t that a 
hange in t (i.e. momentums
ale) may be 
ompensated by a 
hange in m and g and an overall fa
tor.Thus, we expe
t that there should be fun
tions g(t), m(t) and f(t) su
h that
Γ(n)(tp,m, g, µ) = f(t)Γ(n)(p,m(t), g(t), µ).34



Di�erentiating this w.r.t. t we get (m & g also depend on s
ale t)
t
∂

∂t
Γ(n)(tp,m, g, µ) = t

df(t)

dt
Γ(n)(p,m(t), g(t), µ)+tf(t)

[

∂m

∂t

∂

∂m
+
∂g

∂t

∂

∂g

]

Γ(n)(p,m(t), g(t), µ)Then using
Γ(n)(tp,m, g, µ) = f(t)Γ(n)(p,m(t), g(t), µ)we get

[

−t ∂
∂t

+
t

f(t)

df

dt
+ t

∂m

∂t

∂

∂m
+ t

∂g

∂t

∂

∂g

]

Γ(n)(tp,m; g, µ) = 0Comparison of this equation with the previous equation gives
t
∂g(t)

∂t
= β(g)We also get

t
∂m

∂t
= m [γm(g) − 1]This gives 
hange of mass

t

f

df

dt
= D − nγ(g)The solution of this equation is

f(t) = tD exp

[

−
∫ t

0

nγ(g(t))dt

t

]

Re
all : Γ(n)(tp,m, g, µ) = f(t)Γ(n)(p,m(t), g(t), µ). Here tD gives the 
anoni
al mass di-mension of the vertex fun
tion Γ(n). The exponential term gives the `Anomalous Dimension'for the vertex fun
tion arising entirely due to renormalization e�e
ts.3.6 β fun
tionWe have
t
∂g(t)

∂t
= β(g)where g(t) is 
alled the `running 
oupling 
onstant'. Knowledge of the fun
tion β(g) enablesus to �nd g(t), and of parti
ular interest is the asymptoti
 limit of g(t), as t→ ∞.We now 
onsider the possible behavior of g(t) as t → ∞, i.e. at large momentum (andassuming that the above equation is still valid there).35



1. Suppose β(g) has the following form. It is zero at g = 0. Then, as g in
reases, itin
reases �rst and then starts de
reasing, 
rossing the g axis at g0 be
oming negativeafter that. The zeros of β, at g = 0 and g = g0 are 
alled `�xed points' (as g does notevolve there).
g near g0 : If g < g0, β > 0. So g in
reases with in
reasing t and is driven towards g0.Similarly, if g > g0, then β < 0 and dg

dt
< 0 ⇒ g de
reases towards g0 with in
reasing t.Thus, g0 is an ultra-violet (large t) stable �xed point g(∞) = g0. Note that g0 is aninfrared unstable �xed point. Be
ause for g < g0, β > 0 so g de
reases away from g0with de
reasing t. Similarly, for g > g0, β < 0, so t de
reasing takes g away from g0.By same arguments, g = 0 is an infrared stable �xed point.2. Now 
onsider other possibility: Suppose, β(g) is zero at g = 0. Then, as g in
reases, itde
reases �rst and then starts in
reasing, 
rossing the g axis at g0 be
oming positiveafter that.Here g0 is an infrared stable �xed point while g = 0 is an ultraviolet �xed point. Thisis be
ause if g > 0 near g = 0 then β < 0 ⇒ when t in
reases then g(t) de
reasestowards 0. So, g(t → ∞) → 0. This is 
alled Asymptoti
 freedom. For theorieswith g = 0 an ultraviolet �xed point, the perturbation theory gets better and betterat higher energies and in the in�nite momentum limit, the 
oupling 
onstant vanishes.We will see that QCD is an asymptoti
ally free theory, with a negative β fun
tion.3.7 β fun
tion for a s
alar φ4 theoryRe
all the de�nition of the β fun
tion:

β(g) = µ
∂gR

∂µ

36



At 1-loop level, we re
all that the renormalized 
oupling
g1 = gµǫ − g2µǫ

16π2

[

3

ǫ
+ �nite term]

with gbare ≡ gB = gµǫ,we have

g1 = gB − g2
Bµ

−ǫ

16π2

[

3

ǫ
+ �nite term]Hen
e, µ

∂g1

∂µ
= ǫ

g2
Bµ

−ǫ

16π2

[

3

ǫ
+ �nite term]

≃ 3

16π2
g2
1with ǫ→ 0 limit as the di�eren
e is of order g3, i.e. at the 2 loop level.So, keeping terms only upto 1-loop level (i.e. g2) one gets the β fun
tion by taking ǫ→ 0limit

β(g1) ≡ µ
∂g1

∂µ
=

3g2
1

16π2
> 0From the above dis
ussions about the �xed points we see that g = 0 is infrared stable �xedpoint and that φ4 theory is not asymptoti
ally free. Re
all:

t
∂g(t)

∂t
= β(g(t)) =

3g(t)2

16π2We 
an solve this equation as
dg(t)

g2
=

3

16π2

dt

t

⇒ g =
g0

1 − 3g0

16π2 ln t/t0This gives us the running 
oupling 
onstant. As t in
reases, g in
reases.3.8 Running 
oupling 
onstant in QEDStart with the Lagrangian in d dimensions:
L = iψγµ∂µψ −mψψ − eµ2−d/2Aµψγµψ − 1

4
(∂µAν − ∂νAµ)2 − 1

2
(∂µA

µ)2where the last term on the r.h.s. is the gauge �xing term. With this, one gets the Maxwellequation as ∂ν∂
νAµ = 0 (i.e. in Lorentz gauge ∂µAµ = 0).37



The vertex graph at one loop level leads to the renormalized 
oupling 
onstant e, relatedto the bare 
oupling eB as,
eB =

(

1 +
1

12

e2

π2ǫ

)

eµǫ/2Using ∂eB

∂µ
= 0 we 
an show that β(e) = µ ∂e

∂µ
= e3

12π2 .So in QED also, β fun
tion is positive and there is no asymptoti
 freedom. Using
t
∂e(t)

∂t
= β(e) =

e3

12π2We get
de

e3
=

dt

12π2t
⇒ e2(t) =

e2(t0)

1 − e2(to)
6π2 lnt/t0De�ning

α = e2/4π; α(t) =
α(to)

1 − 4α(to)
6π

ln(t/to)Note: The Landau Singularity at
t ≃ t0 exp (6π2/e2(t0)

)

≃ t0 exp( 6π

4πα(t0)

)

So, if t0 ∼ 1 MeV then t ∼ 1080 MeV.(Note that for energies higher that 100 GeV one should use Ele
troweak theory.)3.9 Asymptoti
 freedom in QCDThe quark gluon vertex fun
tion leads to renormalized 
oupling 
onstant g at one loop level,whi
h is related to the bare 
oupling gB as follows:
gB = gµǫ/2

[

1 − g2

16π2ǫ

(

11 − 2nF

3

)](for N = 3 i.e. SU(3) 
olor theory. Here the fa
tor of nF 
omes from the �eld renormalizationfa
tor ZA for va
uum polarization). Using ∂gB

∂µ
= 0, we get

β(g) = µ
∂g

∂µ
= −ǫµ−ǫ g3

16π2ǫ

(

11 − 2nF

3

)38



(Corre
tions are higher loop order.) So
β(g) = − g3

16π2

[

11 − 2nF

3

]For number of quark �avors nF < 16 (we have only 6) we have β(g) < 0 i.e., a negative βfun
tion. This implies that g de
reases with in
reasing momentum s
ale and the theory isasymptoti
ally free. g = 0 is an ultraviolet �xed point.From
t
∂g

∂t
= β(g) = − g3

16π2

[

11 − 2nF

3

]

We 
an solve for g and using g2

4π
= αsWe get

α =
4πα0

4π + α0

(

11 − 2nF

3

) lnQ2

Q2
0with Q2/Q2

o = t2/t2o , where Q is the momentum.Another way of writing α is to de�ne
(

11 − 2

3
nF

)

α0 lnQ2
0 − 4π =

(

11 − 2

3
nF

)

α0 lnΛ2Then we get
αs

(

Q2
)

=
4π

(

11 − 2nF

3

) lnQ2/Λ2

Λ is the QCD s
ale �xed by various s
attering pro
esses (e.g. high energy e+e− → hadrons).One has αs

(

(100GeV)2) = 0.2 ⇒ Λ = 112MeV for nF = 6.The 
urrent dis
ussed value of the s
ale parameter of QCD, ΛQCD ranges from 100 MeVto 300 MeV.De
rease of αs with Q2 in QCD is due to antis
reening from 
olored gluons. qq̄ pairsstill give usual s
reening [1℄. That is why for a su�
iently large value of nF there is noasymptoti
 freedom. 39



