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Plan of lecture I

I. Introduction : Nuclear astrophysics & Nuclel in the Cosmos

II. Nuclear reaction cross sections:
O Definitions
O Quantum tunneling,
O Astrophysical S-factor

O Reaction mechanisms (non-resonant & resonant processes)

III. Thermonuclear reaction rates

O Definitions
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NUCLEAR ASTROPHYSICS

Nuclear astrophysics is the science which addresses some of the most

compelling questions in nature:

» How do stars form and evolve?
» What powers the stars?
» What is the origin of the chemical elements present in our Universe?

» Which nucleosynthesis processes are responsible of the observed
solar abundances?



Introduction:

Abundance curve of the elements:

Solar Abundance
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Nucleil in the Cosmos

Data sources:

Earth, Moon, meteorites,
solar & stellar spectra,
cOoSmic rays...

Characteristics:

- 12 orders-of-magnitude span
-H~75%
- He ~23%
-C > U~ 2% (“metals™)
- D, Li, Be, B under-abundant
- O the 3 most abundant
- C the 4" most abundant
- exponential decrease up to
Fe
- peak near Fe
- nearly flat distribution
beyond Fe with some peaks



Introduction: Nuclei in the Cosmos

The answer to all the questions concerning the stars and the origin
of the nucle1 in the cosmos 1s given by the interaction of three fields:

Observations
(astronomy & \
geology)
Nuclear Physics
- M Synthesis of nuclei
Astrophysics /
modelling

(Big-Bang & stellar)



Introduction:

Nucleil in the Cosmos

Nucleosynthesis: When and where?

»>H, D, He, "Li*
— primordial nucleosynthesis
(Big-Bang) (A. Coc lecture)

»>Li*, Be, B
— Cosmic ray spallation in Inter-Stellar
Medium (ISM) : heavier and abondant
nuclei (CNO) broken by interaction with
p or a particle (A. Coc lecture)

»>C,N, O..., Fe, ... Pb,...

—1n star (calm & explosive)
(A. Coc lecture)
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From nuclear physics to abundances

Improving the knowledge of the nucleosynthesis processes at work in the universe
& the understanding of stellar evolution

Nuclear physics Experiments & theory

(cross-sections, resonance parameters, masses, [3-
decays,...)

1 Astrophysics
Modelling

Reaction rate ‘ Network calculations ‘ Abundances

(BBN & stellar evolution
modelling, nucleosynthesis) l I
Observations
(On earth, meteorites, ‘ Abundances

satellites,...)



Nuclear reaction cross sections: Definitions

@

X . 0099 .
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* Cross section of the reaction 1 +2 — 3 + 4 [notation 1(2,3)4]:

projectiles

YVYVYYVY VY XY

Number of reactions/second

2)=
o(em’) (Number of incident particles/cm?/second)(number of target nuclei within the beam)

= surface presented by 1 to the projectile 2 for a given reaction

* “Billiard-type” description of the cross section:

o =n(R +R,)> with the nuclear radius R, ~ 1.34"* fm (10> cm)
= o('H+'H) = 0.2x10?** cm?, o(>*3U+*8U) = 4.8x102* cm?

= unit of nuclear cross sections: 1 barn (b) = 10-** cm?



Nuclear reaction cross sections: The maximum cross-section

* Quantum description of the maximum reaction cross section:

h _mt+my h
V2UE my [2myE,

1s the de Broglie wavelength, £ the total kinetic energy in the centre-of-
mass system of reference, and u = (m,m,)/(m,+m,) the reduced mass. Note
thatc oc 1/E

O max = (21 + 1) * where A =

The statistical factor (2/+1) corresponds to the number of eigenstates of the
system 1 + 2 of angular momentum L (/ 1s the orbital quantum number)

* 6 <o, 1n part. because of the centrifugal and Coulomb barriers

* Centrifugal barrier: energy needed to move closer 1 and 2 to a distance r
given the orbital angular momentum L (classical mech.)

-

2
HLH [(1+1)h?

Veent (") =——5 = Veent (1) = ( )2 I(I+Dnh: eigenvalues of 12
2ur 2ur




Nuclear reaction cross sections: The Coulomb barrier

A * In a reaction between charged nuclel

£ | (atomic numbers Z,, Z,)

COULOMB

T Z\Z,e>  1.447,7

Voo (r) = 2225 = 22122 ey
o] I 7400 PROJECTILE cou 7 7 (in fm)
ol % R
R (E) r
RUE)=2,Z,¢IE : e In stars, 7.~ 107 - 10°K
classical turning point
= kT.~1-100 keV <V__ (R))
< Nuclear potential

0 R

N

—> penetration of the Coulomb barrier
by the tunnel effect” (quantum
mechanic effect)



