
A Very Short Tour of C++

Day 3

Polymorphism

Object-oriented programming languages support polymorphism (literal meaning many
shapes), which is characterized by the phrase "one interface, multiple methods."

In simple terms, polymorphism is the attribute that allows one interface to control access to a

general class of actions. The specific action selected is determined by the exact nature of the

situation. A real-world example of polymorphism is a thermostat. No matter what type of furnace

your house has (gas, oil, electric, etc.), the thermostat works the same way. In this case, the

thermostat (which is the interface) is the same no matter what type of furnace (method) you

have. For example, if you want a 70-degree temperature, you set the thermostat to 70 degrees. It

doesn't matter what type of furnace actually provides the heat.

This same principle can also apply to programming. For example, you might have a program that

defines three different types of stacks. One stack is used for integer values, one for character

values, and one for floating-point values. Because of polymorphism, you can define one set of

names, push() and pop() , that can be used for all three stacks. In your program you will create

three specific versions of these functions, one for each type of stack, but names of the functions

will be the same. The compiler will automatically select the right function based upon the data

being stored. Thus, the interface to a stack—the functions push() and pop() —are the same no

matter which type of stack is being used. The individual versions of these functions define the

specific implementations (methods) for each type of data.

Polymorphism helps reduce complexity by allowing the same interface to be used to access a

general class of actions. It is the compiler's job to select the specific action (i.e., method) as it

applies to each situation. You, the programmer, don't need to do this selection manually. You

need only remember and utilize the general interface.

Among various ways of achieving polymorphism, we have discussed a few: operator

overloading, function overloading, virtual function.

Virtual functions:

A virtual function is a member function that is declared within a base class and redefined by a

derived class. To create a virtual function, precede the function's declaration in the base class

with the keyword virtual. When a class containing a virtual function is inherited, the derived

class redefines the virtual function to fit its own needs. In essence, virtual functions implement

the "one interface, multiple methods" philosophy that underlies polymorphism. The virtual

function within the base class defines the form of the interface to that function. Each

redefinition of the virtual function by a derived class implements its operation as it relates

specifically to the derived class. That is, the redefinition creates a specific method.

When accessed "normally," virtual functions behave just like any other type of class member

function. However, what makes virtual functions important and capable of supporting run-time

polymorphism is how they behave when accessed via a pointer. A base-class pointer can be used

to point to an object of any class derived from that base. When a base pointer points to a derived

object that contains a virtual function, C++ determines which version of that function to call

based upon the type of object pointed to by the pointer. And this determination is made at run
time. Thus, when different objects are pointed to, different versions of the virtual function are

executed. The same effect applies to base-class references.

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

}

};

class derived1 : public base {

public:

 void vfunc() {

 cout << "This is derived1's vfunc().\n";

 }

};

class derived2 : public base {

public:

 void vfunc() {

 cout << "This is derived2's vfunc().\n";

 }

};

int main()

{

base *p, b;

derived1 d1;

derived2 d2;

// point to base

p = &b;

p->vfunc(); // access base's vfunc()

// point to derived1

p = &d1;

p->vfunc(); // access derived1's vfunc()

// point to derived2

p = &d2;

p->vfunc(); // access derived2's vfunc()

return 0;

}

This program displays the following:

This is base's vfunc().

This is derived1's vfunc().

This is derived2's vfunc().

As the program illustrates, inside base, the virtual function vfunc() is declared. Notice that the

keyword virtual precedes the rest of the function declaration. When vfunc() is redefined by

derived1 and derived2, the keyword virtual is not needed. (However, it is not an error to

include it when redefining a virtual function inside a derived class; it's just not needed.)

We could have written:

d2.vfunc(); // calls derived2's vfunc()

Although calling a virtual function in this manner is not wrong, it simply does not take advantage

of the virtual nature of vfunc() .
In the preceding example, a virtual function was called through a base-class pointer, but the

polymorphic nature of a virtual function is also available when called through a base-class

reference.

In many situations there can be no meaningful definition of a virtual function within a base class.

For example, a base class may not be able to define an object sufficiently to allow a base-class

virtual function to be created. Further, in some situations you will want to ensure that all derived

classes override a virtual function. To handle these two cases, C++ supports the pure virtual

function.

A pure virtual function is a virtual function that has no definition within the base class. To

declare a pure virtual function, use this general form:

virtual type func-name(parameter-list) = 0;

When a virtual function is made pure, any derived class must provide its own definition. If the

derived class fails to override the pure virtual function, a compile-time error will result.

Abstract classes:

A class that contains at least one pure virtual function is said to be abstract. Because an abstract

class contains one or more functions for which there is no definition (that is, a pure virtual

function), no objects of an abstract class may be created. Instead, an abstract class constitutes an

incomplete type that is used as a foundation for derived classes.

Although you cannot create objects of an abstract class, you can create pointers and references to

an abstract class. This allows abstract classes to support run-time polymorphism, which relies

upon base-class pointers and references to select the proper virtual function.

One of the central aspects of object-oriented programming is the principle of "one interface,

multiple methods." This means that a general class of actions can be defined, the interface to

which is constant, with each derivation defining its own specific operations. In concrete C++

terms, a base class can be used to define the nature of the interface to a general class. Each

derived class then implements the specific operations as they relate to the type of data used by

the derived type.

One of the most powerful and flexible ways to implement the "one interface, multiple methods"

approach is to use virtual functions, abstract classes, and run-time polymorphism. Using these

features, you create a class hierarchy that moves from general to specific (base to derived).

Following this philosophy, you define all common features and interfaces in a base class. In

cases where certain actions can be implemented only by the derived class, use a virtual function.

In essence, in the base class you create and define everything you can that relates to the general

case. The derived class fills in the specific details.

Template function / class

The template is one of C++'s most sophisticated and high-powered features. Although not part of

the original specification for C++, it was added several years ago and is supported by all modern

C++ compilers. Using templates, it is possible to create generic functions and classes. In a

generic function or class, the type of data upon which the function or class operates is specified

as a parameter. Thus, you can use one function or class with several different types of data

without having to explicitly recode specific versions for each data type.

A generic function defines a general set of operations that will be applied to various types of

data. The type of data that the function will operate upon is passed to it as a parameter. Through

a generic function, a single general procedure can be applied to a wide range of data. As you

probably know, many algorithms are logically the same no matter what type of data is being

operated upon. For example, the Quicksort sorting algorithm is the same whether it is applied to

an array of integers or an array of floats. It is just that the type of the data being sorted is

different. By creating a generic function, you can define the nature of the algorithm, independent

of any data. Once you have done this, the compiler will automatically generate the correct code

for the type of data that is actually used when you execute the function. In essence, when you

create a generic function you are creating a function that can automatically overload itself.

A generic function is created using the keyword template. The normal meaning of the word

"template" accurately reflects its use in C++. It is used to create a template (or framework) that

describes what a function will do, leaving it to the compiler to fill in the details as needed. The

general form of a template function definition is shown here:

template <class Ttype> ret-type func-name(parameter list)

{

// body of function

}

Here, Ttype is a placeholder name for a data type used by the function. This name may be used

within the function definition. However, it is only a placeholder that the compiler will

automatically replace with an actual data type when it creates a specific version of the function.

Although the use of the keyword class to specify a generic type in a template declaration is

traditional, you may also use the keyword typename.

The following example creates a generic function that swaps the values of the two variables with

which it is called. Because the general process of exchanging two values is independent of the

type of the variables, it is a good candidate for being made into a generic function.

