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Polymorphism 

Object-oriented programming languages support polymorphism (literal meaning many 
shapes), which is characterized by the phrase "one interface, multiple methods." 

In simple terms, polymorphism is the attribute that allows one interface to control access to a 

general class of actions. The specific action selected is determined by the exact nature of the 

situation. A real-world example of polymorphism is a thermostat. No matter what type of furnace 

your house has (gas, oil, electric, etc.), the thermostat works the same way. In this case, the 

thermostat (which is the interface) is the same no matter what type of furnace (method) you 

have. For example, if you want a 70-degree temperature, you set the thermostat to 70 degrees. It 

doesn't matter what type of furnace actually provides the heat. 

This same principle can also apply to programming. For example, you might have a program that 

defines three different types of stacks. One stack is used for integer values, one for character 

values, and one for floating-point values. Because of polymorphism, you can define one set of 

names, push() and pop() , that can be used for all three stacks. In your program you will create 

three specific versions of these functions, one for each type of stack, but names of the functions 

will be the same. The compiler will automatically select the right function based upon the data 

being stored. Thus, the interface to a stack—the functions push() and pop() —are the same no 

matter which type of stack is being used. The individual versions of these functions define the 

specific implementations (methods) for each type of data. 

Polymorphism helps reduce complexity by allowing the same interface to be used to access a 

general class of actions. It is the compiler's job to select the specific action (i.e., method) as it 

applies to each situation. You, the programmer, don't need to do this selection manually. You 

need only remember and utilize the general interface.  

Among various ways of achieving polymorphism, we have discussed a few: operator 

overloading, function overloading, virtual function. 



Virtual functions: 

A virtual function is a member function that is declared within a base class and redefined by a 

derived class. To create a virtual function, precede the function's declaration in the base class 

with the keyword virtual. When a class containing a virtual function is inherited, the derived 

class redefines the virtual function to fit its own needs. In essence, virtual functions implement 

the "one interface, multiple methods" philosophy that underlies polymorphism. The virtual 

function within the base class defines the form of the interface to that function. Each 

redefinition of the virtual function by a derived class implements its operation as it relates 

specifically to the derived class. That is, the redefinition creates a specific method. 

When accessed "normally," virtual functions behave just like any other type of class member 

function. However, what makes virtual functions important and capable of supporting run-time 

polymorphism is how they behave when accessed via a pointer. A base-class pointer can be used 

to point to an object of any class derived from that base. When a base pointer points to a derived 

object that contains a virtual function, C++ determines which version of that function to call 

based upon the type of object pointed to by the pointer. And this determination is made at run 
time. Thus, when different objects are pointed to, different versions of the virtual function are 

executed. The same effect applies to base-class references. 

 
#include <iostream> 

using namespace std; 

 

class base { 

public: 

virtual void vfunc() { 

cout << "This is base's vfunc().\n"; 

} 

}; 

 

class derived1 : public base { 

public: 

  void vfunc() { 

  cout << "This is derived1's vfunc().\n"; 

  } 

}; 

 

class derived2 : public base { 

public: 

  void vfunc() { 

  cout << "This is derived2's vfunc().\n"; 

  } 

}; 

int main() 

{ 

base *p, b; 

derived1 d1; 

derived2 d2; 

 

// point to base 

p = &b; 

p->vfunc(); // access base's vfunc() 

 

// point to derived1 

p = &d1; 



p->vfunc(); // access derived1's vfunc() 

 

// point to derived2 

p = &d2; 

p->vfunc(); // access derived2's vfunc() 

return 0; 

} 

 

This program displays the following: 

 
This is base's vfunc(). 

This is derived1's vfunc(). 

This is derived2's vfunc(). 

 

As the program illustrates, inside base, the virtual function vfunc() is declared. Notice that the 

keyword virtual precedes the rest of the function declaration. When vfunc() is redefined by 

derived1 and derived2, the keyword virtual is not needed. (However, it is not an error to 

include it when redefining a virtual function inside a derived class; it's just not needed.) 

 

We could have written: 

 
d2.vfunc(); // calls derived2's vfunc() 

 

Although calling a virtual function in this manner is not wrong, it simply does not take advantage 

of the virtual nature of vfunc() . 
In the preceding example, a virtual function was called through a base-class pointer, but the 

polymorphic nature of a virtual function is also available when called through a base-class 

reference. 

In many situations there can be no meaningful definition of a virtual function within a base class. 

For example, a base class may not be able to define an object sufficiently to allow a base-class 

virtual function to be created. Further, in some situations you will want to ensure that all derived 

classes override a virtual function. To handle these two cases, C++ supports the pure virtual 

function. 

A pure virtual function is a virtual function that has no definition within the base class. To 

declare a pure virtual function, use this general form: 

 
virtual type func-name(parameter-list) = 0; 

 

When a virtual function is made pure, any derived class must provide its own definition. If the 

derived class fails to override the pure virtual function, a compile-time error will result. 



Abstract classes: 

A class that contains at least one pure virtual function is said to be abstract. Because an abstract 

class contains one or more functions for which there is no definition (that is, a pure virtual 

function), no objects of an abstract class may be created. Instead, an abstract class constitutes an 

incomplete type that is used as a foundation for derived classes. 

Although you cannot create objects of an abstract class, you can create pointers and references to 

an abstract class. This allows abstract classes to support run-time polymorphism, which relies 

upon base-class pointers and references to select the proper virtual function. 

 

One of the central aspects of object-oriented programming is the principle of "one interface, 

multiple methods." This means that a general class of actions can be defined, the interface to 

which is constant, with each derivation defining its own specific operations. In concrete C++ 

terms, a base class can be used to define the nature of the interface to a general class. Each 

derived class then implements the specific operations as they relate to the type of data used by 

the derived type. 

One of the most powerful and flexible ways to implement the "one interface, multiple methods" 

approach is to use virtual functions, abstract classes, and run-time polymorphism. Using these 

features, you create a class hierarchy that moves from general to specific (base to derived). 

Following this philosophy, you define all common features and interfaces in a base class. In 

cases where certain actions can be implemented only by the derived class, use a virtual function. 

In essence, in the base class you create and define everything you can that relates to the general 

case. The derived class fills in the specific details. 

 



Template function / class 

The template is one of C++'s most sophisticated and high-powered features. Although not part of 

the original specification for C++, it was added several years ago and is supported by all modern 

C++ compilers. Using templates, it is possible to create generic functions and classes. In a 

generic function or class, the type of data upon which the function or class operates is specified 

as a parameter. Thus, you can use one function or class with several different types of data 

without having to explicitly recode specific versions for each data type. 

A generic function defines a general set of operations that will be applied to various types of 

data. The type of data that the function will operate upon is passed to it as a parameter. Through 

a generic function, a single general procedure can be applied to a wide range of data. As you 

probably know, many algorithms are logically the same no matter what type of data is being 

operated upon. For example, the Quicksort sorting algorithm is the same whether it is applied to 

an array of integers or an array of floats. It is just that the type of the data being sorted is 

different. By creating a generic function, you can define the nature of the algorithm, independent 

of any data. Once you have done this, the compiler will automatically generate the correct code 

for the type of data that is actually used when you execute the function. In essence, when you 

create a generic function you are creating a function that can automatically overload itself. 

A generic function is created using the keyword template. The normal meaning of the word 

"template" accurately reflects its use in C++. It is used to create a template (or framework) that 

describes what a function will do, leaving it to the compiler to fill in the details as needed. The 

general form of a template function definition is shown here: 

 
template <class Ttype> ret-type func-name(parameter list) 

{ 

// body of function 

} 

 

Here, Ttype is a placeholder name for a data type used by the function. This name may be used 

within the function definition. However, it is only a placeholder that the compiler will 

automatically replace with an actual data type when it creates a specific version of the function. 

Although the use of the keyword class to specify a generic type in a template declaration is 

traditional, you may also use the keyword typename. 

The following example creates a generic function that swaps the values of the two variables with 

which it is called. Because the general process of exchanging two values is independent of the 

type of the variables, it is a good candidate for being made into a generic function. 

 
// Function template example. 

