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I. Introduction : Nuclear astrophysics & Nuclei in the Cosmos

II. Nuclear reaction cross sections:
o Definitions 
o Quantum tunneling, 
o Astrophysical S-factor 
o Reaction mechanisms (non-resonant & resonant processes)

III. Thermonuclear reaction rates
o Definitions 
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NUCLEAR  ASTROPHYSICS

 How do stars  form and evolve?

 What powers the stars?

 What is the origin of the chemical elements present in our Universe?

 Which nucleosynthesis processes are responsible of the observed 
solar abundances?      

Nuclear astrophysics is the science which addresses some of the most 

compelling questions in nature:



  

  
    

Introduction:                                               Nuclei in the Cosmos 
        

Data sources:  

Earth, Moon, meteorites, 
solar & stellar spectra, 

cosmic rays...
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Abundance curve of the elements: 

Characteristics:

- 12 orders-of-magnitude span
- H ~ 75%
- He ~ 23%

- C  U ~ 2% (“metals”)
- D, Li, Be, B under-abundant

- O the 3rd most abundant
- C the 4th most abundant

- exponential decrease up to 
Fe

- peak near Fe
- nearly flat distribution 

beyond Fe with some peaks



Hubble Telescope 

Ensisheim meteorite, 

  

  
    

Introduction:                                               Nuclei in the Cosmos 
        

The answer to all the questions concerning the stars and the origin 
of the nuclei in the cosmos is given by the interaction of three fields:  

Observations
(astronomy & 

geology) 

Astrophysics 
modelling        

(Big-Bang  & stellar) 

Nuclear Physics  
Synthesis of nuclei   



  

  
    

Introduction:                                               Nuclei in the Cosmos 
        

H, D, He, 7Li#  
 primordial nucleosynthesis 

 (Big-Bang)   (A. Coc lecture)

Li#, Be, B 
 Cosmic ray spallation in Inter-Stellar 
Medium (ISM) : heavier and abondant 

nuclei (CNO) broken by interaction with 
p or α particle   (A. Coc lecture)

C, N, O ..., Fe, ... Pb,… 
in star (calm & explosive)

     (A. Coc lecture)

Nucleosynthesis: When and where?
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Stars

Anders & 
Grevesse 

1989



Improving the knowledge of  the nucleosynthesis processes at work in the universe 
& the understanding of stellar evolution

  

  
    

From nuclear physics to abundances

Observations
(On earth, meteorites, 

satellites,…)

Astrophysics 
Modelling 

Network calculations
(BBN & stellar evolution 

modelling,  nucleosynthesis)

Nuclear physics Experiments & theory
(cross-sections, resonance parameters, masses, -

decays,…)

Abundances

Abundances
 

Reaction rate



• Cross section of the reaction 1 + 2  3 + 4 [notation 1(2,3)4]:       
                   

     

      = surface presented by 1 to the projectile 2 for a given reaction

• “Billiard-type” description of the cross section:            
               with the nuclear radius RN  1.3A1/3 fm  (10-13 cm)         

 (1H+1H) = 0.210-24 cm2, (238U+238U) = 4.810-24 cm2               

     unit of nuclear cross sections: 1 barn (b) = 10-24 cm2
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(cm2)=
Number of reactions/second

(Number of incident particles/cm2/second)(number of target nuclei within the beam)

  

  Nuclear reaction cross sections:                               Definitions
  



• Quantum description of the maximum reaction cross section:  

  is the de Broglie wavelength, E the total kinetic energy in the centre-of-
mass system of reference, and  = (m1m2)/(m1+m2) the reduced mass. Note 
that max 1/E 

The statistical factor (2l+1) corresponds to the number of eigenstates of the 
system 1 + 2 of angular momentum L (l is the orbital quantum number)

• maxin part. because of the centrifugal and Coulomb barriers

• Centrifugal barrier: energy needed to move closer 1 and 2 to a distance r 
given the orbital angular momentum    (classical mech.)
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  Nuclear reaction cross sections:    The maximum cross-section 
  



• In a reaction between charged nuclei 

(atomic numbers Z1, Z2)

• In stars, TC ~ 107 - 109 K              

 kTC ~ 1-100 keV < Vcoul(RN)  

  

 penetration of the Coulomb barrier 
by the ”tunnel effect” (quantum 
mechanic  effect)
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RC(E)=Z1Z2e2/E :   
classical turning point

  

  Nuclear reaction cross sections:              The Coulomb barrier
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 vanishing waves

 plane waves

• Square-barrier potential with l = 0     The 
radial wave functions (r) (1D) are solution 
of the  time-independent Schrödinger 
equation:

  

  Nuclear reaction cross sections:                 The tunnel effect (1)
  



• Wave function matching conditions at the boundaries: 

• Transmission coefficient of the barrier: 

given the incident and transmitted current densities (or fluxes)

We finally obtain: 