// Function template example.

#include <iostream>

using namespace std;

// This is a function template.

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

int main()

{

int i=10, j=20;

double x=10.1, y=23.3;

char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << '\n';

cout << "Original x, y: " << x << ' ' << y << '\n';

cout << "Original a, b: " << a << ' ' << b << '\n';

swapargs(i, j); // swap integers

swapargs(x, y); // swap floats

swapargs(a, b); // swap chars

cout << "Swapped i, j: " << i << ' ' << j << '\n';

cout << "Swapped x, y: " << x << ' ' << y << '\n';

cout << "Swapped a, b: " << a << ' ' << b << '\n';

return 0;

}

Let's look closely at this program. The line:

template <class X> void swapargs(X &a, X &b)

tells the compiler two things: that a template is being created and that a generic definition is

beginning. Here, X is a generic type that is used as a placeholder. After the template portion,

the function swapargs() is declared, using X as the data type of the values that will be

swapped.

In main() , the swapargs() function is called using three different types of data: ints,

doubles, and chars. Because swapargs() is a generic function, the compiler automatically

creates three versions of swapargs(): one that will exchange integer values, one that will

exchange floating-point values, and one that will swap characters.

Here are some important terms related to templates. First, a generic function (that is, a function

definition preceded by a template statement) is also called a template function. When the

compiler creates a specific version of this function, it is said to have created a specialization.
This is also called a generated function. The act of generating a function is referred to as

instantiating it. Put differently, a generated function is a specific instance of a template function.

Since C++ does not recognize end-of-line as a statement terminator, the template clause of a

generic function definition does not have to be on the same line as the function's name. The

following example shows another common way to format the swapargs() function.

template <class X>

void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

If you use this form, it is important to understand that no other statements can occur between the

template statement and the start of the generic function definition. For example, the fragment

shown next will not compile.

// This will not compile.

template <class X>

int i; // this is an error

void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

You can define more than one generic data type in the template statement by using a comma-

separated list.

#include <iostream>

using namespace std;

template <class type1, class type2>

void myfunc(type1 x, type2 y)

{

cout << x << ' ' << y << '\n';

}

int main()

{

myfunc(10, "I like C++");

myfunc(98.6, 19L);

return 0;

}

In this example, the placeholder types type1 and type2 are replaced by the compiler with the

data types int and char *, and double and long, respectively, when the compiler generates the

specific instances of myfunc() within main() .
When you create a template function, you are, in essence, allowing the compiler to generate as

many different versions of that function as are necessary for handling the various ways that your

program calls the function.

Even though a generic function overloads itself as needed, you can explicitly overload one, too.

This is formally called explicit specialization. If you overload a generic function, that

overloaded function overrides (or "hides") the generic function relative to that specific version.

You can mix standard parameters with generic type parameters in a template function. These

non-generic parameters work just like they do with any other function.

template<class X> void tabOut(X data, int tab)

Generic functions are similar to overloaded functions except that they are more restrictive. When

functions are overloaded, you may have different actions performed within the body of each

function. But a generic function must perform the same general action for all versions—only the

type of data can differ.

Common examples of the use of generic functions are while carrying out sort, compaction of

arrays etc.

In addition to generic functions, you can also define a generic class. When you do this, you

create a class that defines all the algorithms used by that class; however, the actual type of the

data being manipulated will be specified as a parameter when objects of that class are created.

Generic classes are useful when a class uses logic that can be generalized. For example, the same

algorithms that maintain a queue of integers will also work for a queue of characters, and the

same mechanism that maintains a linked list of mailing addresses will also maintain a linked list

of auto part information. When you create a generic class, it can perform the operation you

define, such as maintaining a queue or a linked list, for any type of data. The compiler will

automatically generate the correct type of object, based upon the type you specify when the

object is created.

The general form of a generic class declaration is shown here:

template <class Ttype> class class-name
{

.

..

}

Here, Ttype is the placeholder type name, which will be specified when a class is instantiated. If

necessary, you can define more than one generic data type using a comma-separated list. Once

you have created a generic class, you create a specific instance of that class using the following

general form:

class-name <type> ob;

Here, type is the type name of the data that the class will be operating upon. Member functions

of a generic class are themselves automatically generic. You need not use template to explicitly

specify them as such.

As you can see, the declaration of a generic class is similar to that of a generic function.

A template class can have more than one generic data type. Simply declare all the data types

required by the class in a comma-separated list within the template specification.

To illustrate the practical benefits of template classes, let's look at one way in which they are

commonly applied. We have already discussed about operator overloading, and you know that

we can overload the [] operator. Doing so allows you to create your own array implementations,

including "safe arrays" that provide run-time boundary checking. As you know, in C++, it is

possible to overrun (or underrun) an array boundary at run time without generating a run-time

error message. However, if you create a class that contains the array, and allow access to that

array only through the overloaded [] subscripting operator, then you can intercept an out-of-

range index.

By combining operator overloading with a template class, it is possible to create a generic safe-

array type that can be used for creating safe arrays of any data type. This type of array is shown

in the following program:

// A generic safe array example.

#include <iostream>

#include <cstdlib>

using namespace std;

const int SIZE = 10;

template <class AType> class atype

{

AType a[SIZE];

public:

 atype() {

 register int i;

 for(i=0; i<SIZE; i++) a[i] = i;

 }

 AType &operator[](int i);

};

// Provide range checking for atype.

template <class AType> AType &atype<AType>::operator[](int i)

{

if(i<0 || i> SIZE-1)

 {

 cout << "\nIndex value of ";

 cout << i << " is out-of-bounds.\n";

 exit(1);

 }

return a[i];

}

int main()

{

atype<int> intob; // integer array

atype<double> doubleob; // double array

int i;

cout << "Integer array: ";

for(i=0; i<SIZE; i++) intob[i] = i;

for(i=0; i<SIZE; i++) cout << intob[i] << " ";

cout << '\n';

cout << "Double array: ";

for(i=0; i<SIZE; i++) doubleob[i] = (double) i/3;

for(i=0; i<SIZE; i++) cout << doubleob[i] << " ";

cout << '\n';

intob[12] = 100; // generates runtime error

return 0;

}

This program implements a generic safe-array type and then demonstrates its use by creating an

array of ints and an array of doubles. You should try creating other types of arrays. As this

example shows, part of the power of generic classes is that they allow you to write the code once,

debug it, and then apply it to any type of data without having to re-engineer it for each specific

application.

In the template specification for a generic class, you may also specify non-type arguments. That

is, in a template specification you can specify what you would normally think of as a standard

argument, such as an integer or a pointer. The syntax to accomplish this is essentially the same as

for normal function parameters: simply include the type and name of the argument. For example,

here is a better way to implement the safe-array class presented in the preceding section.

// Demonstrate non-type template arguments.