#include <iostream> 

using namespace std; 

 

// This is a function template. 

template <class X> void swapargs(X &a, X &b) 

{ 

X temp; 

temp = a; 

a = b; 

b = temp; 

} 

 

 



int main() 

{ 

int i=10, j=20; 

double x=10.1, y=23.3; 

char a='x', b='z'; 

 

cout << "Original i, j: " << i << ' ' << j << '\n'; 

cout << "Original x, y: " << x << ' ' << y << '\n'; 

cout << "Original a, b: " << a << ' ' << b << '\n'; 

 

swapargs(i, j); // swap integers 

swapargs(x, y); // swap floats 

swapargs(a, b); // swap chars 

 

cout << "Swapped i, j: " << i << ' ' << j << '\n'; 

cout << "Swapped x, y: " << x << ' ' << y << '\n'; 

cout << "Swapped a, b: " << a << ' ' << b << '\n'; 

return 0; 

} 

 

Let's look closely at this program. The line: 

 
template <class X> void swapargs(X &a, X &b) 

 

tells the compiler two things: that a template is being created and that a generic definition is 

beginning. Here, X is a generic type that is used as a placeholder. After the template portion, 

the function swapargs() is declared, using X as the data type of the values that will be 

swapped. 

In main() , the swapargs() function is called using three different types of data: ints, 

doubles, and chars. Because swapargs() is a generic function, the compiler automatically 

creates three versions of swapargs(): one that will exchange integer values, one that will 

exchange floating-point values, and one that will swap characters. 

Here are some important terms related to templates. First, a generic function (that is, a function 

definition preceded by a template statement) is also called a template function. When the 

compiler creates a specific version of this function, it is said to have created a specialization. 
This is also called a generated function. The act of generating a function is referred to as 

instantiating it. Put differently, a generated function is a specific instance of a template function. 

Since C++ does not recognize end-of-line as a statement terminator, the template clause of a 

generic function definition does not have to be on the same line as the function's name. The 

following example shows another common way to format the swapargs() function. 

 
template <class X> 

void swapargs(X &a, X &b) 

{ 

X temp; 

temp = a; 

a = b; 

b = temp; 

} 

 



If you use this form, it is important to understand that no other statements can occur between the 

template statement and the start of the generic function definition. For example, the fragment 

shown next will not compile. 
 

// This will not compile. 

template <class X> 

int i; // this is an error 

void swapargs(X &a, X &b) 

{ 

X temp; 

temp = a; 

a = b; 

b = temp; 

} 

 

You can define more than one generic data type in the template statement by using a comma-

separated list. 

 
#include <iostream> 

using namespace std; 

 

template <class type1, class type2> 

void myfunc(type1 x, type2 y) 

{ 

cout << x << ' ' << y << '\n'; 

} 

 

int main() 

{ 

myfunc(10, "I like C++"); 

myfunc(98.6, 19L); 

return 0; 

} 

 

In this example, the placeholder types type1 and type2 are replaced by the compiler with the 

data types int and char *, and double and long, respectively, when the compiler generates the 

specific instances of myfunc() within main() . 
When you create a template function, you are, in essence, allowing the compiler to generate as 

many different versions of that function as are necessary for handling the various ways that your 

program calls the function. 

Even though a generic function overloads itself as needed, you can explicitly overload one, too. 

This is formally called explicit specialization. If you overload a generic function, that 

overloaded function overrides (or "hides") the generic function relative to that specific version. 

 

You can mix standard parameters with generic type parameters in a template function. These 

non-generic parameters work just like they do with any other function. 

 
template<class X> void tabOut(X data, int tab) 

 

Generic functions are similar to overloaded functions except that they are more restrictive. When 

functions are overloaded, you may have different actions performed within the body of each 



function. But a generic function must perform the same general action for all versions—only the 

type of data can differ. 

Common examples of the use of generic functions are while carrying out sort, compaction of 

arrays etc. 

 

In addition to generic functions, you can also define a generic class. When you do this, you 

create a class that defines all the algorithms used by that class; however, the actual type of the 

data being manipulated will be specified as a parameter when objects of that class are created. 

Generic classes are useful when a class uses logic that can be generalized. For example, the same 

algorithms that maintain a queue of integers will also work for a queue of characters, and the 

same mechanism that maintains a linked list of mailing addresses will also maintain a linked list 

of auto part information. When you create a generic class, it can perform the operation you 

define, such as maintaining a queue or a linked list, for any type of data. The compiler will 

automatically generate the correct type of object, based upon the type you specify when the 

object is created. 

The general form of a generic class declaration is shown here: 

 
template <class Ttype> class class-name  
{ 

. 

.. 

} 

 

Here, Ttype is the placeholder type name, which will be specified when a class is instantiated. If 

necessary, you can define more than one generic data type using a comma-separated list. Once 

you have created a generic class, you create a specific instance of that class using the following 

general form: 

 
class-name <type> ob; 

 

Here, type is the type name of the data that the class will be operating upon. Member functions 

of a generic class are themselves automatically generic. You need not use template to explicitly 

specify them as such. 

 

As you can see, the declaration of a generic class is similar to that of a generic function. 

 

A template class can have more than one generic data type. Simply declare all the data types 

required by the class in a comma-separated list within the template specification. 

 

To illustrate the practical benefits of template classes, let's look at one way in which they are 

commonly applied. We have already discussed about operator overloading, and you know that 

we can overload the [ ] operator. Doing so allows you to create your own array implementations, 

including "safe arrays" that provide run-time boundary checking. As you know, in C++, it is 

possible to overrun (or underrun) an array boundary at run time without generating a run-time 

error message. However, if you create a class that contains the array, and allow access to that 

array only through the overloaded [ ] subscripting operator, then you can intercept an out-of-

range index. 



By combining operator overloading with a template class, it is possible to create a generic safe-

array type that can be used for creating safe arrays of any data type. This type of array is shown 

in the following program: 

 
// A generic safe array example. 

#include <iostream> 

#include <cstdlib> 

using namespace std; 

 

const int SIZE = 10; 

 

template <class AType> class atype 

{ 

AType a[SIZE]; 

public: 

  atype() { 

  register int i; 

  for(i=0; i<SIZE; i++) a[i] = i; 

  } 

  AType &operator[](int i); 

}; 

 

// Provide range checking for atype. 

template <class AType> AType &atype<AType>::operator[](int i) 

{ 

if(i<0 || i> SIZE-1) 

  { 

  cout << "\nIndex value of "; 

  cout << i << " is out-of-bounds.\n"; 

  exit(1); 

  } 

return a[i]; 

} 

 

int main() 

{ 

atype<int> intob; // integer array 

atype<double> doubleob; // double array 

int i; 

 

cout << "Integer array: "; 

for(i=0; i<SIZE; i++) intob[i] = i; 

for(i=0; i<SIZE; i++) cout << intob[i] << " "; 

cout << '\n'; 

 

cout << "Double array: "; 

for(i=0; i<SIZE; i++) doubleob[i] = (double) i/3; 

for(i=0; i<SIZE; i++) cout << doubleob[i] << " "; 

cout << '\n'; 

 

intob[12] = 100; // generates runtime error 

return 0; 

} 

 



This program implements a generic safe-array type and then demonstrates its use by creating an 

array of ints and an array of doubles. You should try creating other types of arrays. As this 

example shows, part of the power of generic classes is that they allow you to write the code once, 

debug it, and then apply it to any type of data without having to re-engineer it for each specific 

application. 

 

In the template specification for a generic class, you may also specify non-type arguments. That 

is, in a template specification you can specify what you would normally think of as a standard 

argument, such as an integer or a pointer. The syntax to accomplish this is essentially the same as 

for normal function parameters: simply include the type and name of the argument. For example, 

here is a better way to implement the safe-array class presented in the preceding section. 

 
// Demonstrate non-type template arguments. 