3.10 Running of αs with Momentum S
aleImpli
ations of running 
oupling 
onstant in QCD and the QGPWe have seen that the 
oupling 
onstant in QCD be
omes smaller at large energy s
alesand the theory is asymptoti
ally free:
αs(q

2) =
4π

(11 − 2nF/3) lnq2/Λ2This means that the intera
tions between quarks and gluons be
ome weaker at very highenergies, while they are strong at lower energies.Thus a 
olle
tion of quarks and gluons intera
ting with ea
h other with typi
al momentumtransfer mu
h larger than Λ should 
onstitute a weakly intera
ting system of parti
les. Aswe mentioned earlier, typi
al value of Λ (from s
attering experiments) is about 200 MeV.Thus, we expe
t that if a system of quarks and gluon was at a temperature mu
h higherthan several hundred MeV, then the 
oupling 
onstant will be small and the system shouldbehave as an ideal gas. In su
h a system we do not expe
t the e�e
ts of 
on�nement ofQCD intera
tion to survive. This system of quarks and gluons where quarks and gluons areno more 
on�ned within the region of a hadron (∼ 1 fm size) is 
alled the quark-gluonplasma (QGP).In the other limit, when quark and gluons have small energies, say they are at smalltemperatures, then we expe
t the 
oupling 
onstant to be
ome strong. This is the domainwhere 
on�nement takes pla
e and all quarks and gluons are 
on�ned inside hadrons.We expe
t that the transition between this low energy hadroni
 domain to high en-ergy (temperature) QGP domain is a phase transition. This is 
alled the 
on�nement-de
on�nement phase transition, or, the quark-hadron phase transition.3.11 High density behaviorEven at su�
iently high density, (
ompressed baryoni
 matter) we expe
t that hadronsshould be almost overlapping. For example, in neutron star 
ores very high baryon densitiesare a
hieved. At su
h densities, typi
al separation between 
onstituent quarks of di�erenthadrons be
ome mu
h less than 1 fm or (200 MeV)−1. This means, again, that the e�e
-tive 
oupling 
onstant for quark-gluon intera
tion should be
ome very small at su
h highdensities. We 
an then expe
t that a state like QGP may exist at very high densities also.40



One needs to be 
areful here as at su
h high densities many body quantum e�e
ts 
anplay important role if temperatures are not very high. One expe
ts exoti
 states like 
olorsuper
ondu
tor to form at very high baryon densities.In this se
tion we saw that at the most qualitative level, that the asymptoti
 freedom ofQCD suggest that there should be a domain of QCD where a system of hadrons if heatedto very high temperature (mu
h above few hundred MeV) should transform to a weaklyintera
tion system of quarks and gluons, i.e. QGP.This expe
tation is strongly supported by latti
e 
al
ulations and other phe-nomenologi
al approa
hes, and we will now dis
uss some of these.What we need is to study the system of quarks and gluons at high temperatures. Thatis QCD at �nite temperatures.4 Field theory at �nite temperatureIn the following, we will dis
uss the basi
 formalism for �nite temperature �eld theory[3℄. We will then spe
ialize to our requirement of a system of fermions (quarks) and bosons(gluons) at �nite temperature. Further details of �nite temperature QCD will be dis
ussedwhere and when required.4.1 Partition Fun
tionWe know that all thermodynami
 properties for a system in equilibrium 
an be derived on
ewe know its partition fun
tion
Z = Tr e−βH β =

1

Twhere Tr stands for the tra
e, or the sum over the expe
tation values in any 
omplete basis.Thus
Z =

∫

dφa < φa|e−βH |φa >We now re
all the expression for the transition amplitude in the path integral formalism
< φ1|e−iH(t1−t2)|φ2 > ≃ < φ(~x1, t1)|φ(~x2, t2) >

= N ′
∫

Dφ eiS41



where φ is the basi
 quantum �eld variable, N ′ is an irrelevant normalization 
onstant and
S is the a
tion

S[φ] =

∫ t1

t2

dt

∫

d3xLwhere L is the Lagrangian density of the system. The fun
tional integral (path integral) isde�ned over paths whi
h satisfy
φ(~x1, t1) = φ1, and φ(~x2, t2) = φ2

φ1 and φ2 are the �xed end points.There is no integration over these �xed end points.From the expression of the partition fun
tion we 
an easily see that Z 
an be written interms of a path integral if we identify t1 − t2 with −iβ. Then
Z(β) = Tr e−βH =

∫

dφ1 < φ1|e−βH |φ1 >

= N ′
∫

Dφ e−SEwhere SE is the Eu
lidean a
tion (t→ it),
SE =

∫ β

0

dτ

∫

d3xLEFurthermore, in view of Tr, we require that in the path integral the integration is done onlyover those �eld variables whi
h satisfy periodi
 boundary 
onditions
φ(~x, β) = φ(~x, 0)Note that here the end points are also being integrated over as there is a sum over states inTr e−βH . We will see that for fermions one gets antiperiodi
 boundary 
onditions. Boundary
onditions on �eld variables 
an be seen by examining the properties of the thermal Green'sfun
tion de�ned by

G(x, y; τ, 0) = Z−1Tr (e−βHT [φ(x, τ)φ(y, 0)]
)where T is the imaginary time ordering operator. We have for bosons

T [φ(τ1)φ(τ2)] = φ(τ1)φ(τ2)θ(τ1 − τ2) + φ(τ2)φ(τ1)θ(τ2 − τ1)42



whereas for fermions we have
T [ψ(τ1)ψ(τ2)] = ψ(τ1)ψ(τ2)θ(τ1 − τ2) − ψ(τ2)ψ(τ2)θ(τ2 − τ1)from the anti
ommuting properties of fermions.For bosons we see, using the 
y
li
 property of the tra
e that

G(x, y; τ, 0) = Z−1Tr
[

e−βHφ(x, τ)φ(y, 0)
]

= Z−1Tr
[

e−βHeβHφ(y, 0)e−βHφ(x, τ)
]

= Z−1Tr
[

e−βHφ(y, β)φ(x, τ)
]

where φ(y, β) = eβHφ(y, 0)e−βH in analogy with the real time Heisenberg time evolution.

φ(y, t) = eiHtφ(y, 0)e−iHtThus
G(x, y; τ, 0) = Z−1Tr

(

e−βHT [φ(x, τ)φ(y, β)]
)or, G(x, y; τ, 0) = G(x, y, τ, β)This implies the periodi
 boundary 
ondition for bosons is

φ(y, 0) = φ(y, β).It is then straightforward to see that for fermions we will get
G(x, y; τ, 0) = −G(x, y; τ, β)

⇒ ψ(x, 0) = −ψ(x, β)The important lesson for us is that in the fun
tional integral representation for the partitionfun
tion, the integration over the �eld variables is restri
ted to those �elds whi
h are1. Bosons : periodi
 in (imaginary) time with period β.2. Fermions : antiperiodi
 in (imaginary) time with period β.This will be important to us when we dis
uss the 
on�nement - de
on�nement phase tran-sition and the Polyakov loop order parameter for that transition.We now 
ome ba
k to dis
ussing a system of bosons or fermions. We are familiar fromthe standard results from statisti
al me
hani
s that the partition fun
tion:43



1. For one bosoni
 degree of freedom (one state of energy w) :
E = wN , and
N = 1

eβ(w−µ)−1
(Bose-Einstein distribution)

N ranges 
ontinuously from zero to ∞. µ is the 
hemi
al potential.2. For fermions
N =

1

eβ(w−µ) + 1
(Fermi-Dira
 distribution), N ranges from 0 to 1One 
an re derive these expressions using �nite temperature �eld theory methods.With these, we 
an obtain various thermodynami
 properties of a system 
onsisting offermions or bosons.4.1.1 QuarksLet us write down the expressions for the energy density and pressure for a system 
onsist-ing of a relativisti
 gas of fermions (quarks). The number of quarks in a volume V withmomentum p within the interval dp is:

dNq = gqV
4πp2dp

(2π)3

1

1 + e(p−µq)/TThis is the Fermi Dira
 distribution. µq is the 
hemi
al potential (same as the quarkFermi energy) and gq = NcNsNf is the number of independent degrees of freedom of quarks(degenera
y of quarks). Let us take the 
ase of µq = 0, so the density of quark and antiquarksis the same.We 
an now write down the energy of the massless quarks in the system of volume Vand temperature T .
Eq =

gqV

2π2

∫ ∞

o

p3dp

1 + ep/T
for massless quarks with E ≃ p

=
gqV

2π2
T 4

∫ ∞

o

z3dz

1 + ez

=
gqV

2π2
T 4

∫ ∞

o

z3dze−z

∞
∑

n=0

(−1)ne−nz

=
gqV

2π2
T 4Γ(4)

∞
∑

n=0

(−1)n 1

(n+ 1)444



where Γ is the gamma fun
tion. It is easy to show that
∞
∑

n=0

(−1)n 1

(n+ 1)4
= (1 − 2−3)ζ(4)where ζ(4) is the Riemann zeta fun
tion.