• Numerical application: p + p interaction at E = 100 keV

R0 = 1.32 = 2.6 fm, R1  RC = 14.4 fm, V1  Vcoul = 550 keV  T = 9% 

With V1 = 36.8 MeV corresponding to Vcent for l = 2  T = 210-10 
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  Nuclear reaction cross sections:                 The tunnel effect (2)
  



• Transmission coefficient of the Coulomb barrier
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  Nuclear reaction cross sections:                 The tunnel effect (3)
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Energy range of
Astrophysical interest
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correction of 
the effect

  

   

s max(E)µƛ2

correction of the 
tunneling 

probability (l=0)

S(E) : astrophysical S-factor which 
contains all the nuclear effects for 
a given reaction

 (Sometimes) a smoothly varying 
function  extrapolation to 
astrophysical energies

  

  Nuclear reaction cross sections:       The astrophysical S-factor
  



Non-resonant process

Resonant process

Consider reaction:               a + X   b + Y

One-step process leading to final nucleus Y   | < b+Y | H | a+X > | 2

single matrix element

 occurs at all interaction energies
 cross section has relatively WEAK energy dependence

Two-step process:  1) compound nucleus formation  a + X   C*

2) decay of compound nucleus    C*  b + Y

(b = particle or photon)

  | < b+Y | H’| C* > | 2  | < C* | H | a+X > | 2

two matrix elements

  occurs at specific energies
  cross section has STRONG energy dependence

  

Nuclear reaction cross-sections:                        Reaction mechanisms 
    



12C + p
1/2+

1.943

l=0

l=1
l=2 

• A simple case: 12C(p,)13N

g.s
1/2-

13N

E1

M1
1/2+

3/2-

5/2+

2.365

3.502
3.547

• JR = J(12C) + J(p) + L = 1/2, (-1)l = 1       
 

•  l = 0

• Reaction Q-value (=mass excess):            

• Q = (12C) + (p) - (13N) = 1.943 MeV

• ER =  2365 - 1943 = 422 keV

  

  Nuclear reaction cross sections:                   Nuclear resonances
  



• Energy profile of excited nuclear states:  

- Time-dependent wave function:        

where  is the mean lifetime of the excited state

- The wave function as a function of energy is obtained by the

Fourier transform (conjugate variables): 

- The probability distribution is then: 

= Breit-Wigner profile (Cauchy-Lorentz distribution)

• Full width at half maximum:                                Heisenberg 
       uncertainty principle
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  Nuclear reaction cross sections:        Nuclear resonance profile
  



• Partial width (energy units):   where a is the probability per 

second that the decay particle a ( p, n, , …) crosses an imaginary sphere at 
the distance r  : 

v being the relative velocity and                     the spherical harmonics           
With the penetration factor for the Coulomb and centrifugal barriers: 

                                                                              
                                       being the probability density for the  appearance 
of the particle a at the nuclear radius RN
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  Nuclear reaction cross sections:                             Partial width
  



Consider reaction: a+X C* b+Y

   C+

Resonance parameters:

Resonance energy:    Er= Ex-Q  

                                            excitation energy

Partial widths:   

a  : Probability of the formation of the compound nucleus C* from the entrance channel a+X  

b  : Probability of the decay of the compound state C* to the exit channel b+Y 

  : Probability of the  decay of the compound state C* to its ground state 

Spin, parity:    J

J Ea ab



J

C

a + X

a

b

b+Y 

  

Nuclear reaction cross-sections:                                Resonant process 
    



 ~ h/

Any exited state has a finite width

high energy wing can extend 

above particle threshold

cross section can be entirely dominated 

by contribution of sub-threshold state(s)

  

  Nuclear reaction cross sections:      Sub-threshold resonances
  



            

13C(,n)16O  main neutron source in AGB stars (1-3 M) 

 s-process nucleosynthesis  90  A  209

6.356    ½+  

5.939    ½-  

4.554     3/2- 

3.841     5/2- 

17O

6.862  

7.166  

13C+

6.359


16O+n
4.143

n

Ecm

T=108 K

 EG=190 keV

  

  
  

Example of sub-threshold resonant reaction:                     13C(,n)16O  
                                             

3/2+ (843 keV)

Gamow peak

6.356 
contribution

See lecture III



• Cross section for the resonant reaction a + X  C  Y + b, via the 
formation of an excited state in the compound nucleus C: 

where Ja and JX are the total angular momentum of the nuclei a and X, and 

J that of the resonance in the compound nucleus;  aX is Kronecker’s delta 

function

• The spin statistical factor                           takes into   

account the number of available states (selection rules)

• Note that a and b are energy dependent (Pl(E,RN)…)
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  Nuclear reaction cross sections:     The Breït-Wigner cross-section 
  



For thermal energies QE n    x(Q+En) x(Q) = constant

n(En) Pln(En)      

for ln=0       P0(En)~vn                                                             for non-resonant reaction