#include <iostream> 

#include <cstdlib> 

using namespace std; 

 

// Here, int size is a non-type argument. 

template <class AType, int size> class atype 

{ 

AType a[size]; // length of array is passed in size 

public: 

  atype() 

  { 

  register int i; 

  for(i=0; i<size; i++) a[i] = i; 

  } 

  AType &operator[](int i); 

}; 

 

// Provide range checking for atype. 

template <class AType, int size> 

AType &atype<AType, size>::operator[](int i) 

{ 

if(i<0 || i> size-1) 

  { 

  cout << "\nIndex value of "; 

  cout << i << " is out-of-bounds.\n"; 

  exit(1); 

  } 

 

return a[i]; 

} 

 

int main() 

{ 

atype<int, 10> intob; // integer array of size 10 

atype<double, 15> doubleob; // double array of size 15 

int i; 

 

cout << "Integer array: "; 

for(i=0; i<10; i++) intob[i] = i; 

for(i=0; i<10; i++) cout << intob[i] << " "; 

cout << '\n'; 



 

cout << "Double array: "; 

for(i=0; i<15; i++) doubleob[i] = (double) i/3; 

for(i=0; i<15; i++) cout << doubleob[i] << " "; 

cout << '\n'; 

 

intob[12] = 100; // generates runtime error 

return 0; 

} 

 

Look carefully at the template specification for atype. Note that size is declared as an int. This 

parameter is then used within atype to declare the size of the array a. Even though size is 

depicted as a "variable" in the source code, its value is known at compile time. This allows it to 

be used to set the size of the array. size is also used in the bounds checking within the 

operator[ ]() function. Within main() , notice how the integer and floating-point arrays are 

created. The second parameter specifies the size of each array. Non-type parameters are 

restricted to integers, pointers, or references. Other types, such as float, are not allowed. The 

arguments that you pass to a non-type parameter must consist of either an integer constant, or a 

pointer or reference to a global function or object. Thus, non-type parameters should themselves 

be thought of as constants, since their values cannot be changed. For example, inside operator[ 
]() , the following statement is not allowed. 
 

size = 10; // Error 

 

Since non-type parameters are treated as constants, they can be used to set the dimension of an 

array, which is a significant, practical benefit. As the safe-array example illustrates, the use of 

non-type parameters greatly expands the utility of template classes. Although the information 

contained in the non-type argument must be known at compile-time, this restriction is mild 

compared with the power offered by non-type parameters. 

 

A template class can have a default argument associated with a generic type. For example, 

 
template <class X=int> class myclass { //... 

 

Here, the type int will be used if no other type is specified when an object of type myclass is 

instantiated. 

 

It is also permissible for non-type arguments to take default arguments. The default value is used 

when no explicit value is specified when the class is instantiated. Default arguments for non-type 

parameters are specified using the same syntax as default arguments for function parameters. 

 

Templates help you achieve one of the most elusive goals in programming: the creation of 

reusable code. Through the use of template classes you can create frameworks that can be 

applied over and over again to a variety of programming situations. 

Generic functions and classes provide a powerful tool that you can use to amplify your 

programming efforts. Once you have written and debugged a template class, you have a solid 

software component that you can use with confidence in a variety of different situations. You are 

saved from the tedium of creating separate implementations for each data type with which you 

want the class to work. 



While it is true that the template syntax can seem a bit intimidating at first, the rewards are well 

worth the time it takes to become comfortable with it. Template functions and classes are already 

becoming commonplace in programming, and this trend is expected to continue. For example, 

the STL (Standard Template Library) defined by C++ is, as its name implies, built upon 

templates. One last point: although templates add a layer of abstraction, they still ultimately 

compile down to the same, high-performance object code that you have come to expect from 

C++. 



  

 

Standard Template Library: 

 

Now we will explore what is considered by many to be the most important new feature added to 

C++ in recent years: the standard template library (STL). The inclusion of the STL was one of 

the major efforts that took place during the standardization of C++. It provides general-purpose, 

templatized classes and functions that implement many popular and commonly used algorithms 

and data structures, including, for example, support for vectors, lists, queues, and stacks. It also 

defines various routines that access them. Because the STL is constructed from template classes, 

the algorithms and data structures can be applied to nearly any type of data. 

The STL is a complex piece of software engineering that uses some of C++'s most sophisticated 

features. To understand and use the STL, you must have a complete understanding of the C++ 

language, including pointers, references, and templates. Frankly, the template syntax that 

describes the STL can seem quite intimidating— although it looks more complicated than it 

actually is. 

 

At the core of the standard template library are three foundational items: containers, 

algorithms, and iterators. These items work in conjunction with one another to provide off-the-

shelf solutions to a variety of programming problems. 

Containers are objects that hold other objects, and there are several different types. For 

example, the vector class defines a dynamic array, deque creates a double-ended queue, and 

list provides a linear list. These containers are called sequence containers because in STL 

terminology, a sequence is a linear list. In addition to the basic containers, the STL also defines 

associative containers, which allow efficient retrieval of values based on keys. For example, a 

map provides access to values with unique keys. Thus, a map stores a key/value pair and 

allows a value to be retrieved given its key. 

Each container class defines a set of functions that may be applied to the container. For example, 

a list container includes functions that insert, delete, and merge elements. A stack includes 

functions that push and pop values. 

Algorithms act on containers. They provide the means by which you will manipulate the 

contents of containers. Their capabilities include initialization, sorting, searching, and 

transforming the contents of containers. Many algorithms operate on a range of elements within 

a container. 

Iterators are objects that are, more or less, pointers. They give you the ability to cycle through 

the contents of a container in much the same way that you would use a pointer to cycle through 

an array. 

There are five types of iterators: 

Iterator   Access    Allowed 

Random  Access Store and retrieve values.  Elements may be accessed randomly. 

Bidirectional Store and retrieve values.   Forward and backward moving. 

Forward  Store and retrieve values.   Forward moving only. 

Input  Retrieve, but not store values.   Forward moving only. 

Output  Store, but not retrieve values.  Forward moving only. 

 



In general, an iterator that has greater access capabilities can be used in place of one that has 

lesser capabilities. For example, a forward iterator can be used in place of an input iterator. 

Iterators are handled just like pointers. You can increment and decrement them. You can apply 

the * operator to them. Iterators are declared using the iterator type defined by the various 

containers. 

The STL also supports reverse iterators. Reverse iterators are either bidirectional or random-

access iterators that move through a sequence in the reverse direction. Thus, if a reverse iterator 

points to the end of a sequence, incrementing that iterator will cause it to point to one element 

before the end. 

When referring to the various iterator types in template descriptions, the following terms are 

often used: 

Term    Represents 

BiIter    Bidirectional iterator 

ForIter   Forward iterator 

InIter    Input iterator 

OutIter   Output iterator 

RandIter   Random access iterator 
 

In addition to containers, algorithms, and iterators, the STL relies upon several other standard 

components for support. Chief among these are allocators, predicates, comparison functions, and 

function objects. 

 

As explained, containers are the STL objects that actually store data. The containers defined by 

the STL are shown in the following table. Also shown are the headers necessary to use each 

container. 
Container  Description Required     Header 
bitset    A set of bits.      <bitset> 
deque    A double-ended queue.     <deque> 
list    A linear list.      <list> 
map    Stores key/value pairs in which each key is 

associated with only one value. 
<map> 

multimap   Stores key/value pairs in which one key 
may be associated with two or more values. 

<map> 
Multiset    A set in which each element is not 

necessarily unique. 
<set> 

priority_queue   A priority queue.     <queue> 
queue    A queue.      <queue> 
set    A set in which each element is unique.   <set> 
stack    A stack.      <stack> 
vector    A dynamic array.     <vector> 
 

Since the names of the generic placeholder types in a template class declaration are arbitrary, the 

container classes declare typedefed versions of these types. This makes the type names 

concrete. Some of the most common typedef names are shown below: 
size_type    Some type of integer 
reference    A reference to an element 
const_reference   A const reference to an element 



iterator    An iterator 
const_iterator    A const iterator 
reverse_iterator   A reverse iterator 
const_reverse_iterator  A const reverse iterator 
value_type    The type of a value stored in a container 
allocator_type    The type of the allocator 
key_type    The type of a key 
key_compare    The type of a function that compares two keys 
value_compare   The type of a function that compares two values 

 

Although the internal operation of the STL is highly sophisticated, to use the STL is actually 

quite easy. First, you must decide on the type of container that you wish to use. Each offers 

certain benefits and trade-offs. For example, a vector is very good when a random-access, 

array-like object is required and not too many insertions or deletions are needed. A list offers 

low-cost insertion and deletion but trades away speed. A map provides an associative container, 

but of course incurs additional overhead.  