ζ(4) =
∑

m=1,2..

1

m4
=
π4

90Thus, we get
Eq =

7

8
gqV

π2

30
T 4We know that for massless fermions and bosons, the pressure is related to the energy density

ρ = E/V as
P =

1

3
ρHen
e, the pressure due to quarks is

Pq =
7

8
gq
π2

90
T 4Similarly, the pressure due to antiquarks is given by the same expression with gq → gq.We 
an also obtain the number density of the quarks and antiquarks as

nq = nq =
gq

2π2

∫ ∞

0

p2dp

1 + ep/T

=
gq

2π2
T 33

2
ζ(3)where ζ(3) = 1.20205.4.1.2 GluonsLet us now write down the energy of gluons in a system of volume V and Temperature Tusing the Bose-Einstein distribution for bosons

Eg =
ggV

2π2

∫ ∞

o

p3dp

(

1

ep/T − 1

)

45



where gq is the gluon degenera
y gg = number of di�erent gluons × number of polarization
= 8 × 2 = 16.We get

Eg =
ggV

2π2
T 4

∫ ∞

o

z3dz

ez − 1Following earlier steps, we get
Eg =

ggV

2π2
T 4

∫ ∞

o

z3dze−z
∞
∑

n=0

e−nz

=
ggV

2π2
T 4Γ(4)

∞
∑

n=0

1

(n+ 1)4
=
ggV

2π2
T 4Γ(4)ζ(4)or, Eg = ggV

π2

30
T 4Note the absen
e of fa
tor 7

8
for bosons 
ompared to fermions.Again, using P = 1

3
ρ, we get the pressure for the gluon gas as:

Pg = gg
π2

90
T 4The number density of gluons is

ng =
gg

2π2

∫ ∞

o

p2dp

(

1

ep/T − 1

)

=
gg

2π2
T 3Γ(3)ζ(3) =

gg

π2
1.202T 3The net energy density of a system of quarks and gluons at temperature T is

ρQGP = ρqq + ρg

=

[

7

8
(gq + gq) + gg

]

π2

30
T 4

gq = gq = NCNSNF = 3 × 2 × 6

NC , NS and NF are the number of Colors, spin and �avor states of the quarks and gg = 16,so
ρQGP =

(

7

8
× 72 + 16

)

π2

30
T 446



Of 
ourse, this assumes that all the quark �avors 
an be treated as massless at the temper-ature T. So, the above expression is valid only for T ≫ mtop ≃ 170 GeV.Let us 
al
ulate ρQGP near the expe
ted transition temperature of few hundred MeV, sayat T = 200 MeV. At this temperature, only u and d quarks 
an be taken to be approximatelymassless.Thus, for T = 200 MeV
gq+q = 2 × 3 × 2 × 2 = 24where the fa
tors 
orrespond to q and q̄, NC , NS and NF= u, d. So

ρQGP =

(

7

8
× 24 + 16

)

π2

30
T 4or ρQGP =

37π2

30
T 4For T = 200 MeV and using 1 fm = (200 MeV)−1, we get ρQGP ≃ 37

3
(200 MeV)4 ≃

2.5GeV/fm3.This is the energy density of a system of quarks and gluons in thermal equilibrium at atemperature of about 200 MeV.Thus, if we are able to 
reate a dense system of partons (quarks and gluons) with anenergy density mu
h above this and one 
an argue for thermal equilibrium to exist then weshould expe
t that a state of QGP will be a
hieved.This is what is expe
ted to happen in relativisti
 heavy-ion 
ollision experi-ments where the nu
lei 
olliding at ultra high energies 
reate quarks, antiquarksand gluons with a 
entral density whi
h is expe
ted to be mu
h above 3 GeV/fm3.We saw how asymptoti
 freedom in QCD leads us to believe in the existen
e of a QGPstate at high temperatures (and high densities). We will now brie�y dis
uss here how thepredi
tion of the QGP phase arises in the 
ontext of phenomenologi
al models of QCD whi
hwere used very su

essfully to a

ount for di�erent properties of hadrons.5 Quark 
on�nementWe know that quarks 
annot be isolated, and are 
on�ned inside hadrons. On the other hand,the asymptoti
 freedom of QCD implies that at very short distan
es (or large energies) the47



quark-gluon 
oupling goes to zero, so quarks be
ome almost free. There have been manyphenomenologi
al models whi
h in
orporate these two features and try to 
al
ulate propertiesof hadrons [2℄.5.1 Potential modelsHere one assumes a 
ontribution of −1
r
Coulombi
 potential and a 
on�ning potential (+λr)between quarks and 
al
ulates the spe
trum. (We will dis
uss this later for the J/ψ suppres-sion signal.) These models work well for heavy quarks but for light quarks the properties ofbound states with a 
on�ning potential be
ome di�
ult to 
al
ulate.5.2 String model of quark 
on�nementHere one takes hadrons to be string like obje
ts where quarks are bound by `strings' or tubesof 
olor �ux. This model arose from a 
ertain property of hadrons known as Regge traje
torybehavior where it is seen that hadrons seem to lie on lines given by J ∼M2 in the J vs M2plane. Here J is the spin and M is the mass of the hadron.It 
an be shown that a relativisti
 rotating string leads to this type of relationship between

J and M2. This gave birth to the string model of hadrons.It was this string model whose attempted quantization and subsequent developmenteventually led to the modern string theory where every elementary parti
le is supposed to
orrespond to a fundamental strings. In the present form it does not have anything in
ommon with the initial string model of hadrons. (Though, it has been re
ently suggestedthat these may be intimately 
onne
ted at a deeper level.)The string model of hadrons still provides a good des
ription of 
ertain properties ofhadrons and of hadron produ
tion. For example, in s
attering experiments, the produ
tion ofhadrons is often modeled using a phenomenologi
al string model. As q and q̄ 
reated in e+ e−annihilations separate with ultrahigh energies, a string stret
hes between them. After somestret
hing, it be
omes unfavorable for the string to stret
h further and it breaks by 
reatinga q q̄ pair. Now the individual string pie
es keep stret
hing and further keep breaking.Eventually relative velo
ities between a q q̄ pair 
onne
ted to a single string segment be
omesvery small so that no further string breaking is possible. The resulting system 
onsists ofhadrons.The 
reation of qq and qq pairs by string breaking leads to the formation of baryons.Su
h string models of hadron formation are usually 
alled fragmentation models and48



are widely used in various Monte Carlo programs simulating hadron produ
tion in e+ e− orhadron-hadron s
attering experiments.These models are espe
ially su

essful in des
ribing the produ
tion of jets in these ex-periments.Note:1. In the string model of 
on�nement, the potential energy of q q̄ pair in
reases withdistan
e as λr, where λ is the mass per unit length of the string. This is exa
tly likethe linear term in the potential models. So for a q q̄ system
V (r) = −a

r
+ λr2. QCD strings to fundamental strings : The appearan
e of a spin-2 massless parti
lein the spe
trum of strings 
ould be possibly understood as a 
ertain pomeron ex
ita-tion in QCD. But there were problems with the requirement of 26 dimension for theQCD string model. For fundamental string theory models this spin-2 massless parti-
le provided additional motivation as it 
ould be identi�ed with the graviton. Thusthe fundamental string 
ould naturally in
orporate gravity along with other types ofelementary parti
les.5.3 Bag modelsWe now dis
uss another 
lass of phenomenologi
al models whi
h a

ount for the 
on�nementof quarks inside hadrons as well as the physi
s of asymptoti
 freedom. We will then use thesemodels to rea
h a de�nite quantitative predi
tion of the transition to a QGP state.There are many di�erent versions of the Bag model. Here we will des
ribe the MIT Bagmodel whi
h 
ontains the essential 
hara
teristi
s of the phenomenology of quark 
on�nement[5℄. We will also use it to understand the 
ir
umstan
es of how quarks 
an be
ome de
on�nedin the new QGP phase.In this model one assumes that quarks are 
on�ned within a sphere of radius R. Quarksare assumed to be free inside the sphere, whi
h is in the spirit of asymptoti
 freedom. (Rwill be less than 1 fm, so the 
oupling 
onstant should be small for su
h short distan
es). Itis further assumed that quarks 
annot go outside this sphere, i.e. they are in�nitely heavy49



outside. This 
aptures the physi
s of 
on�nement of quarks inside hadrons (the 
oupling
onstant is large for large distan
es).One therefore solves the Dira
 equation for a free fermion of mass m
iγµ∂µψ(x) = mψ(x)This equation is solved in a spheri
al region of spa
e of radius R. By using appropriateboundary 
onditions, i.e, no 
urrent �ows a
ross the surfa
e of su
h a sphere we get quantizedenergy levels
ω =

