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The Subject Matter is Related with the Strongly Degenerate Neutron Star Matter

Thermonuclear Reactions:

H → He =⇒ He→ C,O =⇒ C → Ne,Mg =⇒ Ne→ Mg,Si =⇒

O → Si, S, Ar, Ca =⇒ Si → Fe,Ni =⇒ Fe → SN-Explosion .

Iron is the most stable nucleus - the thermo-nuclear reaction at the core come to a

halt- core mass increases- the density and temperature also rise- the core becomes

unstable.

The stability sets in when the core density reaches ∼ 109gm/cc - process of neutron-

ization begins- the capture of electrons by iron nuclei - simultaneous conversion of

protons into neutrons and emission of neutrinos or photo-disintegration of iron nuclei.

The central pressure decreases, core collapses- the neutrinos escaping from the

central core are absorbed by the outer layers - additional transmission of energy -

results in the expulsion of envelope, or in other wards, triggers a supernova explosion.

The remaining core becomes a neutron star surrounded by the cloud of ejected mat-

ter



The energy released in photo-disintegration of iron nuclei is so high that it results

total fragmentation of the whole star.

In 1934 Baade and Zwicky proposed the idea of neutron stars. The radius of a

neutron star is very small (≈ 10km), mass is ∼ a few times M⊙, density of matter

inside is very high and more strongly bound by gravitational force than the ordinary

stars.

In a typical neutron star, the central density > 1014gm/cc, and almost all the elec-

trons have combined with protons to make neutrons; ne = np ≈ 0.03nn- hence the

name neutron star

Gravitational contraction is balanced by the degenerate pressure of neutron gas.

Matter in β-equilibrium: µn = µp+ µe

At still higher densities- electron Fermi momentum > muon rest mass- energetically

favorable to produce µ− instead of e−- charge neutrality condition: np = ne+ nµ.

At Further higher densities- more and more massive hyperons are produced in dense

neutron star matter.



High density- superfluity neutron matter- droplets of superconducting proton matter.

A bit exotic phenomena, e.g., pion and kaon condensation are also expected in such

dense neutron star matter.

In the extreme case- if the density >> n0 formation of quark matter- quark star,

strange star or hybrid star.



Magnetized Objects in Nature

A Comparative Study:

a) The Earths magnetic field measured at the N magnetic pole 0.6G.

b) A common, hand-held magnet 100G.

c) The magnetic field in strong sunspots 4000G.

d) The strongest, sustained (i.e., steady) magnetic fields achieved so far in the lab-

oratory generated by huge electromagnets 4.5× 105G.

e) The strongest man-made fields ever achieved, if only briefly made using focused

explosive charges; lasted only 4− 8 microseconds. 107G.



f) The strongest fields ever detected on non-neutron stars → strongly-magnetized

compact white dwarfs ∼ 108G.

g) Typical surface & polar magnetic fields of radio pulsars the most familiar kind of

neutron star; more than a thousand are known to astronomers 1012 − 1013G.

h) Milli-second Pulsars: Old neutron stars- Magnetic field is very low- ∼ 107−8G.

i) Magnetars soft gamma repeaters (SGR and anomalous X-ray pulsars AXP (These

are surface, polar fields. Magnetar interior fields may range up to 1016G, with

field lines probably wrapped in a toroidal geometry inside the star.) 1014 −
1015G.

Physicists have not made steady fields stronger than 4.5 × 105 Gauss in the lab

because the magnetic stresses of such fields exceed the tensile strength of terrestrial

materials.



Magnetic Field Structure of Magnetars/Neutron Stars/Pulsars



Origin of Neutron Star Strong Magnetic Field

Flux conservation in the case of conventional radio pulsars.

Dynamo Mechanism: A combination of rotation and convection produces strong mag-

netic field in the case of magnetars.



Magnetic Field Affects:

⇓

1. Equation of State

2. Properties of NS’s (M-R relation etc.)

3. Phase transition to quark matter in NS

4. Surface/crustal properties

5. Weak and Electromagnetic processes

6. NS cooling – Thermal evolution

7. Kinetic coefficients ( Shear and bulk viscosity coefficients, heat conductivity and

electrical conductivity )



8. Evolution of magnetic field

9. Structural deformation of NS in presence of ultra-strong magnetic field- Emission

of gravity waves



Classical GTR −→ Oblate shape

QM calculation −→ Prolate shape

Extreme case =⇒ Black disk or black string.