Once you have chosen a container, you will use its member functions to add elements to the 

container, access or modify those elements, and delete elements. Except for bitset, a container 

will automatically grow as needed when elements are added to it and shrink when elements are 

removed. 

Elements can be added to and removed from a container a number of different ways. For 

example, both the sequence containers (vector, list, and deque) and the associative containers 

(map, multimap, set, and multiset) provide a member function called insert() , which 

inserts elements into a container, and erase() , which removes elements from a container. The 

sequence containers also provide push_back() and push_front() , which add an element to 

the end or the beginning of a container, respectively. These functions are probably the most 

common way that individual elements are added to a sequence container. You can remove 

individual elements from a sequence container by using pop_back() and pop_front() , which 

remove elements from the end and start of the container. 

One of the most common ways to access the elements within a container is through an iterator. 

The sequence and the associative containers provide the member functions begin() and end() , 
which return iterators to the start and end of the container, respectively. These iterators are very 

useful when accessing the contents of a container. For example, to cycle through a container, you 

can obtain an iterator to its beginning using begin() and then increment that iterator until its 

value is equal to end() . 
The associative containers provide the function find() , which is used to locate an element in an 

associative container given its key. Since associative containers link a key with its value, find() 
is how most elements in such a container are located. Since a vector is a dynamic array, it also 

supports the standard array-indexing syntax for accessing its elements. 

Once you have a container that holds information, it can be manipulated using one or more 

algorithms. The algorithms not only allow you to alter the contents of a container in some 

prescribed fashion, but they also let you transform one type of sequence into another. 

 

An example with Vectors: Perhaps the most general-purpose of the containers is vector. The 

vector class supports a dynamic array. This is an array that can grow as needed. As you know, in 

C++ the size of an array is fixed at compile time. While this is by far the most efficient way to 

implement arrays, it is also the most restrictive because the size of the array cannot be adjusted at 

run time to accommodate changing program conditions. A vector solves this problem by 



allocating memory as needed. Although a vector is dynamic, you can still use the standard array 

subscript notation to access its elements. 

The template specification for vector is shown here: 

 
template <class T, class Allocator = allocator<T>> class vector 

 

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults to 

the standard allocator. vector has the following constructors: 

 
explicit vector(const Allocator &a = Allocator( ) ); 

explicit vector(size_type num, const T &val = T ( ), 

const Allocator &a = Allocator( )); 

vector(const vector<T, Allocator> &ob); 

template <class InIter> vector(InIter start, InIter end, 

const Allocator &a = Allocator( )); 

 

The first form constructs an empty vector. The second form constructs a vector that has num 
elements with the value val. The value of val may be allowed to default. The third form 

constructs a vector that contains the same elements as ob. The fourth form constructs a vector 

that contains the elements in the range specified by the iterators start and end. 

Any object that will be stored in a vector must define a default constructor. It must also define 

the < and == operations. Some compilers may require that other comparison operators be 

defined. (Since implementations vary, consult your compiler's documentation for precise 

information.) All of the built-in types automatically satisfy these requirements. 

Although the template syntax looks rather complex, there is nothing difficult about declaring a 

vector. Here are some examples: 

 
vector<int> iv; // create zero-length int vector 

vector<char> cv(5); // create 5-element char vector 

vector<char> cv(5, 'x'); // initialize a 5-element char vector 

vector<int> iv2(iv); // create int vector from an int vector 

 

The following comparison operators are defined for vector: 

 
==, <, <=, !=, >, >= 

 

The subscripting operator [ ] is also defined for vector. This allows you to access the elements 

of a vector using standard array subscripting notation. 

 

Here is a short example that illustrates the basic operation of a vector. 

 
// Demonstrate a vector. 

#include <iostream> 

#include <vector> 

#include <cctype> 

using namespace std; 

 

int main() 

{ 

vector<char> v(10); // create a vector of length 10 



int i; 

 

// display original size of v 

cout << "Size = " << v.size() << endl; 

 

// assign the elements of the vector some values 

for(i=0; i<10; i++) v[i] = i + 'a'; 

 

// display contents of vector 

cout << "Current Contents:\n"; 

for(i=0; i<v.size(); i++) cout << v[i] << " "; 

cout << "\n\n"; 

 

cout << "Expanding vector\n"; 

/* put more values onto the end of the vector, 

it will grow as needed */ 

for(i=0; i<10; i++) v.push_back(i + 10 + 'a'); 

// display current size of v 

cout << "Size now = " << v.size() << endl; 

 

// display contents of vector 

cout << "Current contents:\n"; 

for(i=0; i<v.size(); i++) cout << v[i] << " "; 

cout << "\n\n"; 

 

// change contents of vector 

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]); 

cout << "Modified Contents:\n"; 

for(i=0; i<v.size(); i++) cout << v[i] << " "; 

cout << endl; 

 

return 0; 

} 

 

The output of this program is shown here: 

 
Size = 10 

Current Contents: 

a b c d e f g h i j 

Expanding vector 

Size now = 20 

Current contents: 

a b c d e f g h i j k l m n o p q r s t 

Modified Contents: 

A B C D E F G H I J K L M N O P Q R S T 

 

Let's look at this program carefully. In main() , a character vector called v is created with an 

initial capacity of 10. That is, v initially contains 10 elements. This is confirmed by calling the 

size() member function. Next, these 10 elements are initialized to the characters a through j and 

the contents of v are displayed. Notice that the standard array subscripting notation is employed. 

Next, 10 more elements are added to the end of v using the push_back() function. This causes 

v to grow in order to accommodate the new elements. As the output shows, its size after these 

additions is 20. Finally, the values of v's elements are altered using standard subscripting 

notation. 



There is one other point of interest in this program. Notice that the loops that display the contents 

of v use as their target value v.size() . One of the advantages that vectors have over arrays is 

that it is possible to find the current size of a vector. As you can imagine, this can be quite useful 

in a variety of situations. 
 

As you know, arrays and pointers are tightly linked in C++. An array can be accessed either 

through subscripting or through a pointer. The parallel to this in the STL is the link between 

vectors and iterators. You can access the members of a vector using subscripting or through the 

use of an iterator. The following example shows how. 

 
// Access the elements of a vector through an iterator. 

#include <iostream> 

#include <vector> 

#include <cctype> 

using namespace std; 

 

int main() 

{ 

vector<char> v(10); // create a vector of length 10 

vector<char>::iterator p; // create an iterator 

int i; 

 

// assign elements in vector a value 

p = v.begin(); 

i = 0; 

while(p != v.end()) 

  { 

  *p = i + 'a'; 

  p++; 

  i++; 

  } 

 

// display contents of vector 

cout << "Original contents:\n"; 

p = v.begin(); 

while(p != v.end()) 

  { 

  cout << *p << " "; 

  p++; 

  } 

cout << "\n\n"; 

 

// change contents of vector 

p = v.begin(); 

while(p != v.end()) 

  { 

  *p = toupper(*p); 

  p++; 

  } 

 

// display contents of vector 

cout << "Modified Contents:\n"; 

p = v.begin(); 

while(p != v.end()) 

  { 



  cout << *p << " "; 

  p++; 

  } 

 

cout << endl; 

 

return 0; 

} 

 

The output from this program is 

 
Original contents: 

a b c d e f g h i j 

Modified Contents: 

A B C D E F G H I J 

 

In the program, notice how the iterator p is declared. The type iterator is defined by the 

container classes. Thus, to obtain an iterator for a particular container, you will use a declaration 

similar to that shown in the example: simply qualify iterator with the name of the container. In 

the program, p is initialized to point to the start of the vector by using the begin() member 

function. This function returns an iterator to the start of the vector. This iterator can then be used 

to access the vector an element at a time by incrementing it as needed. This process is directly 

parallel to the way a pointer can be used to access the elements of an array. To determine when 

the end of the vector has been reached, the end() member function is employed. This function 

returns an iterator to the location that is one past the last element in the vector. Thus, when p 
equals v.end() , the end of the vector has been reached. 

 

An example with strings: Here, we will deal with one of C++'s most important new classes: 

string. The string class defines a string data type that allows you to work with character strings 

much as you do other data types: using operators. The string class is closely related to the STL. 

The C++ string classes make string handling extraordinarily easy. For example, using string 

objects you can use the assignment operator to assign a quoted string to a string, the + operator to 

concatenate strings, and the comparison operators to compare strings. The following program 

illustrates these operations. 