(

m2 +
x2

R2

)1/2using spheri
al Bessel fun
tion jl. Here x ≃ 2.04 for the lowest level with l = 0.For a system of several quarks with di�erent �avors and masses mi, the total energy ofthe quark system is
E =

∑

i

(

m2
i +

x2
i

R2

)1/2

Niwhere Ni is number of quarks of the same type.We note that this energy 
an be lowered by in
reasing R. Thus, there is no automati

on�nement in the model, unless one arti�
ially �xes the value of R.To prevent an in
rease in R one introdu
es a `pressure' term B whi
h stabilizes thesystem. This is the essential feature of the MIT Bag model [5℄This bag pressure is dire
ted inwards, and is a phenomenologi
al quantity introdu
ed totake into a

ount the non-perturbative e�e
ts of QCD. Quarks and gluons are all 
on�nedinside the bag. In this des
ription, the total matter inside the bag must be 
olorless by virtueof Gauss's law. We know that this allows for qqq and qq states inside the bag.With this bag pressure, the total energy be
omes
E(R) =

∑

i

Ni

(

m2
i +

x2
i

R2

)1/2

+
4πR3

3
BOne 
an now minimize E(R) w.r.t R to get the equilibrium 
on�guration.Sin
e u, d are light, we may set mu = md = 0 and get

E(R) =
2.04

R
N +

4πR3

3
B50



(Re
all, 1
R

is the 
hara
teristi
 momentum and hen
e the energy for a massless parti
le
on�ned in a region of size R). Then
∂E

∂R
= 0 ⇒ −2.04

R2
N + 4πR2B = 0or R =

(N × 2.04)1/4

(4πB)1/4Putting this ba
k into the expression for E(R) we get
E =

4

3
(4πB)1/4(N × 2.04)3/4From the relation between R and B, if we take the 
on�nement radius to be 0.8 fm for a 3quark system in a baryon then we get (say for uud or udd, i.e. proton or neutron)
B1/4 = 206 MeVThe value of the bag pressure B1/4 ranges from about 145 MeV to 235 MeV.5.4 Transition to the QGP state in the Bag modelThe physi
s of the Bag model implies that if the pressure of the quark matter inside the bagis in
reased, there will be a point when the pressure dire
ted outward will be greater thanthe inward bag pressure.When this happens, the bag pressure 
annot balan
e the outward quark matter pressureand the bag 
annot 
on�ne the quark matter 
ontained inside. A new phase of matter
ontaining the quarks and gluons in an un
on�ned state is then possible. This is the QGPphase.The main 
ondition for a new phase of quark matter (QGP) is the o

urren
e of a largepressure ex
eeding the bag pressure B.A large pressure of quark matter arises in two ways1. When the temperature of the matter is high (this is when QGP forms at high temper-ature as in the early universe).2. When the baryon density is high (this is when QGP forms at high baryon density, aspossibly in the 
ores of neutron stars). 51



5.4.1 QGP at high temperatureLet us re
all the pressure of a quark-gluon system at temperature T . The total pressure is
P = gtotal

π2

90
T 4

gtotal =

[

gg +
7

8
× (gq + gq)

]

By taking only light u and d quarks, we have seen that gtotal= 37, so we get
P = 37

π2

90
T 4By equating it to the Bag pressure B, we 
an get an estimate of the 
riti
al temperature forthe transition to QGP state

37
π2

90
T 4

c = B

⇒ Tc =

[

90

37π2

]1/4

B1/4For B1/4 = 206 MeV, we get Tc ≃ 144 MeV.We will later dis
uss that the 
urrent estimates for Tc from latti
e 
omputations are near170 MeV. Note that this is of the same order as expe
ted from the running 
oupling 
onstantargument when αs be
omes small near q2 ∼ (200MeV)25.4.2 QGP with high baryon densityWe now dis
uss the possibility where the pressure inside a bag 
an be large enough to leadto the de
on�ned QGP state even at T = 0 due to high baryon density. In this 
ase thepressure arising from the Fermi momentum of quarks will be large enough to balan
e thebag pressure, leading to the QGP state. Sin
e this situation arises when the baryon numberdensity is very high, we negle
t e�e
ts of antiquarks and gluons. Again, the number of statesin a volume V with momentum p within the momentum interval dp is
gqV

(2π)3
4πp2dp52



As ea
h state is o

upied by one quark, the total number of quarks, upto the quark Fermimomentum µq (i.e., the 
hemi
al potential) is
Nq =

gqV

(2π)3

∫ µq

0

4πp2dp

=
gqV

6π2
µ3

qThus the number density of quarks (N/V ) is
nq =

gq

6π2
µ3

q[Note:
dp nq =

gq

(2π)3
4πp2dp

[

1 + exp

(

p− µq

T

)]−1

dp nq =
gq

(2π)3
4πp2dp

[

1 + exp

(

p+ µq

T

)]−1Consider the 
ase of very large value of µq, µq

T
≫ 1. Then we see that

nq dp ≃
gq

(2π)34πp2dp

(

1

1 + exp
(p−µq

T

)

) (1)The fa
tor in bra
ket is 1 for p < µq

T
and approximately 0 for p > µq

T
, whereas nq dp ≃ 0always as p > 0Thus, for the 
ase of 
omplete degenera
y i.e. µq

T
≫ 1 we have (starting with a Fermi-Dira
 distribution, )

nq dp ≃ gq

(2π)3
4πp2 dp for p < µq

≃ 0 for p > µqand nq dp ≃ 0 always.The energy of the quark gas in volume V is
Eq =

gqV

(2π)3

∫ µq

0

(4πp3)dp

=
gqV

8π2
µ4

q53



So the energy density is
ρq =

gq

8π2
µ4

qAgain, for massless quarks, the pressure is
P =

1

3
ρ =

gq

24π2
µ4

qThe transition to the QGP state will be a
hieved at a 
riti
al value of µq ≃ µc when thispressure is balan
ed by the bag pressure. This gives
P = B =

gq

24π2
µ4

c

⇒ µc =

[

24π2

gq

]1/4

B1/4Using this for nq, we get a 
riti
al number density of quarks as
ncritical

q = 4
( gq

24π2

)1/4

B3/4The 
orresponding 
riti
al baryon density be
omes
ncritical

B =
4

3

( gq

24π2

)1/4

B3/4Again, taking only u, d �avors, we take gq = 3× 2× 2 = 12 for 3 
olors, 2 spin and 2 �avors
u and d.Using B1/4 = 206 MeV we get ncritical

B = 0.72/fm3 
orresponding to the 
riti
al value ofthe 
hemi
al potential µc = 434 MeV.These values for the transition to the QGP state should be 
ompared with the nu
leonnumber density nB = 0.14/fm3 for normal nu
lear matter in equilibrium.Thus, the 
riti
al baryon density is about 5 times the normal nu
lear matter density.When the density of baryons ex
eeds this 
riti
al density, the baryon bag pressure is notstrong enough to withstand the pressure due to the degenera
y of quarks and a transitionto a new de
on�ned QGP state is possible.Note that all these estimates for Tc, nc, µc, are based on the phenomenologi
al Bagmodel and not from detailed 
al
ulations from QCD. Su
h 
al
ulation are possible fromlatti
e gauge theories and they show that these estimates are roughly 
orre
t.54



We are now in a position to have a rough pi
ture of the phase diagram of stronglyintera
ting matter. For low temperatures T and 
hemi
al potential µb we have hadroni
matter while at high temperatures and/or µb we get QGP. Later we will dis
uss this QCDphase diagram in more detail and dis
uss various interesting phases and expe
ted phasetransitions. At present we note that our sear
h for the QGP state leads us to 
onsider whereone 
an 
reate high temperature and/or high density matter.6 Relativisti
 Heavy-ion 
ollisionsWe will now dis
uss relativisti
 heavy-ion 
ollisions where su
h 
onditions are expe
ted toarise [4℄. Let us �rst dis
uss some useful variables whi
h will be needed to des
ribe parti
leprodu
tion and evolution in relativisti
 heavy-ion 
ollision experiments (RHICE). (We willreserve RHIC for the Relativisti
 Heavy Ion Collider at Brookhaven National Laboratory,USA).6.1 Rapidity VariableRapidity is a very useful variable to des
ribe parti
le produ
tion in s
attering experiments.It is de�ned as
y =