#include <iostream>

#include <cstdlib>

using namespace std;

// Here, int size is a non-type argument.

template <class AType, int size> class atype

{

AType a[size]; // length of array is passed in size

public:

 atype()

 {

 register int i;

 for(i=0; i<size; i++) a[i] = i;

 }

 AType &operator[](int i);

};

// Provide range checking for atype.

template <class AType, int size>

AType &atype<AType, size>::operator[](int i)

{

if(i<0 || i> size-1)

 {

 cout << "\nIndex value of ";

 cout << i << " is out-of-bounds.\n";

 exit(1);

 }

return a[i];

}

int main()

{

atype<int, 10> intob; // integer array of size 10

atype<double, 15> doubleob; // double array of size 15

int i;

cout << "Integer array: ";

for(i=0; i<10; i++) intob[i] = i;

for(i=0; i<10; i++) cout << intob[i] << " ";

cout << '\n';

cout << "Double array: ";

for(i=0; i<15; i++) doubleob[i] = (double) i/3;

for(i=0; i<15; i++) cout << doubleob[i] << " ";

cout << '\n';

intob[12] = 100; // generates runtime error

return 0;

}

Look carefully at the template specification for atype. Note that size is declared as an int. This

parameter is then used within atype to declare the size of the array a. Even though size is

depicted as a "variable" in the source code, its value is known at compile time. This allows it to

be used to set the size of the array. size is also used in the bounds checking within the

operator[]() function. Within main() , notice how the integer and floating-point arrays are

created. The second parameter specifies the size of each array. Non-type parameters are

restricted to integers, pointers, or references. Other types, such as float, are not allowed. The

arguments that you pass to a non-type parameter must consist of either an integer constant, or a

pointer or reference to a global function or object. Thus, non-type parameters should themselves

be thought of as constants, since their values cannot be changed. For example, inside operator[
]() , the following statement is not allowed.

size = 10; // Error

Since non-type parameters are treated as constants, they can be used to set the dimension of an

array, which is a significant, practical benefit. As the safe-array example illustrates, the use of

non-type parameters greatly expands the utility of template classes. Although the information

contained in the non-type argument must be known at compile-time, this restriction is mild

compared with the power offered by non-type parameters.

A template class can have a default argument associated with a generic type. For example,

template <class X=int> class myclass { //...

Here, the type int will be used if no other type is specified when an object of type myclass is

instantiated.

It is also permissible for non-type arguments to take default arguments. The default value is used

when no explicit value is specified when the class is instantiated. Default arguments for non-type

parameters are specified using the same syntax as default arguments for function parameters.

Templates help you achieve one of the most elusive goals in programming: the creation of

reusable code. Through the use of template classes you can create frameworks that can be

applied over and over again to a variety of programming situations.

Generic functions and classes provide a powerful tool that you can use to amplify your

programming efforts. Once you have written and debugged a template class, you have a solid

software component that you can use with confidence in a variety of different situations. You are

saved from the tedium of creating separate implementations for each data type with which you

want the class to work.

While it is true that the template syntax can seem a bit intimidating at first, the rewards are well

worth the time it takes to become comfortable with it. Template functions and classes are already

becoming commonplace in programming, and this trend is expected to continue. For example,

the STL (Standard Template Library) defined by C++ is, as its name implies, built upon

templates. One last point: although templates add a layer of abstraction, they still ultimately

compile down to the same, high-performance object code that you have come to expect from

C++.

Standard Template Library:

Now we will explore what is considered by many to be the most important new feature added to

C++ in recent years: the standard template library (STL). The inclusion of the STL was one of

the major efforts that took place during the standardization of C++. It provides general-purpose,

templatized classes and functions that implement many popular and commonly used algorithms

and data structures, including, for example, support for vectors, lists, queues, and stacks. It also

defines various routines that access them. Because the STL is constructed from template classes,

the algorithms and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++'s most sophisticated

features. To understand and use the STL, you must have a complete understanding of the C++

language, including pointers, references, and templates. Frankly, the template syntax that

describes the STL can seem quite intimidating— although it looks more complicated than it

actually is.

At the core of the standard template library are three foundational items: containers,

algorithms, and iterators. These items work in conjunction with one another to provide off-the-

shelf solutions to a variety of programming problems.

Containers are objects that hold other objects, and there are several different types. For

example, the vector class defines a dynamic array, deque creates a double-ended queue, and

list provides a linear list. These containers are called sequence containers because in STL

terminology, a sequence is a linear list. In addition to the basic containers, the STL also defines

associative containers, which allow efficient retrieval of values based on keys. For example, a

map provides access to values with unique keys. Thus, a map stores a key/value pair and

allows a value to be retrieved given its key.

Each container class defines a set of functions that may be applied to the container. For example,

a list container includes functions that insert, delete, and merge elements. A stack includes

functions that push and pop values.

Algorithms act on containers. They provide the means by which you will manipulate the

contents of containers. Their capabilities include initialization, sorting, searching, and

transforming the contents of containers. Many algorithms operate on a range of elements within

a container.

Iterators are objects that are, more or less, pointers. They give you the ability to cycle through

the contents of a container in much the same way that you would use a pointer to cycle through

an array.

There are five types of iterators:

Iterator Access Allowed

Random Access Store and retrieve values. Elements may be accessed randomly.

Bidirectional Store and retrieve values. Forward and backward moving.

Forward Store and retrieve values. Forward moving only.

Input Retrieve, but not store values. Forward moving only.

Output Store, but not retrieve values. Forward moving only.

In general, an iterator that has greater access capabilities can be used in place of one that has

lesser capabilities. For example, a forward iterator can be used in place of an input iterator.

Iterators are handled just like pointers. You can increment and decrement them. You can apply

the * operator to them. Iterators are declared using the iterator type defined by the various

containers.

The STL also supports reverse iterators. Reverse iterators are either bidirectional or random-

access iterators that move through a sequence in the reverse direction. Thus, if a reverse iterator

points to the end of a sequence, incrementing that iterator will cause it to point to one element

before the end.

When referring to the various iterator types in template descriptions, the following terms are

often used:

Term Represents

BiIter Bidirectional iterator

ForIter Forward iterator

InIter Input iterator

OutIter Output iterator

RandIter Random access iterator

In addition to containers, algorithms, and iterators, the STL relies upon several other standard

components for support. Chief among these are allocators, predicates, comparison functions, and

function objects.

As explained, containers are the STL objects that actually store data. The containers defined by

the STL are shown in the following table. Also shown are the headers necessary to use each

container.
Container Description Required Header
bitset A set of bits. <bitset>
deque A double-ended queue. <deque>
list A linear list. <list>
map Stores key/value pairs in which each key is

associated with only one value.
<map>

multimap Stores key/value pairs in which one key
may be associated with two or more values.

<map>
Multiset A set in which each element is not

necessarily unique.
<set>

priority_queue A priority queue. <queue>
queue A queue. <queue>
set A set in which each element is unique. <set>
stack A stack. <stack>
vector A dynamic array. <vector>

Since the names of the generic placeholder types in a template class declaration are arbitrary, the

container classes declare typedefed versions of these types. This makes the type names

concrete. Some of the most common typedef names are shown below:
size_type Some type of integer
reference A reference to an element
const_reference A const reference to an element

iterator An iterator
const_iterator A const iterator
reverse_iterator A reverse iterator
const_reverse_iterator A const reverse iterator
value_type The type of a value stored in a container
allocator_type The type of the allocator
key_type The type of a key
key_compare The type of a function that compares two keys
value_compare The type of a function that compares two values

Although the internal operation of the STL is highly sophisticated, to use the STL is actually

quite easy. First, you must decide on the type of container that you wish to use. Each offers

certain benefits and trade-offs. For example, a vector is very good when a random-access,

array-like object is required and not too many insertions or deletions are needed. A list offers

low-cost insertion and deletion but trades away speed. A map provides an associative container,

but of course incurs additional overhead.

Once you have chosen a container, you will use its member functions to add elements to the

container, access or modify those elements, and delete elements. Except for bitset, a container

will automatically grow as needed when elements are added to it and shrink when elements are

removed.