 
// A short string demonstration. 

#include <iostream> 

#include <string> 

using namespace std; 

 

int main() 

{ 

string str1("Alpha"); 

string str2("Beta"); 

string str3("Omega"); 

string str4; 

 

// assign a string 

str4 = str1; 

cout << str1 << "\n" << str3 << "\n"; 

 

// concatenate two strings 



str4 = str1 + str2; 

cout << str4 << "\n"; 

 

// concatenate a string with a C-string 

str4 = str1 + " to " + str3; 

cout << str4 << "\n"; 

 

// compare strings 

if(str3 > str1) cout << "str3 > str1\n"; 

if(str3 == str1+str2) 

cout << "str3 == str1+str2\n"; 

 

/* A string object can also be 

assigned a normal string. */ 

str1 = "This is a null-terminated string.\n"; 

cout << str1; 

 

// create a string object using another string object 

string str5(str1); 

cout << str5; 

 

// input a string 

cout << "Enter a string: "; 

cin >> str5; 

cout << str5; 

 

return 0; 

} 

 

This program produces the following output: 

 
Alpha 

Omega 

AlphaBeta 

Alpha to Omega 

str3 > str1 

This is a null-terminated string. 

This is a null-terminated string. 

Enter a string: STL 

STL 

 

Notice the ease with which the string handling is accomplished. For example, the + is used to 

concatenate strings and the > is used to compare two strings. To accomplish these operations 

using C-style, null-terminated strings, less convenient calls to the strcat() and strcmp() 
functions would be required. Because C++ string objects can be freely mixed with C-style null-

terminated strings, there is no disadvantage to using them in your program—and there are 

considerable benefits to be gained. 

There is one other thing to notice in the preceding program: the size of the strings is not 

specified. string objects are automatically sized to hold the string that they are given. Thus, 

when assigning or concatenating strings, the target string will grow as needed to accommodate 

the size of the new string. It is not possible to overrun the end of the string. This dynamic aspect 

of string objects is one of the ways that they are better than standard null-terminated strings 

(which are subject to boundary overruns) 



The STL is now an important, integral part of the C++ language. Many programming tasks can 

(and will) be framed in terms of it. The STL combines power with flexibility, and while its 

syntax is a bit complex, its ease of use is remarkable. No C++ programmer can afford to neglect 

the STL because it will play an important role in the way future programs are written. 



Recapitulation of the topics covered on the first two days: 

Arguments: In C++, the use of void is redundant and unnecessary. As a general rule, in C++ 

when a function takes no parameters, its parameter list is simply empty; the use of void is not 

required. 

 

Default to int: There has been a fairly recent change to C++ that may affect older C++ code as 

well as C code being ported to C++. The C language and the original specification for C++ state 

that when no explicit type is specified in a declaration, type int is assumed. However, the 

"default-to-int" rule was dropped from C++ a couple of years ago, during standardization. The 

next standard for the C language is also expected to drop this rule, but it is still currently in effect 

and is used by a large amount of existing code. The "default-to-int" rule is also applied in much 

older C++ code. 

 

The most common use of the "default-to-int" rule is with function return types. It was common 

practice to not specify int explicitly when a function returned an integer result. 

 

Header files: When C++ was first invented and for several years after that, it used the same style 

of headers as did C. That is, it used header files. In fact, Standard C++ still supports C-style 

headers for header files that you create and for backward compatibility. However, Standard C++ 

created a new kind of header that is used by the Standard C++ library. The new-style headers do 
not specify filenames. Instead, they simply specify standard identifiers that may be mapped to 

files by the compiler, although they need not be. The new-style C++ headers are an abstraction 

that simply guarantee that the appropriate prototypes and definitions required by the C++ library 

have been declared. 

 

Since the new-style headers are not filenames, they do not have a .h extension. They consist 

solely of the header name contained between angle brackets. For example, here are some of the 

new-style headers supported by Standard C++. 

 
<iostream> <fstream> <vector> <string> 

 

The new-style headers are included using the #include statement. The only difference is that the 

new-style headers do not necessarily represent filenames. 

 

Because C++ includes the entire C function library, it still supports the standard C-style header 

files associated with that library. That is, header files such as stdio.h or ctype.h are still 

available. However, Standard C++ also defines new-style headers that you can use in place of 

these header files. The C++ versions of the C standard headers simply add a "c" prefix to the 

filename and drop the .h. For example, the C++ new-style header for math.h is <cmath>. The 

one for string.h is <cstring>. Although it is currently permissible to include a C-style header 

file when using C library functions, this approach is deprecated by Standard C++ (that is, it is not 

recommended). For this reason, from this point forward, this book will use new-style C++ 

headers in all #include statements. If your compiler does not support new-style headers for the 

C function library, then simply substitute the old-style, C-like headers. 

 

Namespaces: When you include a new-style header in your program, the contents of that header 

are contained in the std namespace. A namespace is simply a declarative region. The purpose 



of a namespace is to localize the names of identifiers to avoid name collisions. Elements declared 

in one namespace are separate from elements declared in another. 

 



Class: In C++, class creates a new data type that may be used to create objects of that type. 

Therefore, an object is an instance of a class in just the same way that some other variable is an 

instance of the int data type, for example. Put differently, a class is a logical abstraction, while 

an object is real. (That is, an object exists inside the memory of the computer.) 

The general form of a simple class declaration is 

 
class class-name 

{ 

private data and functions 

 

public: 

  public data and functions 

} object name list; 

 

Of course, the object name list may be empty. 

 

By default, functions and data declared within a class are private to that class and may be 

accessed only by other members of the class. The public access specifier allows functions or 

data to be accessible to other parts of your program. We also looked at the protected access 

specifier that is useful while deriving inherited classes from a base class. Once an access 

specifier has been used, it remains in effect until either another access specifier is encountered or 

the end of the class declaration is reached. 

 

Functions that are declared within a class are called member functions. Member functions may 

access any element of the class of which they are a part. This includes all private elements. 

Variables that are elements of a class are called member variables or data members. 

Collectively, any element of a class can be referred to as a member of that class. 

 

When it comes time to actually code a function that is the member of a class, you must tell the 

compiler which class the function belongs to by qualifying its name with the name of the class of 

which it is a member. The :: is called the scope resolution operator. If we use void 

stack::push(int i), we are essentially telling the compiler that this version of push() 

belongs to the stack class or, put differently, that this push() is in stack's scope. In C++, 

several different classes can use the same function name. The compiler knows which function 

belongs to which class because of the scope resolution operator. 

 

In general, you should make all data members of a class private to that class. This is part of the 

way that encapsulation is achieved. However, there may be situations in which you will need to 

make one or more variables public. (For example, a heavily used variable may need to be 

accessible globally in order to achieve faster run times.) When a variable is public, it may be 

accessed directly by any other part of your program. The syntax for accessing a public data 

member is the same as for calling a member function: Specify the object's name, the dot 

operator, and the variable name. 

 



Constructors / Destructors: A constructor function is a special function that is a member of a 

class and has the same name as that class. The general use of a constructor function is for 

initialization purposes. In C++, constructor functions cannot return values and, thus, have no 

return type. There are certain default constructors that can be modified to suit one’s purpose. It is 

quite natural to have more than a couple of constructors, including some to which it is possible to 

pass arguments. Typically, these arguments help initialize an object when it is created. 

Parameterized constructor functions are very useful because they allow you to avoid having to 

make an additional function call simply to initialize one or more variables in an object. Each 

function call you can avoid makes your program more efficient. One of the default constructors, 

namely, the copy constructor uses object passing by reference. 

The complement of the constructor is the destructor. In many circumstances, an object will need 

to perform some action or actions when it is destroyed. Local objects are created when their 

block is entered, and destroyed when the block is left. Global objects are destroyed when the 

program terminates. When an object is destroyed, its destructor (if it has one) is automatically 

called. There are many reasons why a destructor function may be needed. For example, an object 

may need to deallocate memory that it had previously allocated or it may need to close a file that 

it had opened. In C++, it is the destructor function that handles deactivation events. The 

destructor has the same name as the constructor, but it is preceded by a ~. Note that, like 

constructor functions, destructor functions do not have return values. 