1

2
ln(P0 + Pz

P0 − Pz

)

where P0 and Pz are time and z 
omponents of the momentum of the parti
le. The z-axis istypi
ally taken along the beam dire
tion. Depending on the spin of Pz, y 
an be positive ornegative.Exer
ise 1 : In the non-relativisti
 limit the rapidity of a parti
le traveling in thelongitudinal dire
tion (we take this to be along z axis) is equal to v/C, as 
an be easily
he
ked.Exer
ise 2 : y depends on the referen
e frame in a simple manner. One 
an show thatunder a Lorentz transformation from the laboratory frame F to a new 
oordinate frame F ′moving with a velo
ity β in the z-dire
tion, the rapidity y′ of the parti
le in the new frame
F ′ is related to the rapidity y in the old frame F by

y′ = y − yβ where yβ =
1

2
ln

(

1 + β

1 − β

)55



yβ is 
alled the rapidity of the moving frame.For a free parti
le whi
h is on mass-shell, its four momentum has only three degrees offreedom and 
an be represented as (y, PT ), where PT is the transverse momentum (transverseto the z-axis). The z-axis will later be 
hosen to be along the beam dire
tion in RHICE.Exer
ise 3 : We 
an relate the 4-momentum: (P0, ~P ) and (y, PT ) as below. From thede�nition of rapidity, we have
ey =

√

P0 + Pz

P0 − Pz

and e−y =

√

P0 − Pz

P0 + PzAdding these equations we get
P0 = mT cosh(y)where mT is the transverse mass of the parti
le
m2

T = m2 + P 2
TSubtra
ting the above two equations gives

Pz = mT sinh(y)Thus, the information 
ontained in (P0, ~P ) is all 
ontained in (y, PT ).We saw that the rapidity of a parti
le in a moving frame is equal to the rapidity in thelaboratory frame minus the rapidity of the frame. This is quite like the law of addition ofvelo
ities is Galilean relativity. Thus, it is often useful to treat the rapidity variable as aRelativisti
 measure of the velo
ity of the parti
le.6.2 Pseudorapidity variableTo 
hara
terize the rapidity of a parti
le, it is ne
essary to measure two properties of theparti
le, su
h as its energy and its longitudinal momentum.In many experiments it is only possible to measure the angle of the dete
ted parti
lerelative to the beam axis. In that 
ase, it is 
onvenient to utilize this information by usingthe Pseudorapidity variable η to 
hara
terize the dete
ted parti
le. η is de�ned as:
η = −ln[tan(θ/2)]56



where θ is the angle between the parti
le momentum ~P and the beam axis. In terms of themomentum, the pseudorapidity variable 
an be written as
η =

1

2
ln[ | ~P | +PZ

| ~P | −PZ

]By 
omparing the expression for the rapidity y, we see that η 
oin
ides with y when themomentum is large, i.e. when |~P | ≃ P0.By transforming variables from (y, PT ) to (η, PT ) we 
an transform rapidity distributionsand pseudorapidity distributions to ea
h other.6.2.1 Mandelstam variablesFor a s
attering pro
ess, AB → C D, the Mandelstam variables s, t, u are de�ned as
s = (PA + PB)2 , t = (PA − PC)2

u = (PA − PD)2

√
s is the 
enter of mass energy. For 
enter of mass(CM) frame ~PB = −~PA

s = (PA + PB)µ (PA + PB)µ

= (EA + EB)2 −
(

~PA − ~PA

)2

= 4E2 if MA = MB

⇒
√
s = 2EIf A and B have the same mass, say M , then laboratory energy Elab (where one parti
le isat rest) is related to ECM by

Elab =
E2

CM

2M
−MFor RHICE, M should be the mass of a single proton. Then

ECM =
√
s =

√

2M2 + 2M Elab ≃
√

2M ElabFor example: for 200 GeV Pb206 on Pb206 
ollision in lab frame
ECM =

√
2 × 1GeV × 200GeV ≃ 20 GeVIn the laboratory frame mu
h of the energy goes in generating momenta of �nal parti
les,whereas in the 
enter of mass frame the entire energy 
an be spent in 
reating �nal parti
leswhi
h 
an have even zero momenta. That is why beam-beam 
ollisions are preferred.57



7 Bjorken's pi
ture of relativisti
 heavy-ion 
ollisionsBjorken gave a simple pi
ture of QGP formation in relativisti
 heavy ion 
ollision experiments[6℄. As we mentioned earlier, at ultra-high energies the initial nu
leons, 
ontaining the initialquarks, primarily go through ea
h other due to asymptoti
 freedom. As Lorentz 
ontra
tednu
lei go through ea
h other, the intermediate region is �lled with se
ondary partons that areprodu
ed. The early evolution is dominated by longitudinal expansion. Note that the stri
tlylongitudinal expansion assumption is valid only for t ≪ R, the nu
leus size. Overlap of thenu
lei is taken to be at time t = 0 in 
enter of mass frame. This results in a longitudinallyexpanding plasma with the �uid in the middle being at rest. Net baryon number is 
ontainednear the re
eding nu
lei.At the simplest level we assume that during the 
ollision ea
h of the nu
leon in onenu
leus has undergone a 
ollision. Essentially, one 
an sit in the rest frame of one nu
leus,and see ea
h nu
leon being stru
k as the other highly Lorentz 
ontra
ted nu
leus passesthrough it.Produ
ed partons equilibrate in a 
ertain time s
ale t0 and the system thermalizes. Thevalue of t0 is extremely 
ru
ial for the estimate of the energy density and further evolution.7.1 Estimates of the 
entral energy densityWe will make an estimate of the energy density arising in the 
entral region by assumingthat partons in this region simply arise from individual nu
leon - nu
leon 
ollisions. Thatis, we just add the 
ontribution of all the nu
leons to get the parti
le and energy densityin the 
entral region. To do that, we need to know the behavior of parti
le produ
tion inindividual nu
lear-nu
lear 
ollisions. The essential features of the hadron produ
tion in, forexample, proton-proton 
ollisions are the following:At high energy, (e.g. √
s ∼ 200 GeV ), there exists a `Central-Plateau' stru
ture in theparti
le density as a fun
tion of the rapidly variable. This 
entral plateau region plays a
entral role in developing an elegant pi
ture of the evolution of QGP in Bjorken's Boostinvariant hydrodynami
 model.We note that the rapidity variable in a moving frame y′ is related to the rapidity y inthe original frame by
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y′ = y + yframe where yframe is the frame rapidity yβ

yβ =
1

2
ln(

1 + β

1 − β
)Due to the 
entral plateau stru
ture, we note that parti
le produ
tion (i.e. dNch

dy
) will appearthe same to di�erent Lorentz observers as long as y′ and y remain in `The 
entral rapidityregion'. In this 
entral rapidity region, the des
ription of QGP (in terms of density, et
.)will be invariant under a Lorentz boost. This is 
alled Bjorken's Boost invariant model.Re
all now the relation between (P0, ~P ) for a parti
le and (y, PT )

Pz = mT sinh y

m2
T = m2 + P 2

Tand P0 = mT cosh yThe velo
ity of the parti
les in the longitudinal dire
tion is therefore
vz =

Pz

P0
= tanh yFor a parti
le starting from the origin z = 0 at t = 0 (x, y are arbitrary), we have

z

t
= vz = tanh yFrom these one 
an show that

z = τ sinh y and t = τ cosh ywhere τ is the (�uid) proper time variable de�ned by τ =
√
t2 − z2.Note : This is the proper time for the �uid element and not for individual parti
les whi
hhave nonzero pT . Equivalently we 
an show that

y =
1

2
ln t+ z

t− z
=

1

2
ln1 + vz

1 − vz(Re
all the frame rapidity)Che
k:
z

τ
=
z

t

t

τ
= tanh(y)

t√
t2 − z2or z

τ
= tanh(y)

1
√

1 − z2/t259



Again
1 − z2

t2
= 1 − tanh2 y =

1

cosh y2So z

τ
=

sinh y

cosh y
cosh yor z = τ sinh(y)Clearly

t

τ
=

1
√

1 − z2/t2
= cosh yCal
ulate:

t+ z

t− z
=

τ(cosh y + sinh y)

τ(cosh y − sinh y)