Elements can be added to and removed from a container a number of different ways. For

example, both the sequence containers (vector, list, and deque) and the associative containers

(map, multimap, set, and multiset) provide a member function called insert() , which

inserts elements into a container, and erase() , which removes elements from a container. The

sequence containers also provide push_back() and push_front() , which add an element to

the end or the beginning of a container, respectively. These functions are probably the most

common way that individual elements are added to a sequence container. You can remove

individual elements from a sequence container by using pop_back() and pop_front() , which

remove elements from the end and start of the container.

One of the most common ways to access the elements within a container is through an iterator.

The sequence and the associative containers provide the member functions begin() and end() ,
which return iterators to the start and end of the container, respectively. These iterators are very

useful when accessing the contents of a container. For example, to cycle through a container, you

can obtain an iterator to its beginning using begin() and then increment that iterator until its

value is equal to end() .
The associative containers provide the function find() , which is used to locate an element in an

associative container given its key. Since associative containers link a key with its value, find()
is how most elements in such a container are located. Since a vector is a dynamic array, it also

supports the standard array-indexing syntax for accessing its elements.

Once you have a container that holds information, it can be manipulated using one or more

algorithms. The algorithms not only allow you to alter the contents of a container in some

prescribed fashion, but they also let you transform one type of sequence into another.

An example with Vectors: Perhaps the most general-purpose of the containers is vector. The

vector class supports a dynamic array. This is an array that can grow as needed. As you know, in

C++ the size of an array is fixed at compile time. While this is by far the most efficient way to

implement arrays, it is also the most restrictive because the size of the array cannot be adjusted at

run time to accommodate changing program conditions. A vector solves this problem by

allocating memory as needed. Although a vector is dynamic, you can still use the standard array

subscript notation to access its elements.

The template specification for vector is shown here:

template <class T, class Allocator = allocator<T>> class vector

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults to

the standard allocator. vector has the following constructors:

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val = T (),

const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class InIter> vector(InIter start, InIter end,

const Allocator &a = Allocator());

The first form constructs an empty vector. The second form constructs a vector that has num
elements with the value val. The value of val may be allowed to default. The third form

constructs a vector that contains the same elements as ob. The fourth form constructs a vector

that contains the elements in the range specified by the iterators start and end.

Any object that will be stored in a vector must define a default constructor. It must also define

the < and == operations. Some compilers may require that other comparison operators be

defined. (Since implementations vary, consult your compiler's documentation for precise

information.) All of the built-in types automatically satisfy these requirements.

Although the template syntax looks rather complex, there is nothing difficult about declaring a

vector. Here are some examples:

vector<int> iv; // create zero-length int vector

vector<char> cv(5); // create 5-element char vector

vector<char> cv(5, 'x'); // initialize a 5-element char vector

vector<int> iv2(iv); // create int vector from an int vector

The following comparison operators are defined for vector:

==, <, <=, !=, >, >=

The subscripting operator [] is also defined for vector. This allows you to access the elements

of a vector using standard array subscripting notation.

Here is a short example that illustrates the basic operation of a vector.

// Demonstrate a vector.

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

int main()

{

vector<char> v(10); // create a vector of length 10

int i;

// display original size of v

cout << "Size = " << v.size() << endl;

// assign the elements of the vector some values

for(i=0; i<10; i++) v[i] = i + 'a';

// display contents of vector

cout << "Current Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

cout << "Expanding vector\n";

/* put more values onto the end of the vector,

it will grow as needed */

for(i=0; i<10; i++) v.push_back(i + 10 + 'a');

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

// change contents of vector

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]);

cout << "Modified Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

return 0;

}

The output of this program is shown here:

Size = 10

Current Contents:

a b c d e f g h i j

Expanding vector

Size now = 20

Current contents:

a b c d e f g h i j k l m n o p q r s t

Modified Contents:

A B C D E F G H I J K L M N O P Q R S T

Let's look at this program carefully. In main() , a character vector called v is created with an

initial capacity of 10. That is, v initially contains 10 elements. This is confirmed by calling the

size() member function. Next, these 10 elements are initialized to the characters a through j and

the contents of v are displayed. Notice that the standard array subscripting notation is employed.

Next, 10 more elements are added to the end of v using the push_back() function. This causes

v to grow in order to accommodate the new elements. As the output shows, its size after these

additions is 20. Finally, the values of v's elements are altered using standard subscripting

notation.

There is one other point of interest in this program. Notice that the loops that display the contents

of v use as their target value v.size() . One of the advantages that vectors have over arrays is

that it is possible to find the current size of a vector. As you can imagine, this can be quite useful

in a variety of situations.

As you know, arrays and pointers are tightly linked in C++. An array can be accessed either

through subscripting or through a pointer. The parallel to this in the STL is the link between

vectors and iterators. You can access the members of a vector using subscripting or through the

use of an iterator. The following example shows how.

// Access the elements of a vector through an iterator.

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

int main()

{

vector<char> v(10); // create a vector of length 10

vector<char>::iterator p; // create an iterator

int i;

// assign elements in vector a value

p = v.begin();

i = 0;

while(p != v.end())

 {

 *p = i + 'a';

 p++;

 i++;

 }

// display contents of vector

cout << "Original contents:\n";

p = v.begin();

while(p != v.end())

 {

 cout << *p << " ";

 p++;

 }

cout << "\n\n";

// change contents of vector

p = v.begin();

while(p != v.end())

 {

 *p = toupper(*p);

 p++;

 }

// display contents of vector

cout << "Modified Contents:\n";

p = v.begin();

while(p != v.end())

 {

 cout << *p << " ";

 p++;

 }

cout << endl;

return 0;

}

The output from this program is

Original contents:

a b c d e f g h i j

Modified Contents:

A B C D E F G H I J

In the program, notice how the iterator p is declared. The type iterator is defined by the

container classes. Thus, to obtain an iterator for a particular container, you will use a declaration

similar to that shown in the example: simply qualify iterator with the name of the container. In

the program, p is initialized to point to the start of the vector by using the begin() member

function. This function returns an iterator to the start of the vector. This iterator can then be used

to access the vector an element at a time by incrementing it as needed. This process is directly

parallel to the way a pointer can be used to access the elements of an array. To determine when

the end of the vector has been reached, the end() member function is employed. This function

returns an iterator to the location that is one past the last element in the vector. Thus, when p
equals v.end() , the end of the vector has been reached.

An example with strings: Here, we will deal with one of C++'s most important new classes:

string. The string class defines a string data type that allows you to work with character strings

much as you do other data types: using operators. The string class is closely related to the STL.

The C++ string classes make string handling extraordinarily easy. For example, using string

objects you can use the assignment operator to assign a quoted string to a string, the + operator to

concatenate strings, and the comparison operators to compare strings. The following program

illustrates these operations.

// A short string demonstration.

#include <iostream>

#include <string>

using namespace std;

int main()

{

string str1("Alpha");

string str2("Beta");

string str3("Omega");

string str4;

// assign a string

str4 = str1;

cout << str1 << "\n" << str3 << "\n";

// concatenate two strings

str4 = str1 + str2;

cout << str4 << "\n";

// concatenate a string with a C-string

str4 = str1 + " to " + str3;

cout << str4 << "\n";

// compare strings

if(str3 > str1) cout << "str3 > str1\n";

if(str3 == str1+str2)

cout << "str3 == str1+str2\n";

/* A string object can also be

assigned a normal string. */

str1 = "This is a null-terminated string.\n";

cout << str1;

// create a string object using another string object

string str5(str1);

cout << str5;

// input a string

cout << "Enter a string: ";

cin >> str5;

cout << str5;

return 0;

}

This program produces the following output:

Alpha

Omega

AlphaBeta

Alpha to Omega

str3 > str1

This is a null-terminated string.

