$\$ \backslash$ rho $\wedge\{0\} \$$ vector-meson elliptic flow (\$v_\{2\}\$) measurement in STAR experiment at RHIC

Content :

The study of elliptic flow (\$v_\{2\}\$) of the short-lived resonances provides a sensitive tool to probe the hot and dense medium produced in relativistic heavy ion collisions. It has been proposed that the measurement of $\$ \mathrm{v} _\{2\} \$$ of the resonances can distinguish whether the resonance was produced at hadronization via quark coalescence or later in the collision via hadron re-scattering. The $\$ \backslash$ rho ${ }^{\wedge}\{0\} \$$ vector-meson is one among such resonances which has a very short life time with respect to the life time of the system formed in heavy-ion collisions. Therefore, the measurement of $\$>$ rho $^{\wedge}\{0\} \$ \$ \mathrm{v} _\{2\} \$$ can potentially provide information on the $\$ \backslash$ rho $\wedge\{0\} \$$ production mechanism in relativistic heavy-ion collisions. In the intermediate \$p_\{T\}\$ range ($1.5<\$ \mathrm{p} _\{\mathrm{T}\} \$<5 \mathrm{GeV} / \mathrm{c}$), the elliptic flow parameter \$v_\{2\}\$, shows a deviation from the particle mass ordering for different hadron species. For identified hadrons, $\$ \mathrm{v} _\{2\} \$$ is found to follow a scaling with the number of constituent quarks n, which is expected from the quark coalescence model. $\$ \backslash$ rho $\wedge\{0\} \$$ being a meson, its $\$ v _\{2\} \$$ is expected to follow the $\$ \mathrm{n}=2 \$$ in the universal curve of $\$ v_{-}\{2\}\left(p_{-}\{T\} / n\right)$ vs $p_{-}\{T\} / n$ $\$$. On the other hand, if $\$ \backslash$ rho $^{\wedge}\{0\} \$$ is produced from the $\$ \backslash \mathrm{pi}^{\wedge}\{+\}$ $\left\langle\mathrm{pi}^{\wedge}\{-\} \$\right.$ scattering during hadronization, it would follow the $\$ n=4 \$$ quark scaling (i.e. 2 for each pions). We will discuss the first time measurement of $\$ \backslash$ rho $\wedge^{\wedge}\{0\} \$$ elliptic flow in $\$ C u+C u \$$ and $\$ A u+A u \$$ collisions at
$\$$ sqrt(s_\{NN\}) $=200 \$$ GeV using the STAR Time Projection Chamber (TPC) and STAR Forward Time Projection Chamber (FTPC). The methods used in this measurement will be presented in the conference.

Primary authors : Mr. PUJAHARI, Prabhat (Indian Institute of Technology Bombay)
Co-authors :
Presenter : Mr. PUJAHARI, Prabhat (Indian Institute of Technology Bombay)

Session classification : --not yet classified--
Track classification : --not yet classified--
Type : --not specified--