=
ey + e−y + ey − e−y

ey + e−y − ey + e−y
=

2ey

2e−y
= e2y

⇒ y =
1

2
lnt+ z

t− z

or y =
1

2
ln1 + vz

1 − vzThis is like frame rapidity, though here we have parti
le velo
ity.7.1.1 Central rapidity regionIn the 
enter of mass system, the region of small rapidity is 
alled �The 
entral rapidityregion". We have z = τ sinh y ≃ τy for y ≪ 1. This means for a given proper time τ , asmall value of rapidity y is asso
iated with a small value of z. Hen
e the 
entral rapidityregion is asso
iated with the 
entral spatial region around z ∼ 0 where the nu
leon-nu
leon
ollision has taken pla
e.With a relation like z = τ sinh y, the rapidity distribution dN
dy

of parti
les 
an be tran-s
ribed as a spatial distribution from whi
h the initial energy density 
an be inferred.It is easier to measure pseudo rapidity variable
η = −ln(tan(θ/2))For ultra relativisti
 parti
les η ≃ y
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7.1.2 Energy density estimateIn the 
enter of mass frame the �uid is at rest at z = 0. The volume of the region under
onsideration is S ×∆z where S is the transverse area of the Lorentz 
ontra
ted nu
lei. We�x our 
onsideration to the proper time τ0 at whi
h a QGP system may have formed byequilibration.So τ0 is the time at whi
h the initial system of quarks and gluons a
hieves thermalequilibrium. It is a very important quantity for whi
h various estimates exist. This plays a
ru
ial role in the evolution of plasma.The number density of parti
les in this region at time τ0 is
∆N

S∆z
|z=0 =

1

S

dN

dy

dy

dz
|y=0where dN

dy
refers to the observed hadrons (number of parti
les) per unit rapidity. From z =

τ sinh y we have
dy

dz
|z=0 =

1

τ0 cosh y
|y=0 at τ = τ0So the number density is (at τ = τ0):

n0 =
1

S

dN

dy

1

τ0 cosh y
|y=0We have seen that the energy of a parti
le P0 is

P0 = mT cosh y where m2
T = m2 + p2

T

mT is the transverse mass. So the energy density at time τo is
ǫ0 = ρ0 n0 =

mT

Sτ0

dN

dy
|y=0This estimate was �rst given by Bjorken. Here one 
an either estimate dN

dy
by 
ombining theexpe
ted dN

dy
resulting from ea
h nu
lear-nu
lear 
ollision, or, one 
an take dN

dy
|y=0 from someexperiment and from that dedu
e ǫ0 at time τ0. From that estimate one 
an then de
idewhether a QGP state is expe
ted to have formed at τ0 (i.e. if ǫ0 > 2.5GeV/fm3 from thebag model, for example).Estimates of τ0 range from those based on 
ross-se
tion 
al
ulations to those 
oming fromMonte-Carlo simulations. It is expe
ted that for 
ollision at higher 
enter of mass energy τ0will be smaller. 61



For SPS experiment at CERN in the 
ollision of 16O on Au at 200 GeV (Lab frame)
dNch

dη

(

∼ same asdNch

dy

)

≃ 160Various estimates give τ0 ∼ 0.4 fm for these energies and mT ≃ 400 MeV. Then
ǫ0 ≃

0.4GeV (×160)

0.4 fm SFor a nu
leus of mass number A the radius is given by
r ≃ 1.2A1/3fmSo area S = (1.2)2A2/3 fm2.Putting this value we get

ǫ0 ∼ 3 − 4GeV/fm3This energy is high enough that we expe
t that QGP may have formed. Now one seesthe importan
e of τ0.If τ0 is larger by a fa
tor 3, say τ0 ∼ 1.2fm, then ǫ0 ∼ 1GeV/fm3 and one does notexpe
t QGP.7.2 Evolution of QGPBjorken's pi
ture respe
ts boost invarian
e for boosts along the z axis. So physi
al quantitiesshould depend only on proper time τ . That is, we say that the energy density ǫ(τ) has avalue ǫ0 at τ = τ0.Re
all that τ =
√
t2 − z2So a given τ0 is a
hieved at di�erent values of t at di�erent z (where t is the laboratorytime, or the proper time measured at z = 0).We 
an then write down a pi
ture of the evolution of QGP in Bjorken's model. The QGPis modeled as an ideal �uid with 4-velo
ity uµ (uµu

µ = 1). The energy momentum tensor is
Tµν = (ǫ+ P )uµuν − gµνPwhere ǫ=ǫ(τ) and P = P (τ) are the energy density and pressure (they only depend on τ).The energy-momentum 
onservation equation is (negle
ting e�e
ts of vis
osity),62



∂Tµν

∂xµ

= 0With initial 
onditions ǫ(τ0) = ǫ0, and uµ(τ0) = 1
τ0

(t, 0, 0, z)Exer
ise: Show that the energy density evolves as
dǫ

dτ
= −ǫ+ P

τUsing the relation P = ǫ
3
we get ǫ(τ) ∼ τ−4/3 and using ideal gas equation T (τ) ∼ τ−1/3.Further, one 
an show that

d

dτ

(

dS

dy

)

= 0where ds
dy

is the entropy per unit rapidity whi
h is 
onstant under evolution.As the QGP system expands, it 
ools and eventually hadronizes at τ = τh when itstemperature falls below the quark-hadron transition temperature Tc (present latti
e estimatessuggest a value of about 170 MeV for Tc). Note that we only get hadrons from the freezeout surfa
e, i.e. after the proper time when hadrons stop intera
ting. From these hadronswe have to dedu
e about the transient stage of QGP between τ0 < τ < τh. This is almostlike looking at 
osmi
 mi
rowave ba
kground photons from the surfa
e of last s
attering. Wehave to dedu
e what happened at in�ation, et
. from these photons.This brings us to the issue of signals of QGP.8 QGP SignalsWe need signals of the intermediate, transient stage of QGP. This 
an only be in terms ofsome spe
ial properties of the �nally dete
ted parti
les [4℄.We will dis
uss some important signals whi
h have been proposed for the dete
tion ofQGP.8.1 Produ
tion of Dileptons and photons in QGP
qq → γ∗ → l+l− (Drell - Yan pro
ess)63



The lepton 
ross-se
tion with quarks in the QGP is ele
tromagneti
 ∼
(

α√
s

)2 (with
α = 1

137
and √

s the 
enter of mass energy) and is mu
h smaller than the strong 
ross-se
tion. Therefore leptons after produ
tion do not further intera
t with QGP and dire
tlyrea
h the dete
tor.On the other hand, the produ
tion rate and the momentum distribution of the produ
ed
l+l− pairs depend on the momentum distribution of quarks and antiquarks in the plasma,whi
h are governed by the thermodynami
 
ondition of the plasma. Therefore, l+ l− pairs
arry information on the thermodynami
 state of the medium at the moment of their pro-du
tion and 
an help us to dete
t whether a QGP state has been a
hieved.Su
h produ
tion also happens by hadroni
 intera
tion. So, one needs to 
al
ulate all
ontributions and then 
ompare with the data.Photon produ
tion:

q + q → γ + g

qq → γγ has a smaller 
ross-se
tion 
ompared to qq → γg by a fa
tor (αe

αs

).Dete
tion of the photon has exa
tly similar information as Dileptons be
ause photonsalso do not further intera
t with the QGP after their produ
tion.8.2 J/ψ Suppression
J/ψ parti
le is a bound state of cc quark-antiquark system (Charmonium states). As the cquark is heavy, the bound state has a small radius. (Re
all mc ∼ 1.3 GeV.)These Charmonium states are well des
ribed by a potential model where the potentialbetween c and c is taken as

V (r) = −αeff

r
+KrFitting with cc states gives αeff = 0.52, K = 0.926 GeV/fm with mc = 1.84 GeV. When thesestates are formed during the early stages of 
ollision, then they have to survive through aQGP state if they have to be �nally dete
ted.We know that quarks are not 
on�ned in the QGP phase so all hadrons should disappear.But that depends on the temperature s
ale of the QGP and the time available before theQGP hadronizes. 64



In the QGP phase the QCD string disappears so there is no Kr term in V (r). Howeverthe Coulomb part 
ould still let cc system remain bound. However, this Coulomb intera
tionis modi�ed be
ause of Debye s
reening of 
harges in the plasma
V (r) ∼ e−r/λd

rwhere λd is the Debye s
reening length.If λd < rbound where rbound is the bound state size for the cc state, then the Coulombattra
tive part between the cc pair is also seriously modi�ed. (Re
all that the Kr part hasanyway disappeared due to the QGP.) In that 
ase the cc state will melt away. This willlead to the suppression of J/ψ produ
tion.Note : If the QGP never forms then this suppression me
hanisms will not be operativeand one should expe
t a larger number of J/ψ parti
les.Also for lighter mesons (made up of u, d, s) this type of signal 
an not be used sin
ethey are abundantly produ
ed in thermal pro
esses near T ∼ Tc. The cc are too heavy tobe produ
ed like that.8.3 Ellipti
 FlowThis signal has yielded very useful and surprising information about the equation of state ofmatter a
hieved at RHIC showing that it is like an ideal liquid.For non 
entral 
ollisions with non zero impa
t parameter, one gets a QGP formed whi
his not spheri
al but has an ellipsoidal shape. After thermalization there is some 
entralpressure while P = 0 outside the QGP region.Clearly the pressure gradient is larger along smaller dimension of the ellipsoid. Thisfor
es the plasma to undergo hydrodynami
 expansion at a faster rate in that dire
tion
ompared to the other (transverse) dire
tion. Thus parti
les produ
ed have larger momentumin that dire
tion than in the other dire
tion. In other words, the spatial anisotropy getstransferred to the momentum anisotropy due to hydrodynami
al �ow. This 
learly depends
ru
ially on the equation of state relating pressure to energy density. Thus, the observedmomentum anisotropy of parti
le distribution 
an be used to extra
t useful informationabout hydrodynami
 �ow at very early stages probing dire
tly the equation of state of theQGP. 65