This is a null-terminated string.

Enter a string: STL

STL

Notice the ease with which the string handling is accomplished. For example, the + is used to

concatenate strings and the > is used to compare two strings. To accomplish these operations

using C-style, null-terminated strings, less convenient calls to the strcat() and strcmp()
functions would be required. Because C++ string objects can be freely mixed with C-style null-

terminated strings, there is no disadvantage to using them in your program—and there are

considerable benefits to be gained.

There is one other thing to notice in the preceding program: the size of the strings is not

specified. string objects are automatically sized to hold the string that they are given. Thus,

when assigning or concatenating strings, the target string will grow as needed to accommodate

the size of the new string. It is not possible to overrun the end of the string. This dynamic aspect

of string objects is one of the ways that they are better than standard null-terminated strings

(which are subject to boundary overruns)

The STL is now an important, integral part of the C++ language. Many programming tasks can

(and will) be framed in terms of it. The STL combines power with flexibility, and while its

syntax is a bit complex, its ease of use is remarkable. No C++ programmer can afford to neglect

the STL because it will play an important role in the way future programs are written.

Recapitulation of the topics covered on the first two days:

Arguments: In C++, the use of void is redundant and unnecessary. As a general rule, in C++

when a function takes no parameters, its parameter list is simply empty; the use of void is not

required.

Default to int: There has been a fairly recent change to C++ that may affect older C++ code as

well as C code being ported to C++. The C language and the original specification for C++ state

that when no explicit type is specified in a declaration, type int is assumed. However, the

"default-to-int" rule was dropped from C++ a couple of years ago, during standardization. The

next standard for the C language is also expected to drop this rule, but it is still currently in effect

and is used by a large amount of existing code. The "default-to-int" rule is also applied in much

older C++ code.

The most common use of the "default-to-int" rule is with function return types. It was common

practice to not specify int explicitly when a function returned an integer result.

Header files: When C++ was first invented and for several years after that, it used the same style

of headers as did C. That is, it used header files. In fact, Standard C++ still supports C-style

headers for header files that you create and for backward compatibility. However, Standard C++

created a new kind of header that is used by the Standard C++ library. The new-style headers do
not specify filenames. Instead, they simply specify standard identifiers that may be mapped to

files by the compiler, although they need not be. The new-style C++ headers are an abstraction

that simply guarantee that the appropriate prototypes and definitions required by the C++ library

have been declared.

Since the new-style headers are not filenames, they do not have a .h extension. They consist

solely of the header name contained between angle brackets. For example, here are some of the

new-style headers supported by Standard C++.

<iostream> <fstream> <vector> <string>

The new-style headers are included using the #include statement. The only difference is that the

new-style headers do not necessarily represent filenames.

Because C++ includes the entire C function library, it still supports the standard C-style header

files associated with that library. That is, header files such as stdio.h or ctype.h are still

available. However, Standard C++ also defines new-style headers that you can use in place of

these header files. The C++ versions of the C standard headers simply add a "c" prefix to the

filename and drop the .h. For example, the C++ new-style header for math.h is <cmath>. The

one for string.h is <cstring>. Although it is currently permissible to include a C-style header

file when using C library functions, this approach is deprecated by Standard C++ (that is, it is not

recommended). For this reason, from this point forward, this book will use new-style C++

headers in all #include statements. If your compiler does not support new-style headers for the

C function library, then simply substitute the old-style, C-like headers.

Namespaces: When you include a new-style header in your program, the contents of that header

are contained in the std namespace. A namespace is simply a declarative region. The purpose

of a namespace is to localize the names of identifiers to avoid name collisions. Elements declared

in one namespace are separate from elements declared in another.

Class: In C++, class creates a new data type that may be used to create objects of that type.

Therefore, an object is an instance of a class in just the same way that some other variable is an

instance of the int data type, for example. Put differently, a class is a logical abstraction, while

an object is real. (That is, an object exists inside the memory of the computer.)

The general form of a simple class declaration is

class class-name

{

private data and functions

public:

 public data and functions

} object name list;

Of course, the object name list may be empty.

By default, functions and data declared within a class are private to that class and may be

accessed only by other members of the class. The public access specifier allows functions or

data to be accessible to other parts of your program. We also looked at the protected access

specifier that is useful while deriving inherited classes from a base class. Once an access

specifier has been used, it remains in effect until either another access specifier is encountered or

the end of the class declaration is reached.

Functions that are declared within a class are called member functions. Member functions may

access any element of the class of which they are a part. This includes all private elements.

Variables that are elements of a class are called member variables or data members.

Collectively, any element of a class can be referred to as a member of that class.

When it comes time to actually code a function that is the member of a class, you must tell the

compiler which class the function belongs to by qualifying its name with the name of the class of

which it is a member. The :: is called the scope resolution operator. If we use void

stack::push(int i), we are essentially telling the compiler that this version of push()

belongs to the stack class or, put differently, that this push() is in stack's scope. In C++,

several different classes can use the same function name. The compiler knows which function

belongs to which class because of the scope resolution operator.

In general, you should make all data members of a class private to that class. This is part of the

way that encapsulation is achieved. However, there may be situations in which you will need to

make one or more variables public. (For example, a heavily used variable may need to be

accessible globally in order to achieve faster run times.) When a variable is public, it may be

accessed directly by any other part of your program. The syntax for accessing a public data

member is the same as for calling a member function: Specify the object's name, the dot

operator, and the variable name.

Constructors / Destructors: A constructor function is a special function that is a member of a

class and has the same name as that class. The general use of a constructor function is for

initialization purposes. In C++, constructor functions cannot return values and, thus, have no

return type. There are certain default constructors that can be modified to suit one’s purpose. It is

quite natural to have more than a couple of constructors, including some to which it is possible to

pass arguments. Typically, these arguments help initialize an object when it is created.

Parameterized constructor functions are very useful because they allow you to avoid having to

make an additional function call simply to initialize one or more variables in an object. Each

function call you can avoid makes your program more efficient. One of the default constructors,

namely, the copy constructor uses object passing by reference.

The complement of the constructor is the destructor. In many circumstances, an object will need

to perform some action or actions when it is destroyed. Local objects are created when their

block is entered, and destroyed when the block is left. Global objects are destroyed when the

program terminates. When an object is destroyed, its destructor (if it has one) is automatically

called. There are many reasons why a destructor function may be needed. For example, an object

may need to deallocate memory that it had previously allocated or it may need to close a file that

it had opened. In C++, it is the destructor function that handles deactivation events. The

destructor has the same name as the constructor, but it is preceded by a ~. Note that, like

constructor functions, destructor functions do not have return values.

As a general rule, an object's constructor is called when the object comes into existence, and an

object's destructor is called when the object is destroyed. Precisely when these events occur is

discussed here.

A local object's constructor function is executed when the object's declaration statement is

encountered. The destructor functions for local objects are executed in the reverse order of the

constructor functions.

Global objects have their constructor functions execute before main() begins execution. Global

constructors are executed in order of their declaration, within the same file. You cannot know the

order of execution of global constructors spread among several files. Global destructors execute

in reverse order after main() has terminated.