As a general rule, an object's constructor is called when the object comes into existence, and an 

object's destructor is called when the object is destroyed. Precisely when these events occur is 

discussed here. 

A local object's constructor function is executed when the object's declaration statement is 

encountered. The destructor functions for local objects are executed in the reverse order of the 

constructor functions. 

Global objects have their constructor functions execute before main() begins execution. Global 

constructors are executed in order of their declaration, within the same file. You cannot know the 

order of execution of global constructors spread among several files. Global destructors execute 

in reverse order after main() has terminated. 

 
#include <iostream> 

using namespace std; 

 

class myclass 

{ 

public: 

  int who; 

  myclass(int id); 

  ~myclass(); 

} glob_ob1(1), glob_ob2(2); 

 

myclass::myclass(int id) 

{ 

cout << "Initializing " << id << "\n"; 

who = id; 

} 

 

myclass::~myclass() 

{ 

cout << "Destructing " << who << "\n"; 



} 

int main() 

{ 

myclass local_ob1(3); 

cout << "This will not be first line displayed.\n"; 

myclass local_ob2(4); 

return 0; 

} 

 

It displays this output: 

 
Initializing 1 

Initializing 2 

Initializing 3 

This will not be first line displayed. 

Initializing 4 

Destructing 4 

Destructing 3 

Destructing 2 

Destructing 1 

 

Inline functions: In C++, you can create short functions that are not actually called; rather, their 

code is expanded in line at the point of each invocation. This process is similar to using a 

function-like macro. To cause a function to be expanded in line rather than called, precede its 

definition with the inline keyword. 

The reason that inline functions are an important addition to C++ is that they allow you to create 

very efficient code. Since classes typically require several frequently executed interface 

functions (which provide access to private data), the efficiency of these functions is of critical 

concern. As you probably know, each time a function is called, a significant amount of overhead 

is generated by the calling and return mechanism. Typically, arguments are pushed onto the stack 

and various registers are saved when a function is called, and then restored when the function 

returns. The trouble is that these instructions take time. However, when a function is expanded in 

line, none of those operations occur. Although expanding function calls in line can produce faster 

run times, it can also result in larger code size because of duplicated code. For this reason, it is 

best to inline only very small functions. Further, it is also a good idea to inline only those 

functions that will have significant impact on the performance of your program. 

Like the register specifier, inline is actually just a request, not a command, to the compiler. 

The compiler can choose to ignore it. Also, some compilers may not inline all types of functions. 

For example, it is common for a compiler not to inline a recursive function. You will need to 

check your compiler's user manual for any restrictions to inline. Remember, if a function cannot 

be inlined, it will simply be called as a normal function. 

 

The this pointer: 

When a member function is called, it is automatically passed an implicit argument that is a 

pointer to the invoking object (that is, the object on which the function is called). This pointer is 

called this. To understand this, first consider a program that creates a class called pwr that 

computes the result of a number raised to some power: 

 
#include <iostream> 

using namespace std; 



 

class pwr 

{ 

double b; 

int e; 

double val; 

public: 

  pwr(double base, int exp); 

  double get_pwr() { return val; } 

}; 

 

pwr::pwr(double base, int exp) 

{ 

b = base; 

e = exp; 

val = 1; 

if(exp==0) return; 

for( ; exp>0; exp--) val = val * b; 

} 

 

int main() 

{ 

pwr x(4.0, 2), y(2.5, 1), z(5.7, 0); 

cout << x.get_pwr() << " "; 

cout << y.get_pwr() << " "; 

cout << z.get_pwr() << "\n"; 

return 0; 

} 

Within a member function, the members of a class can be accessed directly, without any object 

or class qualification. Thus, inside pwr(), the statement 

 
b = base; 

 

means that the copy of b associated with the invoking object will be assigned the value 

contained in base. However, the same statement can also be written like this: 

 
this->b = base; 

 

The this pointer points to the object that invoked pwr(). Thus, this –>b refers to that object's 

copy of b. For example, if pwr() had been invoked by x (as in x(4.0, 2)), then this in the 

preceding statement would have been pointing to x. Writing the statement without using this is 

really just shorthand. 

Here is the entire pwr() function written using the this pointer: 

 
pwr::pwr(double base, int exp) 

{ 

this->b = base; 

this->e = exp; 

this->val = 1; 

if(exp==0) return; 

for( ; exp>0; exp--) 

this->val = this->val * this->b; 

} 



Actually, no C++ programmer would write pwr() as just shown because nothing is gained, and 

the standard form is easier. However, the this pointer is very important when operators are 

overloaded and whenever a member function must utilize a pointer to the object that invoked it. 

 

Remember that the this pointer is automatically passed to all member functions. Therefore, 

get_pwr() could also be rewritten as shown here: 

 
double get_pwr() { return this->val; } 

 

In this case, if get_pwr() is invoked like this: 

 
y.get_pwr(); 

 

then this will point to object y. 
Two final points about this: First, friend functions are not members of a class and, therefore, 

are not passed a this pointer. Second, static member functions do not have a this pointer. 



Allocation of memory: new and delete vs malloc and free 

C++ provides two dynamic allocation operators: new and delete. These operators are used to 

allocate and free memory at run time. Dynamic allocation is an important part of almost all real-

world programs. C++ also supports dynamic memory allocation functions, called malloc() and 

free(). These are included for the sake of compatibility with C. However, for C++ code, you 

should use the new and delete operators because they have several advantages. 

The new operator allocates memory and returns a pointer to the start of it. The delete operator 

frees memory previously allocated using new. The general forms of new and delete are shown 

here: 
p_var = new type; 

delete p_var; 

 

Here, p_var is a pointer variable that receives a pointer to memory that is large enough to hold 

an item of type type. 

Since the heap is finite, it can become exhausted. If there is insufficient available memory to fill 

an allocation request, then new will fail and a bad_alloc exception will be generated. This 

exception is defined in the header <new>. Your program should handle this exception and take 

appropriate action if a failure occurs.  If this exception is not handled by your program, then your 

program will be terminated. 

The delete operator must be used only with a valid pointer previously allocated by using new. 

Using any other type of pointer with delete is undefined and will almost certainly cause serious 

problems, such as a system crash. 

Although new and delete perform functions similar to malloc() and free(), they have several 

advantages. First, new automatically allocates enough memory to hold an object of the specified 

type. You do not need to use the sizeof operator. Because the size is computed automatically, it 

eliminates any possibility for error in this regard. Second, new automatically returns a pointer of 

the specified type. You don't need to use an explicit type cast as you do when allocating memory 

by using malloc(). Finally, both new and delete can be overloaded, allowing you to create 

customized allocation systems. Although there is no formal rule that states this, it is best not to 

mix new and delete with malloc() and free() in the same program. There is no guarantee that 

they are mutually compatible. 

You can allocate arrays using new by using this general form: 
p_var = new array_type [size]; 

Here, size specifies the number of elements in the array. To free an array, use this form of 

delete: 
delete [ ] p_var; 

Here, the [ ] informs delete that an array is being released. 

You can allocate objects dynamically by using new. When you do this, an object is created and 

a pointer is returned to it. The dynamically created object acts just like any other object. When it 

is created, its constructor function (if it has one) is called. When the object is freed, its destructor 

function is executed. 

You can allocate arrays of objects, but there is one catch. Since no array allocated by new can 

have an initializer, you must make sure that if the class contains constructor functions, one will 

be parameterless. If you don't, the C++ compiler will not find a matching constructor when you 

attempt to allocate the array and will not compile your program. 



Function overloading: One way that C++ achieves polymorphism is through the use of function 

overloading. In C++, two or more functions can share the same name as long as their parameter 

declarations are different. In this situation, the functions that share the same name are said to be 

overloaded, and the process is referred to as function overloading. 

In general, to overload a function, simply declare different versions of it. The compiler takes care 

of the rest. You must observe one important restriction when overloading a function: the type 

and/or number of the parameters of each overloaded function must differ. It is not sufficient for 

two functions to differ only in their return types. They must differ in the types or number of their 

parameters. (Return types do not provide sufficient information in all cases for the compiler to 

decide which function to use.) Of course, overloaded functions may differ in their return types, 

too. 