If thermalization is delayed by a time ∆τ , any ellipti
 �ow would have to buildon a redu
ed spatial deformation and would 
ome out smaller.The data seems to be in very good agreement with the predi
tion of ideal �uid hydrody-nami
s pointing to a very low vis
osity of the QGP produ
ed. The QGP does not behave asa weekly intera
ting quark-gluon gas as suggested by naive perturbation theory, nor does itbehave like vis
ous honey (as suggested by some 
al
ulations). This is termed as sQGP :Strongly Coupled QGP, with a strong non-perturbative intera
tion.9 Phase TransitionsNote that the signals dis
ussed above depend on the existen
e of the QGP phase. We knowthat as the QGP expands it undergoes a phase transition to the hadroni
 phase (quark-hadron phase transition). Su
h a phase transition 
an have its own interesting signatures onthe �nal parti
le (hadron) distribution. For su
h signals we should understand the nature ofthe phase transition expe
ted as the QGP hadronizes.From the partition fun
tion we get the free energy:
F = −T lnZ. Now we 
onsider di�erent types of phase transitions.9.1 First order phase transitionHere the free energy F is 
ontinuous but ∂F

∂T
is dis
ontinuous. Re
all that

F = E − TS, S =
∂F

∂T

ǫ =
E

V
=
F + T ∂F

∂T

VAs F is 
ontinuous but ∂F
∂T

is dis
ontinuous, we 
on
lude that the energy density ǫ is dis
on-tinuous as a fun
tion of temperature during a �rst order phase transition. The di�eren
e ofthe energy density ǫ at the dis
ontinuity gives the value of the latent heat.66



9.2 Se
ond order phase transitionHere the free energy F and ∂F/∂T are 
ontinuous while ∂2F/∂T 2 is dis
ontinuous (or diver-gent) at T . Be
ause the spe
i�
 heat at 
onstant volume is related to ∂E
∂T

or ∂2F
∂T 2 , a se
ondorder phase transition is 
hara
terized by a 
ontinuous free energy and energy density but adis
ontinuous (or divergent) spe
i�
 heat at 
onstant volume.Se
ond order transitions are also 
alled as 
ontinuous phase transition. Here the orderparameter goes to zero 
ontinuously as T → TC , the phase transition temperature. In
ontrast, the order parameter 
hanges dis
ontinuously as T → TC for a �rst order transition.9.3 Order ParameterThe order parameter is a quantity (thermodynami
 variable) whi
h is typi
ally zero in onephase, the disordered phase whi
h has higher symmetry, and is non-zero in the ordered phasehaving lower symmetry. (It may happen that the symmetry does not 
hange during a phasetransition, as in a liquid-gas transition.)The free energy density plot for a se
ond order phase transition has minimum of the freeenergy at zero order parameter for T > TC while for T < TC the minimum of the free energyshifts 
ontinuously away from the zero order parameter value. An example is given by thefollowing free energy density,

F = −aφ2 + bφ4, where a < 0 for T > TC while a > 0 for T < TC .For a �rst order transition the order parameter 
hanges dis
ontinuously through TC .Here the transition pro
eeds via bubble nu
leation. Following gives an example of freeenergy density for this 
ase
F = aφ2 + bφ3 + cφ4where a, c > 0 and b 
hanges sign through TC , being positive for high T .
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9.4 Landau Theory of Phase TransitionThis is a phenomenologi
al theory. This postulates that one 
an write down a fun
tion Lknown as the Landau free energy whi
h depends on the 
oupling 
onstants Ki and the orderparameter η. L has the property that the state of the system is spe
i�ed by the absolute(i.e. global) minimum of L w.r.t. η. L has dimensions of energy, and is related to the Gibbsfree energy of the system. Importantly it is NOT the same as Gibbs free energy, hen
e thereis no requirement for it to be 
onvex fun
tion of the order parameter.We assume that thermodynami
 fun
tions of state 
an be 
omputed by di�erentiating L,as if it were indeed the Gibbs free energy.To spe
ify L it is su�
ient to use the following 
onstraints on L (it is not 
ertain whetherall these are ne
essary).1) L has to be 
onsistent with the symmetries of the system.2) Near TC , L 
an be expanded in a power series in η i.e., L is an analyti
 fun
tion ofboth η and the parameters [K]. In a spatially uniform system of volume V , one 
an expressthe Landau free energy density L as:
L =

L

V
=

∞
∑

n=0

an([K], T )ηn3) In an inhomogeneous system, with a spatially varying order parameter pro�le η(r), L is alo
al fun
tion, i.e. it depends only on η(r) and a �nite number of derivatives.4) In the disordered phase of the system, the order parameter η = 0, while it is small andnon-zero in the ordered phase, near to the transition point. Thus, for T > TC , η = 0 solvesthe minimum equation for L; for T < TC , η 6= 0 solves the minimum equation. Thus, for ahomogeneous system:
L =

4
∑

n=0

an([K], T )ηnwhere we have expanded L to O(η4) in the expe
tation that η is small, and all the essentialphysi
s near TC appears at this order. Whether or not the trun
ation of the power seriesfor L is valid will turn out to depend on both the dimensionality of the system and the 
odimension of the singular point of interest.
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9.5 Constru
tion of LConsider
∂L

∂η
= a1 + 2a2η + 3a3η

2 + 4a4η
3 = 0Sin
e for T > TC , η = 0, a1 = 0Note: This is not true when the symmetry is also broken expli
itly in whi
h 
ase theorder parameter never 
ompletely vanishes.If η → −η is a symmetry of the free energy; then a3 = a5 = a7 = .. = 0. So

L = a0([k], T ) + a2([K], T )η2 + a4([K], T )η4Note that the requirement that L be analyti
 in η pre
ludes terms like |η| in L. Also notethat �niteness of L requires a4 > 0.Coe�
ients an([K], T ) :
a0([K], T ) is simply the value of L in the high temperature phase, and we expe
t it tovary smoothly through TC . It represents the degrees of freedom in the system whi
h arenot des
ribed by the order parameter, and so may be thought of as the smooth ba
kground,on whi
h the singular behavior is superimposed. It may be said that L − a0 represents the
hange in the Gibbs free energy due to the presen
e of the ordered state, apart from the fa
tthat L is not exa
tly the Gibbs free energy.For dis
ussing the order parameter, one may set a0 = 0.We expand a2 and a4 as

a4 = a0
4 + (T − TC)a1

4 + ...It will be su�
ient to just take a4 to be a positive 
onstant. The temperature dependen
eof this equation will turn out not to dominate the leading behavior of the thermodynami
snear TC .
a2 = a0

2 +

(

T − TC

TC

)

a1
2 + 0

(

(T − TC)2
)Continuous phase transition:

L = atη2 + bη4

t =
T − TC

TC69



First order transition:
L = atη2 + bη4 − cη39.6 Con�nement-de
on�nement transitionConsider the 
ase of SU(3) gauge theory at �nite temperature without dynami
al quarks.We will 
al
ulate the free energy for this system with a single, in�nitely heavy, test quark atposition r0. (In this se
tion we follow the dis
ussion in ref. [7℄.) We start with the evolutionequation for the �eld operator ψ(r0, t) of this stati
 quark (suppressing the 
olor label),

(

−i ∂
∂t

− gA0(r0, t)

)

ψ(r0, t) = 0where A0 ≡ T.A0 (see Se
t. 2.3.1). This equation gives
ψ(r0, t) = T exp(ig

∫ t

0

dt′A0(r0, t
′))ψ(r0, 0).Here T denotes time ordering. Now, the partition fun
tion for this system is given by

Z = e−βF (r0) =
1

N

∑

s

< s|e−βH |s >where the 1/N fa
tor (N = 3 for QCD is the number of 
olors) is introdu
ed to 
ompensatefor the 
olor degenera
y fa
tor for the stati
 quark, and the sum is over all the states of thesystem with the in�nitely heavy quark at r0. Using the quark �eld operator ψ(r0, t), we 
anwrite it as
e−βF (r0) =