#include <iostream>

using namespace std;

class myclass

{

public:

 int who;

 myclass(int id);

 ~myclass();

} glob_ob1(1), glob_ob2(2);

myclass::myclass(int id)

{

cout << "Initializing " << id << "\n";

who = id;

}

myclass::~myclass()

{

cout << "Destructing " << who << "\n";

}

int main()

{

myclass local_ob1(3);

cout << "This will not be first line displayed.\n";

myclass local_ob2(4);

return 0;

}

It displays this output:

Initializing 1

Initializing 2

Initializing 3

This will not be first line displayed.

Initializing 4

Destructing 4

Destructing 3

Destructing 2

Destructing 1

Inline functions: In C++, you can create short functions that are not actually called; rather, their

code is expanded in line at the point of each invocation. This process is similar to using a

function-like macro. To cause a function to be expanded in line rather than called, precede its

definition with the inline keyword.

The reason that inline functions are an important addition to C++ is that they allow you to create

very efficient code. Since classes typically require several frequently executed interface

functions (which provide access to private data), the efficiency of these functions is of critical

concern. As you probably know, each time a function is called, a significant amount of overhead

is generated by the calling and return mechanism. Typically, arguments are pushed onto the stack

and various registers are saved when a function is called, and then restored when the function

returns. The trouble is that these instructions take time. However, when a function is expanded in

line, none of those operations occur. Although expanding function calls in line can produce faster

run times, it can also result in larger code size because of duplicated code. For this reason, it is

best to inline only very small functions. Further, it is also a good idea to inline only those

functions that will have significant impact on the performance of your program.

Like the register specifier, inline is actually just a request, not a command, to the compiler.

The compiler can choose to ignore it. Also, some compilers may not inline all types of functions.

For example, it is common for a compiler not to inline a recursive function. You will need to

check your compiler's user manual for any restrictions to inline. Remember, if a function cannot

be inlined, it will simply be called as a normal function.

The this pointer:

When a member function is called, it is automatically passed an implicit argument that is a

pointer to the invoking object (that is, the object on which the function is called). This pointer is

called this. To understand this, first consider a program that creates a class called pwr that

computes the result of a number raised to some power:

#include <iostream>

using namespace std;

class pwr

{

double b;

int e;

double val;

public:

 pwr(double base, int exp);

 double get_pwr() { return val; }

};

pwr::pwr(double base, int exp)

{

b = base;

e = exp;

val = 1;

if(exp==0) return;

for(; exp>0; exp--) val = val * b;

}

int main()

{

pwr x(4.0, 2), y(2.5, 1), z(5.7, 0);

cout << x.get_pwr() << " ";

cout << y.get_pwr() << " ";

cout << z.get_pwr() << "\n";

return 0;

}

Within a member function, the members of a class can be accessed directly, without any object

or class qualification. Thus, inside pwr(), the statement

b = base;

means that the copy of b associated with the invoking object will be assigned the value

contained in base. However, the same statement can also be written like this:

this->b = base;

The this pointer points to the object that invoked pwr(). Thus, this –>b refers to that object's

copy of b. For example, if pwr() had been invoked by x (as in x(4.0, 2)), then this in the

preceding statement would have been pointing to x. Writing the statement without using this is

really just shorthand.

Here is the entire pwr() function written using the this pointer:

pwr::pwr(double base, int exp)

{

this->b = base;

this->e = exp;

this->val = 1;

if(exp==0) return;

for(; exp>0; exp--)

this->val = this->val * this->b;

}

Actually, no C++ programmer would write pwr() as just shown because nothing is gained, and

the standard form is easier. However, the this pointer is very important when operators are

overloaded and whenever a member function must utilize a pointer to the object that invoked it.

Remember that the this pointer is automatically passed to all member functions. Therefore,

get_pwr() could also be rewritten as shown here:

double get_pwr() { return this->val; }

In this case, if get_pwr() is invoked like this:

y.get_pwr();

then this will point to object y.
Two final points about this: First, friend functions are not members of a class and, therefore,

are not passed a this pointer. Second, static member functions do not have a this pointer.

Allocation of memory: new and delete vs malloc and free

C++ provides two dynamic allocation operators: new and delete. These operators are used to

allocate and free memory at run time. Dynamic allocation is an important part of almost all real-

world programs. C++ also supports dynamic memory allocation functions, called malloc() and

free(). These are included for the sake of compatibility with C. However, for C++ code, you

should use the new and delete operators because they have several advantages.

The new operator allocates memory and returns a pointer to the start of it. The delete operator

frees memory previously allocated using new. The general forms of new and delete are shown

here:
p_var = new type;

delete p_var;

Here, p_var is a pointer variable that receives a pointer to memory that is large enough to hold

an item of type type.

Since the heap is finite, it can become exhausted. If there is insufficient available memory to fill

an allocation request, then new will fail and a bad_alloc exception will be generated. This

exception is defined in the header <new>. Your program should handle this exception and take

appropriate action if a failure occurs. If this exception is not handled by your program, then your

program will be terminated.

The delete operator must be used only with a valid pointer previously allocated by using new.

Using any other type of pointer with delete is undefined and will almost certainly cause serious

problems, such as a system crash.

Although new and delete perform functions similar to malloc() and free(), they have several

advantages. First, new automatically allocates enough memory to hold an object of the specified

type. You do not need to use the sizeof operator. Because the size is computed automatically, it

eliminates any possibility for error in this regard. Second, new automatically returns a pointer of

the specified type. You don't need to use an explicit type cast as you do when allocating memory

by using malloc(). Finally, both new and delete can be overloaded, allowing you to create

customized allocation systems. Although there is no formal rule that states this, it is best not to

mix new and delete with malloc() and free() in the same program. There is no guarantee that

they are mutually compatible.

You can allocate arrays using new by using this general form:
p_var = new array_type [size];

Here, size specifies the number of elements in the array. To free an array, use this form of

delete:
delete [] p_var;

Here, the [] informs delete that an array is being released.

You can allocate objects dynamically by using new. When you do this, an object is created and

a pointer is returned to it. The dynamically created object acts just like any other object. When it

is created, its constructor function (if it has one) is called. When the object is freed, its destructor

function is executed.

You can allocate arrays of objects, but there is one catch. Since no array allocated by new can

have an initializer, you must make sure that if the class contains constructor functions, one will

be parameterless. If you don't, the C++ compiler will not find a matching constructor when you

attempt to allocate the array and will not compile your program.

Function overloading: One way that C++ achieves polymorphism is through the use of function

overloading. In C++, two or more functions can share the same name as long as their parameter

declarations are different. In this situation, the functions that share the same name are said to be

overloaded, and the process is referred to as function overloading.

In general, to overload a function, simply declare different versions of it. The compiler takes care

of the rest. You must observe one important restriction when overloading a function: the type

and/or number of the parameters of each overloaded function must differ. It is not sufficient for

two functions to differ only in their return types. They must differ in the types or number of their

parameters. (Return types do not provide sufficient information in all cases for the compiler to

decide which function to use.) Of course, overloaded functions may differ in their return types,

too.

Overloading of constructor function is very common since to overload a constructor is to allow

an object to be created by using the most appropriate and natural means for each particular

circumstance. Another common reason constructor functions are overloaded is to allow both

initialized and uninitialized objects (or, more precisely, default initialized objects) to be created.

This is especially important if you want to be able to create dynamic arrays of objects of some

class, since it is not possible to initialize a dynamically allocated array. To allow uninitialized

arrays of objects along with initialized objects, you must include a constructor that supports

initialization and one that does not.