Overloading of constructor function is very common since to overload a constructor is to allow 

an object to be created by using the most appropriate and natural means for each particular 

circumstance. Another common reason constructor functions are overloaded is to allow both 

initialized and uninitialized objects (or, more precisely, default initialized objects) to be created. 

This is especially important if you want to be able to create dynamic arrays of objects of some 

class, since it is not possible to initialize a dynamically allocated array. To allow uninitialized 

arrays of objects along with initialized objects, you must include a constructor that supports 

initialization and one that does not. 

 

Operator overloading: Polymorphism is also achieved in C++ through operator overloading. As 

you know, in C++, it is possible to use the << and >> operators to perform console I/O 

operations. They can perform these extra operations because in the <iostream> header, these 

operators are overloaded. When an operator is overloaded, it takes on an additional meaning 

relative to a certain class. However, it still retains all of its old meanings. 

In C++, you can overload most operators so that they perform special operations relative to 

classes that you create. For example, a class that maintains a stack might overload + to perform a 

push operation and – – to perform a pop (for push and pop, see note related to stack below). 

When an operator is overloaded, none of its original meanings are lost. Instead, the type of 

objects it can be applied to is expanded. 

The ability to overload operators is one of C++'s most powerful features. It allows the full 

integration of new class types into the programming environment. After overloading the 

appropriate operators, you can use objects in expressions in just the same way that you use C++'s 

built-in data types. Operator overloading also forms the basis of C++'s approach to I/O. 

You overload operators by creating operator functions. An operator function defines the 

operations that the overloaded operator will perform relative to the class upon which it will work. 

An operator function is created using the keyword operator. Operator functions can be either 

members or nonmembers of a class. Nonmember operator functions are almost always friend 

functions of the class, however. The way operator functions are written differs between member 

and nonmember functions. 

 

Memory, heap and stack: The memory a program uses is typically divided into four different 

areas: 

1. The code area, where the compiled program sits in memory.  

2. The globals area, where global variables are stored.  

3. The heap, where dynamically allocated variables are allocated from.  



4. The stack, where parameters and local variables are allocated from.  

There isn’t really much to say about the first two areas. The heap and the stack are where most of 

the interesting stuff takes place, and those are the two that will be the focus of this section. 

Heap: The heap (also known as the ―free store‖) is a large pool of memory used for dynamic 

allocation. In C++, when you use the new operator to allocate memory, this memory is assigned 

from the heap. 

 
int *pValue = new int; // pValue is assigned 4 bytes from the heap 

int *pArray = new int[10]; // pArray is assigned 40 bytes from the heap 

 

Because the precise location of the memory allocated is not known in advance, the memory 

allocated has to be accessed indirectly — which is why new returns a pointer. You do not have to 

worry about the mechanics behind the process of how free memory is located and allocated to 

the user. However, it is worth knowing that sequential memory requests may not result in 

sequential memory addresses being allocated! 

When a dynamically allocated variable is deleted, the memory is ―returned‖ to the heap and can 

then be reassigned as future allocation requests are received. 

The heap has advantages and disadvantages: 

1) Allocated memory stays allocated until it is specifically deallocated (beware memory leaks). 

2) Dynamically allocated memory must be accessed through a pointer. 

3) Because the heap is a big pool of memory, large arrays, structures, or classes should be 

allocated here 

 

Stack: Consider a bunch of mailboxes, all stacked on top of each other. Each mailbox can only 

hold one item, and all mailboxes start out empty. Furthermore, each mailbox is nailed to the 

mailbox below it, so the number of mailboxes cannot be changed. If we can’t change the number 

of mailboxes, how do we get a stack-like behavior, as mentioned below? 

1) Look at the top item on the stack (usually done via a function called top()) 

2) Take the top item off of the stack (done via a function called pop()) 

3) Put a new item on top of the stack (done via a function called push()) 

 

First, we use a marker (like a post-it note) to keep track of where the bottom-most empty 

mailbox is. In the beginning, this will be the lowest mailbox. When we push an item onto our 

mailbox stack, we put it in the mailbox that is marked (which is the first empty mailbox), and 

move the marker up one mailbox. When we pop an item off the stack, we move the marker down 

one mailbox and remove the item from that mailbox. Anything below the marker is considered 

―on the stack‖. Anything at the marker or above the marker is not on the stack. 

This is almost exactly analogous to how the call stack works. The call stack is a fixed-size chunk 

of sequential memory addresses. The mailboxes are memory addresses, and the ―items‖ are 

pieces of data (typically either variables or addresses). The ―marker‖ is a register (a small piece 

of memory) in the CPU known as the stack pointer. The stack pointer keeps track of where the 

top of the stack currently is. 

The only difference between our hypothetical mailbox stack and the call stack is that when we 

pop an item off the call stack, we don’t have to erase the memory (the equivalent of emptying the 

mailbox). We can just leave it to be overwritten by the next item pushed to that piece of memory. 

Because the stack pointer will be below that memory location, we know that memory location is 

not on the stack. 



So what do we push onto our call stack? Parameters, local variables, and … function calls. 

Since parameters and local variables essentially belong to a function, we really only need to 

consider what happens on the stack when we call a function. Here is the sequence of steps that 

takes place when a function is called: 

1. The address of the instruction beyond the function call is pushed onto the stack. This is how 

the CPU remembers where to go after the function returns.  

2. Room is made on the stack for the function’s return type. This is just a placeholder for now.  

3. The CPU jumps to the function’s code.  

4. The current top of the stack is held in a special pointer called the stack frame. Everything 

added to the stack after this point is considered ―local‖ to the function.  

5. All function arguments are placed on the stack.  

6. The instructions inside of the function begin executing.  

7. Local variables are pushed onto the stack as they are defined.  

When the function terminates, the following steps happen: 

1. The function’s return value is copied into the placeholder that was put on the stack for this 

purpose.  

2. Everything after the stack frame pointer is popped off. This destroys all local variables and 

arguments.  

3. The return value is popped off the stack and is assigned as the value of the function. If the 

value of the function isn’t assigned to anything, no assignment takes place, and the value is lost.  

4. The address of the next instruction to execute is popped off the stack, and the CPU resumes 

execution at that instruction.  

Typically, it is not important to know all the details about how the call stack works. However, 

understanding that functions are effectively pushed on the stack when they are called and popped 

off when they return gives you the fundamentals needed to understand recursion, as well as some 

other concepts that are useful when debugging. 

The stack has a limited size, and consequently can only hold a limited amount of information. If 

the program tries to put too much information on the stack, stack overflow will result. Stack 

overflow happens when all the memory in the stack has been allocated — in that case, further 

allocations begin overflowing into other sections of memory. 

Stack overflow is generally the result of allocating too many variables on the stack, and/or 

making too many nested function calls (where function A calls function B calls function C calls 

function D etc…) Overflowing the stack generally causes the program to crash. 

Here is an example program that causes a stack overflow. You can run it on your system and 

watch it crash: 

 
int main() 

{ 

int nStack[1000000000]; 

 

return 0; 

} 

This program tries to allocate a huge array on the stack. Because the stack is not large enough to 

handle this array, the array allocation overflows into portions of memory the program is not 

allowed to use. Consequently, the program crashes. 

The stack has advantages and disadvantages: 

1. Memory allocated on the stack stays in scope as long as it is on the stack. It is destroyed when 

it is popped off the stack.  



2. All memory allocated on the stack is known at compile time. Consequently, this memory can 

be accessed directly through a variable.  

3. Because the stack is relatively small, it is generally not a good idea to do anything that eats up 

lots of stack space. This includes allocating large arrays, structures, and classes, as well as heavy 

recursion.  

 



Inheritance: Inheritance is one of the major traits of an object-oriented programming language. 

In C++, inheritance is supported by allowing one class to incorporate another class into its 

declaration. Inheritance allows a hierarchy of classes to be built, moving from most general to 

most specific. The process involves first defining a base class, which defines those qualities 

common to all objects to be derived from the base. The base class represents the most general 

description. The classes derived from the base are usually referred to as derived classes. A 

derived class includes all features of the generic base class and then adds qualities specific to the 

derived class. 