1

N

∑

sg

< sg|ψ(r0, 0)e−βHψ†(r0, 0)|sg >where, now, the sum is over all states |sg > with no quarks, that is, over states of pure gluetheory.Re
all, from Se
t. 4.1, for Eu
lidean time t,
eβHψ(r0, 0)e−βH = ψ(r0, β)Thus, we get 70



e−βF (r0) =
1

N

∑

sg

< sg|e−βHψ(r0, β)ψ†(r0, 0)|sg >We introdu
e the Wilson line,
L(r) =

1

N
TrT exp(ig

∫ β

0

dtA0(r0, t)).With this, using the solution ψ(r0, t) of the time evolution equation above, and theequal time anti-
ommutation relation of the fermion �elds (with dis
rete spa
e labeling, forsimpli
ity), we 
an write
e−βF (r0) = Tr [e−βHL(r0)]where the tra
e is over all states of the pure glue theory. Dividing this by the free energywithout any heavy fermion, we get the di�eren
e in the free energy, ∆Fq, due to introdu
tionof the in�nitely heavy quark at r0 as
e−β∆Fq =< L(r0) >where < .. > denotes the thermal expe
tation value.Re
all that A0(r0, t) must be periodi
 in the Eu
lidean time t.

A0(r0, 0) = A0(r0, β)Thus the dt integral in the expression for the Wilson line is a
tually a loop integral. This isalso 
alled as the `Polyakov Loop'.
〈L(r0)〉 is an order parameter for the 
on�nement - de
on�nement phase transitionCon�ning phase:We expe
t the free energy with an isolated quark to divergei, i.e., ∆F = ∞ ⇒< L >= 0.De
on�ning phase:Here isolated quarks 
an exist, leading to a �nite 
hange in the free energy w.r.t. thepure glue ba
kground, i.e., ∆F is �nite ⇒< L >= e−β∆F 6= 0.Thus < L > is an order parameter for the de
on�nement - 
on�nement (D-C) phasetransition. 71



9.7 D-C transition as a symmetry breaking transitionRe
all the gauge transformation,
Aµ → UAµU

−1 + iU∂µU
−1

U(x, t) ∈ SU(N)

where Aµ ≃ Aµ
λa

2Under the gauge transformation,
L ∼ Tr [T exp

(

ig

∫ β

0

dτA0(x, τ)

)]

≃ TrΩ(x)will transform as
L(x) → TrU(x, β)Ω(x)U †(x, 0)This 
an be 
he
ked by expanding the time ordered exponential. Thus L is invariant when

U is periodi
,
U(x, 0) = U(x, β)(using the 
y
li
 property of the tra
e).However, we note that the Eu
lidean a
tion

SF =
1

4

∫

d3x dτ F a
µν F

aµνis in fa
t invariant under a larger group than the periodi
 gauge transformations. Theonly physi
ally important 
onstraint is that Aµ (~x, t) remain periodi
 in τ when gaugetransformed. Consider, e.g.,
Aµ(x, 0) = Aµ(x, β)Under a gauge transformation

A′
µ(x, 0) = U(x, τ)Aµ(x, 0)U−1(x, τ) + iU(x, τ)∂µU

−1(x, τ)|τ=072



Similarly,
A′

µ(x, β) = U(x, τ)Aµ(x, β)U−1(x, τ) + iU(x, τ)∂µU
−1(x, τ)|τ=βor,

A′
µ(x, β) = U(x, τ)Aµ(x, 0)U−1(x, τ) + iU(x, τ)∂µU

−1(x, τ)|τ=βFirst take U(x, β) = U(x, 0) due to the identi�
ation of points τ = 0 and τ = β. Then,
A′

µ(x, β) = U(x, τ)Aµ(x, 0)U−1(x, τ) + iU(x, τ)∂µU
−1(x, τ)|τ=0

= A′
µ(x, 0)Hen
e A′

µ also remains periodi
 and hen
e single valued.Now note that in the above argument we 
ould take
U(x, β) = ZU(x, 0)where Z ∈ SU(3) (or Z ∈ SU(N) in general) su
h that Z U = U Z for every U ∈ SU(N)(so that U AU−1 → Z U AU−1Z−1 = U AU−1) and Z is spa
e time independent.Thus, as long as Z 
ommutes with every element of SU(N), Aµ

′ remains periodi
 in τ if
Aµ is.Elements Z 
onstitute the 
enter of SU(N) by de�nition

Z = exp(2π i n

N

)

∈ Z(N)where Z(N) is the 
y
li
 group of order N and n = 1, 2...N , n = N being the identity of
SU(N).Note that DetZ = exp

(

2πin

N
×N

)

= 1So Z ∈ SU(N) (
learly Z†Z = 1).For QCD we have
Z ∈ Z373



Thus, we 
on
lude that �nite temperature SU(N) gauge theory (Eu
lidean a
tion) has ZNsymmetry (Z3 for QCD) as the Eu
lidean a
tion (or the partition fun
tion and hen
e thefree energy) is invariant under ZN transformations of the basi
 variables Aµ(x).(Quarks break this ZN symmetry expli
itly be
ause fermions obey an antiperiodi
 bound-ary 
ondition ψ(x, β) = −ψ(x, 0).)Though the Eu
lidean a
tion is invariant under this extra ZN transformations, the orderparameter L(x) is not. Re
all that
L(x) = Tr( T exp

[

ig

∫ β

0

dτA0(x, τ)

])

≡ TrΩ(x).Under gauge transformation U(x, τ) we have
L(x) → L′(x) = Tr[U(x, β)Ω(x)U−1(x, 0)].If U(x, β) = Z U(x, 0), we get

L′(x) = Z Tr[U(x, 0)Ω(x)U−1(x, 0)] = Z Tr Ω(x) = Z L(x)So, while under periodi
 gauge transformation, L → L, under an aperiodi
 gauge transfor-mation U(x, β) = ZU(x, 0)

L→ Z L where Z ∈ Z3Con�ning Phase:With < L >= 0 (
orresponding to e−β∆F ,∆F = ∞), the system respe
ts Z3 symmetryas < L >= 0 is invariant under L → Z L transformation.De
on�ning Phase:With < L > 6= 0, the system is NOT invariant under Z3 transformation. There are 3equivalent phases 
hara
terized by < L >, < Z L >, and < Z2 L > whi
h all 
orrespond tophysi
ally the same de
on�ning phase. We 
on
lude that in the de
on�ning phase the Z3symmetry is spontaneously broken.Here the symmetry restored phase is the low temperature 
on�ning phase. This is in
ontra
t to most 
ases, where the symmetry restoration happens in the high temperaturephase.The symmetries of the order parameter 
an be used to 
hara
terize the phase transitionin the Ginzburg-Landau approa
h. 74



The order parameter for SU(2) gauge theory has the same symmetry as the Ising modelwhi
h has a global Z2 symmetry. In 3 + 1 dimensions,the Ising model undergoes a se
ondorder transition. Hen
e we expe
t that SU(2) gauge theory exhibits a se
ond order transition.Similarly, Z(3) spin models in 3 + 1 dimensions display a �rst order transition. Hen
e weexpe
t that pure SU(3) QCD will give a �rst order transition. Latti
e 
al
ulations 
on�rmthese expe
tations.Clearly, for QCD, L3 → Z3L3 = L3.Thus, in the 
onstru
tion of L and free energy, one 
an write down
V (L) = a|L|2 + b|L|4 + C(L3 + L∗3)The L3 term makes the transition �rst order.Note : For SU(2) gauge theory this term 
annot be written down. One 
an write downa term Re L2 whi
h makes the transition se
ond order.9.8 Con�nement - De
on�nement transition with dynami
al quarksAs mentioned above, with quarks, Z(N) symmetry is broken expli
itly (similar to expli
-itly breaking of 
hiral symmetry, in some sense.) < L > is non-zero even in the 
on�nedphase. The 
on�nment-de
on�nement transition whi
h is �rst order for pure gauge theory,is smoothed into a 
ross-over when light quarks are present. Latti
e results seem to suggestno �rst order transition.An important point to note is that with quarks, no appropriate order parameter is known.In 
losing we mention that in dis
ussing di�erent phase transitions in QCD one is invari-ably in the non-perturbative regime, where reliable 
al
ulations 
annot be performed. Hen
eone either has to do latti
e 
al
ulations, or use e�e
tive models using symmetry 
onsidera-tions (as we did above for the D-C transition).Thus, many theoreti
al dis
ussions about the nature of the phase transition in QCD arebased on the Landau theory of phase transitions. In addition, one may use Random Matrixmodels or spe
i�
 e�e
tive models.
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