Operator overloading: Polymorphism is also achieved in C++ through operator overloading. As

you know, in C++, it is possible to use the << and >> operators to perform console I/O

operations. They can perform these extra operations because in the <iostream> header, these

operators are overloaded. When an operator is overloaded, it takes on an additional meaning

relative to a certain class. However, it still retains all of its old meanings.

In C++, you can overload most operators so that they perform special operations relative to

classes that you create. For example, a class that maintains a stack might overload + to perform a

push operation and – – to perform a pop (for push and pop, see note related to stack below).

When an operator is overloaded, none of its original meanings are lost. Instead, the type of

objects it can be applied to is expanded.

The ability to overload operators is one of C++'s most powerful features. It allows the full

integration of new class types into the programming environment. After overloading the

appropriate operators, you can use objects in expressions in just the same way that you use C++'s

built-in data types. Operator overloading also forms the basis of C++'s approach to I/O.

You overload operators by creating operator functions. An operator function defines the

operations that the overloaded operator will perform relative to the class upon which it will work.

An operator function is created using the keyword operator. Operator functions can be either

members or nonmembers of a class. Nonmember operator functions are almost always friend

functions of the class, however. The way operator functions are written differs between member

and nonmember functions.

Memory, heap and stack: The memory a program uses is typically divided into four different

areas:

1. The code area, where the compiled program sits in memory.

2. The globals area, where global variables are stored.

3. The heap, where dynamically allocated variables are allocated from.

4. The stack, where parameters and local variables are allocated from.

There isn’t really much to say about the first two areas. The heap and the stack are where most of

the interesting stuff takes place, and those are the two that will be the focus of this section.

Heap: The heap (also known as the ―free store‖) is a large pool of memory used for dynamic

allocation. In C++, when you use the new operator to allocate memory, this memory is assigned

from the heap.

int *pValue = new int; // pValue is assigned 4 bytes from the heap

int *pArray = new int[10]; // pArray is assigned 40 bytes from the heap

Because the precise location of the memory allocated is not known in advance, the memory

allocated has to be accessed indirectly — which is why new returns a pointer. You do not have to

worry about the mechanics behind the process of how free memory is located and allocated to

the user. However, it is worth knowing that sequential memory requests may not result in

sequential memory addresses being allocated!

When a dynamically allocated variable is deleted, the memory is ―returned‖ to the heap and can

then be reassigned as future allocation requests are received.

The heap has advantages and disadvantages:

1) Allocated memory stays allocated until it is specifically deallocated (beware memory leaks).

2) Dynamically allocated memory must be accessed through a pointer.

3) Because the heap is a big pool of memory, large arrays, structures, or classes should be

allocated here

Stack: Consider a bunch of mailboxes, all stacked on top of each other. Each mailbox can only

hold one item, and all mailboxes start out empty. Furthermore, each mailbox is nailed to the

mailbox below it, so the number of mailboxes cannot be changed. If we can’t change the number

of mailboxes, how do we get a stack-like behavior, as mentioned below?

1) Look at the top item on the stack (usually done via a function called top())

2) Take the top item off of the stack (done via a function called pop())

3) Put a new item on top of the stack (done via a function called push())

First, we use a marker (like a post-it note) to keep track of where the bottom-most empty

mailbox is. In the beginning, this will be the lowest mailbox. When we push an item onto our

mailbox stack, we put it in the mailbox that is marked (which is the first empty mailbox), and

move the marker up one mailbox. When we pop an item off the stack, we move the marker down

one mailbox and remove the item from that mailbox. Anything below the marker is considered

―on the stack‖. Anything at the marker or above the marker is not on the stack.

This is almost exactly analogous to how the call stack works. The call stack is a fixed-size chunk

of sequential memory addresses. The mailboxes are memory addresses, and the ―items‖ are

pieces of data (typically either variables or addresses). The ―marker‖ is a register (a small piece

of memory) in the CPU known as the stack pointer. The stack pointer keeps track of where the

top of the stack currently is.

The only difference between our hypothetical mailbox stack and the call stack is that when we

pop an item off the call stack, we don’t have to erase the memory (the equivalent of emptying the

mailbox). We can just leave it to be overwritten by the next item pushed to that piece of memory.

Because the stack pointer will be below that memory location, we know that memory location is

not on the stack.

So what do we push onto our call stack? Parameters, local variables, and … function calls.

Since parameters and local variables essentially belong to a function, we really only need to

consider what happens on the stack when we call a function. Here is the sequence of steps that

takes place when a function is called:

1. The address of the instruction beyond the function call is pushed onto the stack. This is how

the CPU remembers where to go after the function returns.

2. Room is made on the stack for the function’s return type. This is just a placeholder for now.

3. The CPU jumps to the function’s code.

4. The current top of the stack is held in a special pointer called the stack frame. Everything

added to the stack after this point is considered ―local‖ to the function.

5. All function arguments are placed on the stack.

6. The instructions inside of the function begin executing.

7. Local variables are pushed onto the stack as they are defined.

When the function terminates, the following steps happen:

1. The function’s return value is copied into the placeholder that was put on the stack for this

purpose.

2. Everything after the stack frame pointer is popped off. This destroys all local variables and

arguments.

3. The return value is popped off the stack and is assigned as the value of the function. If the

value of the function isn’t assigned to anything, no assignment takes place, and the value is lost.

4. The address of the next instruction to execute is popped off the stack, and the CPU resumes

execution at that instruction.

Typically, it is not important to know all the details about how the call stack works. However,

understanding that functions are effectively pushed on the stack when they are called and popped

off when they return gives you the fundamentals needed to understand recursion, as well as some

other concepts that are useful when debugging.

The stack has a limited size, and consequently can only hold a limited amount of information. If

the program tries to put too much information on the stack, stack overflow will result. Stack

overflow happens when all the memory in the stack has been allocated — in that case, further

allocations begin overflowing into other sections of memory.

Stack overflow is generally the result of allocating too many variables on the stack, and/or

making too many nested function calls (where function A calls function B calls function C calls

function D etc…) Overflowing the stack generally causes the program to crash.

Here is an example program that causes a stack overflow. You can run it on your system and

watch it crash:

int main()

{

int nStack[1000000000];

return 0;

}

This program tries to allocate a huge array on the stack. Because the stack is not large enough to

handle this array, the array allocation overflows into portions of memory the program is not

allowed to use. Consequently, the program crashes.

The stack has advantages and disadvantages:

1. Memory allocated on the stack stays in scope as long as it is on the stack. It is destroyed when

it is popped off the stack.

2. All memory allocated on the stack is known at compile time. Consequently, this memory can

be accessed directly through a variable.

3. Because the stack is relatively small, it is generally not a good idea to do anything that eats up

lots of stack space. This includes allocating large arrays, structures, and classes, as well as heavy

recursion.

Inheritance: Inheritance is one of the major traits of an object-oriented programming language.

In C++, inheritance is supported by allowing one class to incorporate another class into its

declaration. Inheritance allows a hierarchy of classes to be built, moving from most general to

most specific. The process involves first defining a base class, which defines those qualities

common to all objects to be derived from the base. The base class represents the most general

description. The classes derived from the base are usually referred to as derived classes. A

derived class includes all features of the generic base class and then adds qualities specific to the

derived class.