Nuclear reaction cross sections: The tunnel effect (1)

* Square-barrier potential with /=0 The

radial wave functions ¢(r) (1D) are solution
of the time-independent Schrodinger
equation:

2 2
{—f—m% : V}b(r) - Eg(r)

) . . 2
:>¢[][(7”):F€lkr+Ge ther Wlthk2 :—I;E
h

= ¢, (r)=Ce ™ + De" with K2 = 2_'U(V1 — E) < vanishing waves

. | )
= ¢, (r) = Ae’™" { Be | with K* = _'[;(E + VO) < plane waves




Nuclear reaction cross sections: The tunnel effect (2)

* Wave function matching conditions at the boundaries:

(¢1 )RO - (¢H )RO (¢H )Rl :( 11 )R1
(@J :(d@]j (dﬁbﬂj :LMJ = B=f(G)
dx R, dx Ry dx R dx R

T = jtrans _

L

» Transmission coefficient of the barrier: Jinc k|G|2

given the incident and transmitted current densities (or fluxes)

hk K
Jine :V111|G|2 :7|G|2 and  Jirans :VI|B|2 :7|B|2

We finally obtain: |7 . eXp[_ (2/n)2ulv; —E) (R, — R, )J

* Numerical application: p + p interaction at £ = 100 keV

R,=13x2=261m,R =R, =144 1m, V,=V_,=550keV = T=9%_

coul

With V|, = 36.8 MeV corresponding to V , for /=2 = T'=2x10"%_

cent



Nuclear reaction cross sections: The tunnel effect (3)

* Transmission coefficient of the Coulomb barrier

2
V(1) T:T]TZ nmexplﬁ;\/Zm(ﬁE)(RH]RI)

2 (R
Z.2,e?R, —— exp [_?_i A \/Zm[V(r) — E] dr]
0

n large
o —
Z,Z,e%R, )
T | H 2
T ~exp| — Z,Z,e” |=exp\—27
J E P{ - \/2E 142 } P( 77)

........................... 5> " 1: Sommerfeld parameter
FI exp(-2ntn): Gamow factor
Classical
turning point 27”7 — 3] _292122 Hamu
-V EkeV

e Reactionp+p (¢, =12)atE _, =100 = T=11%
e atE, ., =6= I'=0.01%




Nuclear reaction cross sections: The astrophysical S-factor
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Nuclear reaction cross-sections: Reaction mechanisms

Consider reaction: atX=> b+yY (b = particle or photon)

Non-resonant process

One-step process leading to final nucleus Y o oc [<b+Y |H|a+X>|?

single matrix element

» occurs at all interaction energies

> cross section has relatively WEAK energy dependence

Resonant process

Two-step process: 1) compound nucleus formation a+ X - C°

2) decay of compound nucleus C">b+Y
o |<btY|H|C>|?|<C'|H|atX>|?2

two matrix elements

occurs at specific energies

cross section has STRONG energy dependence




Nuclear reaction cross sections: Nuclear resonances

* A simple case: “C(p,y)"”N

W' PCEEN .\ 1= 512" 3.547
.; .:‘! \\ Fl —==—— - 3/2- i 3.502
3 ~° . :
g 10 -3; .’./0' ®ooq 1 2+ i Ml
2 o st =0 _ _ ____ - 2" | 2365
R o 1/2* L
ity 1943 =
5 " F I .
10 77 g i i El
10 -8; ? i i
9 | | | | \ 1/2- | :
10 0 - 0.1 — 0.2 - 0.3 — 0.4 - 0.5 - 0.6 g.S - Y
E ., MeV) 13N

« J,=J2C)+Jp)+L=1/2,(-1)=1
* Reaction Q-value (A=mass excess): = JEO* Jp) (-1

* O=A"C)+ A(p) - A(*N) =1.943 MeV
o £,= 2365 -1943 =422 keV

e =/=0



Nuclear reaction cross sections: Nuclear resonance profile

* Energy profile of excited nuclear states:

. , i t
- Time-dependent wave function: W) =y (0)exp| ——Epf |xexp| ———

where 7 1s the mean lifetime of the excited state
- The wave function as a function of energy 1s obtained by the

Fourier transform (conjugate variables): p(E)= jow(t ) eXp(é Etjdt

- The probability distribution is then:

h 1
nt (E—Eg ) +(n/2t)

fr(E)=|o(E)|" = .