For s-wave neutrons  (l=0)      centrifugal barrier Vl= 0   and also coulomb barrier VC= 0

At low energies, the reactions are dominated by s-wave neutron capture

Higher l neutron capture plays role only at higher energies (or if l=0 capture is suppressed) 

  

Nuclear reaction cross-sections:   Neutron induced-reactionsNeutron induced-reactions
    

The cross section is given by : 

 
n

2 v

1
v

v

1
 n

n
nn E

A(n,x)B    with x=, p or 

   nxnnnIIInn EQEnAHCCHxB  222 ƛƛ



  

Nuclear reaction cross-sections:   Neutron induced reactionsNeutron induced reactions
    

v

1


Deviation 
from 1/v

due to Resonant
contribution

Example:

7Li(n,)8Li



Thermonuclear reaction rates



Reaction rate    a + X  b + Y (cm2)=
Number of reactions/unit time/nucleus X

Number of incident particles/cm2/unit time

  

Reaction Rates in the laboratory:            Definition 
    

Total reaction rate (reactions per second) R= σ IdnT

with nT
        : number density of target nuclei

       I =jA : beam number current (number of particles per second hitting the target)

note: dnT
 is number of target nuclei per cm2. 

assume thin target (unattenuated 
Intensity through target 

beam of particles hits target at rest

thickness d

area A

j,v
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Reaction Rates in stellar environment:                     Definition 
    

Mix of (fully ionized) projectiles a and target nuclei X at a temperature T

For a given relative velocity v   in volume V with projectile number density Na

so for reaction rate per second per cm3:

This is proportional to the number of a-X pairs in the volume. 

If projectile and target are identical, 

one has to divide by 2 to avoid 

double counting 

 The number of reactions/s   R =  NavNxV

(v)vNN
1

1
Xa

aX




aXr



Maxwell-Boltzmann distribution: 

Quiescent stellar burning: non-relativistic, non-degenerate gas in thermodynamic 

equilibrium at temperature T

 = reduced mass
v = relative velocity
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(v) velocity distribution Reaction rate per particle pair: 

In stellar plasma:         velocity of particles varies over wide range

  

Thermonuclear Reaction Rates:            Definitions 
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expressed in terms abundances

units of stellar reaction rate NA<v>: usually cm3/mole/s

  

Thermonuclear Reaction Rates:            Definitions 
    

Total reaction rate                                                     reactions cm-3 s-1

  Ni = number density
aXXa

aX

vNN
1

1 


aXR




 vN
1

1 2
A

2 
 aX

aX
aX YYR




 vN
1

1
A 


 a

aX

Y

reactions per s and cm3

reactions per s and target
nucleus

this is usually referred to 
as the stellar reaction rate
of a specific reaction

  NA = Avogadro number



Lets assume the only reaction that involves nuclei X and Y is destruction (production) 
of X (Y) by X capturing the projectile a:

X + a  Y

The reaction is a random process with const probability (as long as the conditions are 
unchanged) and therefore governed by the same laws as radioactive decay:





X
Y

aXX
X

n
dt

dn

vYnn
dt

dn



 AN

consequently:

nX( t )=n0 X e
−λ t

nY ( t )=n0 X (1−e
−λ t )

  

Thermonuclear Reaction Rates            Abundance changes, lifetimes 
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X Y

Y X ( t )=Y 0 X e
−λ t

Y Y ( t )=Y 0X (1−e−λ t )

and of course

same
abundance
level Y0X

time
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un

da
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after some time, nucleus X
is entirely converted to nucleus Y

Lifetime of X (against destruction via the reaction X+a) : 


vYa 


AN
11

(of course half-life of A T1/2=ln2/)



Y0X

Y0X/e



Consider the reaction X+a  Y

Reaction Q-value:    Energy generated (if >0) by a single reaction:
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
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i nuclei initial j nuclei final

2
ji mmcQ

Energy generation: Energy generated per g and second by a reaction:
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 2
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Thermonuclear Reaction Rates:                          Energy generation 



Example: in the CNO cycle, 13N 
can either capture a proton or  decay.

each destructive reaction i has a rate i

the total destruction rate for the nucleus is then 
i

i

its total lifetime 


i
i

 11

Total lifetime

Branching

the reaction flow branching into reaction i, bi is the fraction of destructive flow
through reaction i. (or the fraction of nuclei destroyed via reaction i)




j
j

i
ib




13N

14O

13C

(p,)

(+)

  

Thermonuclear Reaction Rates:  various reactions destroying a nucleus 



production

destruction

• Nuclear energy production rate: 

where Qijk is the Q-value of the reaction i+jk

 


ijk
ijkijk

ij

ji
Q

NN
v

1





• Evolution of the densities: system of 
coupled differential equations 
(solved numerically)

 Nuclear reaction network

  

The nucleosynthesis equations 
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