The general form for inheritance is

class derived-class : access base-class {

// body of new class

}

Here, access is optional. However, if present, it must be public, private, or protected. For

example, using public means that all of the public members of the base class will become public

members of the derived class. It is important to remember that a derived class has direct access to

both its own members and the public members of the base class. A private member of a base

class is not accessible by other parts of your program, including any derived class. However,

protected members behave differently. If the base class is inherited as public, then the base class'

protected members become protected members of the derived class and are, therefore, accessible

by the derived class. By using protected, you can create class members that are private to their

class but that can still be inherited and accessed by a derived class.

The major advantage of inheritance is that you can create a general classification that can be

incorporated into more specific ones. In this way, each object can precisely represent its own

subclass. When writing about C++, the terms base and derived are generally used to describe

the inheritance relationship. However, the terms parent and child are also used. You may also

see the terms superclass and subclass.

Aside from providing the advantages of hierarchical classification, inheritance also provides

support for run-time polymorphism through the mechanism of virtual functions.

References:

References are perfectly valid types, just like pointers. For instance, just like int * is the

―pointer to an integer‖ type, int & is the ―reference to an integer‖ type. References can be

passed as arguments to functions, returned from functions, and otherwise manipulated just like

any other type.

References are just pointers internally; when you declare a reference variable, a pointer to the

value being referenced is created, and it’s just dereferenced each time the reference variable is

used.

Additional information

Friend function / class

It is possible to grant a nonmember function access to the private members of a class by using a

friend. This is particularly common in operator overloading. A friend function has access to all

private and protected members of the class for which it is a friend. To declare a friend
function, include its prototype within the class, preceding it with the keyword friend. Consider

this program:

Example:
#include <iostream>

using namespace std;

class myclass

{

int a, b;

public:

 friend int sum(myclass x);

 void set_ab(int i, int j);

};

void myclass::set_ab(int i, int j)

{

a = i;

b = j;

}

// Note: sum() is not a member function of any class.

int sum(myclass x)

{

/* Because sum() is a friend of myclass, it can

directly access a and b. */

return x.a + x.b;

}

int main()

{

myclass n;

n.set_ab(3, 4);

cout << sum(n);

return 0;

}

In this example, the sum() function is not a member of myclass. However, it still has full

access to its private members. Also, notice that sum() is called without the use of the dot

operator. Because it is not a member function, it does not need to be (indeed, it may not be)

qualified with an object's name.

Although there is nothing gained by making sum() a friend rather than amember function of

myclass, there are some circumstances in which friend functions are quite valuable. First,

friends can be useful when you are overloading certain types of operators. Second, friend
functions make the creation of some types of I/O functions easier. The third reason that friend

functions may be desirable is that in some cases, two ormore classes may contain members that

are interrelated relative to other parts of your program.

It is possible for one class to be a friend of another class. When this is the case, the friend class

and all of its member functions have access to the private members defined within the other

class. For example,
// Using a friend class.

#include <iostream>

using namespace std;

class TwoValues

{

int a;

int b;

public:

 TwoValues(int i, int j) { a = i; b = j; }

 friend class Min;

};

class Min

{

public:

 int min(TwoValues x);

};

int Min::min(TwoValues x)

{

return x.a < x.b ? x.a : x.b;

}

int main()

{

TwoValues ob(10, 20);

Min m;

cout << m.min(ob);

return 0;

}

In this example, class Min has access to the private variables a and b declared within the

TwoValues class.

It is critical to understand that when one class is a friend of another, it only has access to names

defined within the other class. It does not inherit the other class. Specifically, the members of the

first class do not become members of the friend class.

Friend classes are seldom used. They are supported to allow certain special case situations to be

handled.

Nested class

It is possible to define one class within another. Doing so creates a nested class. Since a class
declaration does, in fact, define a scope, a nested class is valid only within the scope of the

enclosing class. Frankly, nested classes are seldom used. Because of C++'s flexible and powerful

inheritance mechanism, the need for nested classes is virtually nonexistent.

Local classes:

A class may be defined within a function. For example, this is a valid C++ program:

#include <iostream>

using namespace std;

void f();

int main()

{

f();

// myclass not known here

return 0;

}

void f()

{

class myclass

{

int i;

public:

 void put_i(int n) { i=n; }

 int get_i() { return i; }

} ob;

ob.put_i(10);

cout << ob.get_i();

}

When a class is declared within a function, it is known only to that function and unknown

outside of it.

Several restrictions apply to local classes. First, all member functions must be defined within the

class declaration. The local class may not use or access local variables of the function in which it

is declared (except that a local class has access to static local variables declared within the

function or those declared as extern). It may access type names and enumerators defined by the

enclosing function, however. No static variables may be declared inside a local class. Because

of these restrictions, local classes are not common in C++ programming.

Static:

Both function and data members of a class can be made static.

When you precede a member variable's declaration with static, you are telling the compiler that

only one copy of that variable will exist and that all objects of the class will share that variable.

Unlike regular data members, individual copies of a static member variable are not made for

each object. No matter how many objects of a class are created, only one copy of a static data

member exists. Thus, all objects of that class use that same variable. All static variables are

initialized to zero before the first object is created.

When you declare a static data member within a class, you are not defining it, that is, you are

not allocating storage for it. Instead, you must provide a global definition for it elsewhere,

outside the class. This is done by re-declaring the static variable using the scope resolution

operator to identify the class to which it belongs. This causes storage for the variable to be

allocated.

#include <iostream>

using namespace std;

class shared

{

static int a;

int b;

public:

 void set(int i, int j) {a=i; b=j;}

 void show();

} ;

int shared::a; // define a

void shared::show()

{

cout << "This is static a: " << a;

cout << "\nThis is non-static b: " << b;

cout << "\n";

}

int main()

{

shared x, y;

x.set(1, 1); // set a to 1

x.show();

y.set(2, 2); // change a to 2

y.show();

x.show(); /* Here, a has been changed for both x and y

because a is shared by both objects. */

return 0;

}

This program displays the following output when run.

This is static a: 1

This is non-static b: 1

This is static a: 2

This is non-static b: 2

This is static a: 2

This is non-static b: 1

Notice that the integer a is declared both inside shared and outside of it. As mentioned earlier,

this is necessary because the declaration of a inside shared does not allocate storage.

Member functions may also be declared as static. There are several restrictions placed on

static member functions. Actually, static member functions have limited applications, but one

good use for them is to "preinitialize" private static data before any object is actually created.

Beyond the scope of this class.

File handling:

File handling in C++ works almost identically to terminal input/output. To use files, you write

#include <fstream> at the top of your source file. Then you can access two classes from

the std namespace:

•

ifstream – allows reading input from files

ofstream – allows outputting to files

Each open file is represented by a separate ifstream or an ofstream object. You can use

ifstream objects in exactly the same way as cin and ofstream objects in the same way

as cout, except that you need to declare new objects and specify what files to open.

#include <fstream>

using namespace std;

int main()

{

ifstream source(“source-file.txt”);

ofstream destination(“dest-file.txt”);

int x;

source >> x; // reads one int from source-file.txt

source.close; // close file as soon as done using it

destination << x; // writes x to dest-file.txt

return 0;

} // close() called on detination by its destructor

Close your files using the close() method when you’re done using them. This is

automatically done for you in the object’s destructor, but you often want to close the file ASAP,

without waiting for the destructor.

You can specify a second argument to the constructor or the open method to specify what

―mode‖ you want to access the file in – read-only, overwrite, write by appending, etc. Check

documentation online for details.

Sources:

Paul Kunz’s lectures

MIT Introduction to C++

Effective C++, Scott Meyers

C++ The Complete Reference, Herberdt Schildt