= Breit-Wigner profile (Cauchy-Lorentz distribution)

 Full width at half maximum: T = < Heisenberg

T

uncertainty principle




Nuclear reaction cross sections: Partial width

« Partial width (energy units): I, =7%A, where A, is the probability per
second that the decay particle a (= p, n, o, 3...) crosses an imaginary sphere at
the distance » — oo:

2 :]hn\C[Ww(QHJDﬂ2r2Mn6U&mb
V—>00 %~¢ i
Y (9,¢)‘ 2 sin 6d6d¢ = v|g; (0|

A, = lim v”
—> 00
)

v being the relative velocity and Y (6,D) the spherical harmonics
With the penetration factor for the Coulomb and centrifugal barriers:

2
F(E,Ry)= 9 c0) > = Fa=h,/2—EB<E,RN>|¢Z(RN>|2
| (R H

2 2
‘CD /(R N)‘ = ‘qﬁl (Ry)/R N‘ being the probability density for the appearance
of the particle a at the nuclear radius R,

& (r)

r




Nuclear reaction cross-sections: Resonant process

Consider reaction: a+X— C* -5b+Y

— Cty J"E, T I T
a+X \ T,
Resonance parameters: \
| b+Y
Resonance energy: Er=E -Q
[ excitation energy C*

Partial widths:

I, : Probability of the formation of the compound nucleus C* from the entrance channel a+X
I, : Probability of the decay of the compound state C* to the exit channel b+Y

Fv : Probability of the y decay of the compound state C* to its ground state

Spin, parity: J”



Nuclear reaction cross sections: Sub-threshold resonances

E
Any exited state has a finite width !
TAIL ABOVE
PARTICLE THRESHOLD
F Nh/T (Ad-—to
. _ Q-VALUE | .
high energy wing can extend TER---
above particle threshold

M- WIOTH

[ Y

cross section can be entirely dominated
by contribution of sub-threshold state(s)

0
COMPOUND NUCLEUS C




Example of sub-threshold resonant reaction: BC(a,n)'*0O

BC(a,n)'*O — main neutron source in AGB stars (1-3 M)

— s-process nucleosynthesis — 90 < A < 209

E See lecture 111
7.166 g 6.356
6.862 T=10° K o contribution 3/2" (843 keV) |
2
) > E;~190keV T
o= ————— |
035 l6.356 1+ ﬁ
BC+a ;
5939 Y- T
4.554 32
3.841 s 4.143 I |
*O+n 01 /02 03 04 05 06 07 08
Gamow peak E(WIEV)

170



Nuclear reaction cross sections: The Breit-Wigner cross-section

* Cross section for the resonant reactiona + X - C - Y + b, via the
formation of an excited state in the compound nucleus C:

meﬂﬂ~0mmxﬂﬂEwrﬂE

2J +1
(27, +1)2Jy +1

RJZ
(E-Eg) +(r/2)

opw (E) = A’

)(1+5a)()

where J_ and J, are the total angular momentum of the nuclei a and X, and

J that of the resonance in the compound nucleus; 0, is Kronecker’s delta

a

function

2J +1
(27, +1)2J +1) | takes into

w:O+&M)

* The spin statistical factor

account the number of available states (selection rules)

» Note that [ and ', are energy dependent (P(E,R))...)



Nuclear reaction cross-sections: Neutron induced-reactions

A(n,x)B with x=y, p or a

The cross section is given by :

(B+xH ,|C)C|H,|4+n)

2
2
o, X, ‘

For thermal energies Q>>E | — I' (Q+E,) =I' (Q) = constant

forl =0 — P,(E)~v, = \Y Vn  for non-resonant reaction

For s-wave neutrons (1=0) = centrifugal barrier V=0 and also coulomb barrier V=0

— At low energies, the reactions are dominated by s-wave neutron capture

—Higher / neutron capture plays role only at higher energies (or if 1=0 capture 1s suppressed)



Nuclear reaction cross-sections: Neutron induced reactions

Example:

"Li(n,y)’Li
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103 3 x -

N o Wiescheret al., 1989
1 o Imhof et al., 19539
| O oC — x Blackmon et al. 1996 |
S " \Y% * Lynn etal. 1991
=. 10° ¢ — o Nagaietal., 1991 =
- - e this work (exp)
Z
E 108 L
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&
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2
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0t 105  10* 10 102 10" 100 10" 10> 10° from 1/v
NEUTRON ENERGY [keV] due to Resonarn

contribution



Thermonuclear reaction rates



Reaction Rates in the laboratory: Definition

A+XDSb+Y Number of reactions/unit time/nucleus X

Reaction rate o(cm?)=

Number of incident particles/cm?/unit time

beam of particles hits target at rest

O

O assume thin target (unattenuated
area A

O Q Intensity through target
R S e

j’ Vv < >
thickness d

Total reaction rate (reactions per second) R= o Idn T

with n, : number density of target nuclei
I =jA : beam number current (number of particles per second hitting the target)

note: dn1s number of target nuclei per cm?.