The general form for inheritance is 

 
class derived-class : access base-class { 

// body of new class 

} 

 

Here, access is optional. However, if present, it must be public, private, or protected. For 

example, using public means that all of the public members of the base class will become public 

members of the derived class. It is important to remember that a derived class has direct access to 

both its own members and the public members of the base class. A private member of a base 

class is not accessible by other parts of your program, including any derived class. However, 

protected members behave differently. If the base class is inherited as public, then the base class' 

protected members become protected members of the derived class and are, therefore, accessible 

by the derived class. By using protected, you can create class members that are private to their 

class but that can still be inherited and accessed by a derived class. 

The major advantage of inheritance is that you can create a general classification that can be 

incorporated into more specific ones. In this way, each object can precisely represent its own 

subclass. When writing about C++, the terms base and derived are generally used to describe 

the inheritance relationship. However, the terms parent and child are also used. You may also 

see the terms superclass and subclass. 

Aside from providing the advantages of hierarchical classification, inheritance also provides 

support for run-time polymorphism through the mechanism of virtual functions. 

 



 

 

References: 

References are perfectly valid types, just like pointers. For instance, just like int * is the 

―pointer to an integer‖ type, int & is the ―reference to an integer‖ type. References can be 

passed as arguments to functions, returned from functions, and otherwise manipulated just like 

any other type.  

References are just pointers internally; when you declare a reference variable, a pointer to the 

value being referenced is created, and it’s just dereferenced each time the reference variable is 

used. 



Additional information 

Friend function / class 

It is possible to grant a nonmember function access to the private members of a class by using a 

friend. This is particularly common in operator overloading. A friend function has access to all 

private and protected members of the class for which it is a friend. To declare a friend 
function, include its prototype within the class, preceding it with the keyword friend. Consider 

this program: 

 

Example: 
#include <iostream> 

using namespace std; 

 

class myclass 

{ 

int a, b; 

public: 

  friend int sum(myclass x); 

  void set_ab(int i, int j); 

}; 

 

void myclass::set_ab(int i, int j) 

{ 

a = i; 

b = j; 

} 

 

// Note: sum() is not a member function of any class. 

int sum(myclass x) 

{ 

/* Because sum() is a friend of myclass, it can 

directly access a and b. */ 

return x.a + x.b; 

} 

 

int main() 

{ 

myclass n; 

n.set_ab(3, 4); 

cout << sum(n); 

return 0; 

} 

 

In this example, the sum() function is not a member of myclass. However, it still has full 

access to its private members. Also, notice that sum() is called without the use of the dot 

operator. Because it is not a member function, it does not need to be (indeed, it may not be) 

qualified with an object's name. 

 

Although there is nothing gained by making sum() a friend rather than amember function of 

myclass, there are some circumstances in which friend functions are quite valuable. First, 

friends can be useful when you are overloading certain types of operators. Second, friend 
functions make the creation of some types of I/O functions easier. The third reason that friend 



functions may be desirable is that in some cases, two ormore classes may contain members that 

are interrelated relative to other parts of your program. 

 

It is possible for one class to be a friend of another class. When this is the case, the friend class 

and all of its member functions have access to the private members defined within the other 

class. For example, 
// Using a friend class. 

#include <iostream> 

using namespace std; 

 

class TwoValues 

{ 

int a; 

int b; 

public: 

  TwoValues(int i, int j) { a = i; b = j; } 

  friend class Min; 

}; 

 

class Min 

{ 

public: 

  int min(TwoValues x); 

}; 

 

int Min::min(TwoValues x) 

{ 

return x.a < x.b ? x.a : x.b; 

} 

 

int main() 

{ 

TwoValues ob(10, 20); 

Min m; 

cout << m.min(ob); 

return 0; 

} 

 

In this example, class Min has access to the private variables a and b declared within the 

TwoValues class. 

It is critical to understand that when one class is a friend of another, it only has access to names 

defined within the other class. It does not inherit the other class. Specifically, the members of the 

first class do not become members of the friend class. 

Friend classes are seldom used. They are supported to allow certain special case situations to be 

handled. 

 



Nested class 

It is possible to define one class within another. Doing so creates a nested class. Since a class 
declaration does, in fact, define a scope, a nested class is valid only within the scope of the 

enclosing class. Frankly, nested classes are seldom used. Because of C++'s flexible and powerful 

inheritance mechanism, the need for nested classes is virtually nonexistent. 

 

Local classes: 

A class may be defined within a function. For example, this is a valid C++ program: 
 

#include <iostream> 

using namespace std; 

 

void f(); 

 

int main() 

{ 

f(); 

// myclass not known here 

return 0; 

} 

 

void f() 

{ 

class myclass 

{ 

int i; 

public: 

  void put_i(int n) { i=n; } 

  int get_i() { return i; } 

} ob; 

 

ob.put_i(10); 

cout << ob.get_i(); 

} 

When a class is declared within a function, it is known only to that function and unknown 

outside of it. 

Several restrictions apply to local classes. First, all member functions must be defined within the 

class declaration. The local class may not use or access local variables of the function in which it 

is declared (except that a local class has access to static local variables declared within the 

function or those declared as extern). It may access type names and enumerators defined by the 

enclosing function, however. No static variables may be declared inside a local class. Because 

of these restrictions, local classes are not common in C++ programming. 

 



Static: 

Both function and data members of a class can be made static. 

 

When you precede a member variable's declaration with static, you are telling the compiler that 

only one copy of that variable will exist and that all objects of the class will share that variable. 

Unlike regular data members, individual copies of a static member variable are not made for 

each object. No matter how many objects of a class are created, only one copy of a static data 

member exists. Thus, all objects of that class use that same variable. All static variables are 

initialized to zero before the first object is created. 

 

When you declare a static data member within a class, you are not defining it, that is, you are 

not allocating storage for it. Instead, you must provide a global definition for it elsewhere, 

outside the class. This is done by re-declaring the static variable using the scope resolution 

operator to identify the class to which it belongs. This causes storage for the variable to be 

allocated. 

 
#include <iostream> 

using namespace std; 

 

class shared 

{ 

static int a; 

int b; 

public: 

  void set(int i, int j) {a=i; b=j;} 

  void show(); 

} ; 

 

int shared::a; // define a 

 

void shared::show() 

{ 

cout << "This is static a: " << a; 

cout << "\nThis is non-static b: " << b; 

cout << "\n"; 

} 

 

int main() 

{ 

shared x, y; 

 

x.set(1, 1); // set a to 1 

x.show(); 

 

y.set(2, 2); // change a to 2 

y.show(); 

 

x.show(); /* Here, a has been changed for both x and y 

because a is shared by both objects. */ 

return 0; 

} 

 

This program displays the following output when run. 



This is static a: 1 

This is non-static b: 1 

This is static a: 2 

This is non-static b: 2 

This is static a: 2 

This is non-static b: 1 

 

Notice that the integer a is declared both inside shared and outside of it. As mentioned earlier, 

this is necessary because the declaration of a inside shared does not allocate storage. 

 

Member functions may also be declared as static. There are several restrictions placed on 

static member functions. Actually, static member functions have limited applications, but one 

good use for them is to "preinitialize" private static data before any object is actually created. 

Beyond the scope of this class. 

 



File handling:  

File handling in C++ works almost identically to terminal input/output. To use files, you write 

#include <fstream> at the top of your source file. Then you can access two classes from 

the std namespace: 

• 

ifstream – allows reading input from files 
 

ofstream – allows outputting to files 

Each open file is represented by a separate ifstream or an ofstream object. You can use  

ifstream objects in exactly the same way as cin and ofstream objects in the same way 

as cout, except that you need to declare new objects and specify what files to open. 

 
#include <fstream> 

using namespace std; 

 

int main() 

{ 

ifstream source(“source-file.txt”); 

ofstream destination(“dest-file.txt”); 

int x; 

 

source >> x; // reads one int from source-file.txt 

source.close; // close file as soon as done using it 

destination << x; // writes x to dest-file.txt 

 

return 0; 

} // close() called on detination by its destructor 

 

 

Close your files using the close() method when you’re done using them. This is 

automatically done for you in the object’s destructor, but you often want to close the file ASAP, 

without waiting for the destructor. 

You can specify a second argument to the constructor or the open method to specify what 

―mode‖ you want to access the file in – read-only, overwrite, write by appending, etc. Check 

documentation online for details. 
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