Reaction Rates in stellar environment: Definition

Mix of (fully 1onized) projectiles a and target nuclei X at a temperature T

@ M ® % ®
@ : ¥ % ®
@ > @ @
X
For a given relative velocity v in volume V with projectile number density N_
The number of reactions/s R=c N vN V
so for reaction rate per second per cm?: r,x=N,N,G(V)v

This is proportional to the number of a-X pairs in the volume.

If projectile and target are 1dentical, 1

one has to divide by 2 to avoid Yax

= N.Nvo(v)v
1+5aX a- ' X ()

double counting



Thermonuclear Reaction Rates: Definitions

In stellar plasma: velocity of particles varies over wide range

Reaction rate per particle pair: <ov>,x= j- vo(vp(v)dv  ¢(v) velocity distribution
0

Quiescent stellar burning: non-relativistic, non-degenerate gas in thermodynamic

equilibrium at temperature T

Maxwell-Boltzmann distribution:

3/2 2
P(v)dv = (Lj exp[— ﬂ]47rvzalv

O(E) o exp(-E/KT)

Probability ¢(E)

27kT

i = reduced mass

v = relative velocity kT Energy

g 12 i
- & E
<OV>,x = EWHaXJ (kT)w j o(E) exp(— Ej E dE




Thermonuclear Reaction Rates: Definitions

1

1+ 0,x

Total reaction rate R,y = N,Nx(ov) .  reactions cm? s’
N. = number density

expressed in terms abundances

1 2 112
RaX = YXYa,O NA < OV > reactions per s and cm?
1+0,y
1 |
A= Y alP N A <OV > reactions per s and target
1+0 aX — nucleus

this is usually referred to
as the stellar reaction rate
of a specific reaction

N, = Avogadro number

units of stellar reaction rate N ,<ov>: usually cm’/mole/s



Thermonuclear Reaction Rates Abundance changes, lifetimes

Lets assume the only reaction that involves nuclei X and Y 1s destruction (production)
of X (Y) by X capturing the projectile a:

Xt+ta—>Y

The reaction is a random process with const probability (as long as the conditions are
unchanged) and therefore governed by the same laws as radioactive decay:

dn
—X:_nX/l :_nXYaIONA <OoOVvV>

dt

dn

dt

consequently:



and of course ( )— —At
Y Mt Yo x© |
it after some time, nucleus X
YY( [ ) =Y 0X ( 1—e ) is entirely converted to nucleus Y
Example:
0.007
0.006 - =
. 0.005F X Y -
8 ox — Ssame E
3 0.004 abundance —
- — ]
= = level Y .
2 0003F o 3
0.002 - =
Yox/ ¢ _;_ _______________ [ ]
oF | L | | E
107 10™ 10° 10" T 10° 10° 10 10°
time
1

1
Lifetime of X (against destruction via the reaction X+a) :¥ = Z —

Y, pN, <ov>
(of course half-life of A T, ,=In2/A)



Thermonuclear Reaction Rates: Energy generation

Consider the reaction X+a —> Y

Reaction Q-value: Energy generated (if >0) by a single reaction:

Q=02[ > M- ijj

initial nucleii final nuclei j

Energy generation: Energy generated per g and second by a reaction:

1
c="2_0p Y, Y,pN% <ov>

P 1+5aX




Thermonuclear Reaction Rates: various reactions destroying a nucleus

Example: in the CNO cycle, °N
can either capture a proton or 3 decay. ®)

4

(p.v)
each destructive reaction 1 has a rate A, 13N

(B*)

Total lifetime
13C

the total destruction rate for the nucleus is then ~ A = Z ﬂ,l.
1 1 i
its total lifetime 7 = — =
Y
Branching i

the reaction flow branching into reaction 1, b, 1s the fraction of destructive flow

through reaction i. (or the fraction of nuclei destroyed via reaction 1)



The nucleosynthesis equations

* Evolution of the densities: system of

coupled differential equations

25Si 268i 278i ESSi
(solved numerically) o —
—> Nuclear reaction network Al 25”." A
_— &
22Mg 23Mg 24Mg 25Mg
d(Nasy)
At :NHNZ"lMg{gUh"IMg(pn] + N4HEN22Mg<JU>22Mg(a,p]

+ N?581A25Si(ﬁ+v) + NEE'SiA'?‘ﬁSi(’}',

— NuNas <gU>Q5Al(p;}«

P.

y

_ N25A19L25A1(ﬁ+y:, — N25A1A25Al(1,p) — ...

* Nuclear energy production rate:

) — NipgeNos p <W>25m(

where Qy, is the Q-value of the reaction i+j—k

ap)

, production

. destruction
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