⇓

Some Unique Type Effects:

1. Complex nature of nucleon mass

2. Peculiar behaviour of electron gas- Neutral super-fluid

3. Deformation of atoms and hadrons

4. Photon splitting

5. Chiral symmetry violation



Atoms in very strong magnetic fields

The strongest magnetic field that you are ever likely to encounter personally is about

104 Gauss if you have Magnetic Resonance Imaging (MRI) scan for medical diag-

nosis. Such fields pose no threat to your health, hardly affecting the atoms in your

body. Fields in excess of 109 Gauss, however, would be instantly lethal. Such fields

strongly distort atoms, compressing atomic electron clouds into cigar shapes, with

the long axis aligned with the field, thus rendering the chemistry of life impossible.

A magnetar within ≤ 106 Km. would thus kill you via pure static magnetism - if it

didn’t already get you with X-rays, gamma rays, high energy particles, extreme grav-

ity, bursts and flares.

In fields much stronger than 109 Gauss, atoms are compressed into thin needles. At

1014 Gauss, atomic needles have widths of about 1% of their length, hundreds of

times thinner than unmagnetized atoms. Such atoms can form polymer-like molecu-

lar chains or fibres. A carpet of such magnetized fibber’s probably exist at the surface

of a magnetar, at least in places where the surface is cool enough to form atoms.



Charged Particles in Ultra-strong magnetic field

Consider electron in ultra-strong magnetic field. If Cyclotron Quantum ≥ Rest Mass

Energy - A new effect- the Quantum Mechanical effect of strong magnetic field- Lan-

dau Diamagnetism. For electron the critical field = 4.4 × 1013 Gauss. (This field-

strength given by a combination of fundamental constants:

BQ =
m2
e c

3

h̄e
,

me- rest mass of the electron, c- the speed of light, h̄- reduced Planck’s constant,

and e- the magnitude of charge on an electron.)

If B ≥ BQ phase space - cylindrical- momentum along B- continuous (−∞ ≤
pz ≤ +∞), in the ⊥-plane- momentum gets quantized- (p⊥ = (2νeB)1/2 =

(2νmh̄ω)1/2)- Landau quantization, (ν = 0,1,2, ..)-

Energy Eigen Value: (NR)

Eν =
p2z
2m

+ (ν +
1

2
)h̄ω =

p2z
2m

+
p2⊥
2m

, ω =
eB

2mc
Energy Eigen Value: (R)

Eν = (p2z c
2 +m2c4 +2ν h̄ceB)1/2





Y

X

Z

B



Further, the phase space volume integral in the momentum space in this quantized

condition is given by

1

(2π)3

∫

d3pf(p) =
1

(2π)3

∫

dpzd
2p⊥f(p) =

eB

4π2

ν=∞
∑

ν=0

(2−δν0)
∫ +∞

−∞
dpzf(ν, pz)

Factor 2−δν0- the zeroth Landau level is singly degenerate, whereas all other states

are doubly degenerate.



Quantum Mechanical Equation of Charged Particle in Strong Quantizing Magnetic

Field:

Non-Relativistic: (Schrödinger equation)

d2F

dx2
+

2m

h̄2

[

E − p2z
2m

− e2B2

2mc2
(x− x0)

]

F(x) = 0

where ~A ≡ (0, xB,0), x0 = cpy/eB and

ψ(x, y, z) = N exp

[

i

h̄
(pyy+ pzz)

]

F(x)

Relativistic: (Dirac equation)

[γµ(i∂
µ − eAµ)−m]ψ(x) = 0



The modified form of spinor solutions of Dirac equation:

ψ(x) =
1

(LyLz)1/2
exp{−iEνt+ ipyy+ ipzz}u↑↓(x)

where

u↑(x) =
1

[2Eν(Eν +m)]1/2













(Eν +m)Iν;py(x)
0

pzIν;py(x)

−i(2νeB)1/2Iν−1;py(x)













and

u↓(x) =
1

[2Eν(Eν +m)]1/2













0
(Eν +m)Iν−1;py(x)

i(2νeB)1/2Iν;py(x)
−pzIν−1;py(x)













↑ and ↓ ⇒ up and down spin states respectively,

Iν =

(

qB

π

)1/4 1

(ν!)1/2
2−ν/2 exp

[

−1

2
eB

(

x− py

eB

)2
]

Hν

[

(eB)1/2
(

x− py

eB

)]

Hν -Hermite polynomial of order ν, Ly, Lz- length scales along Y and Z directions



respectively. Here we have taken h̄ = kB = c = 1.



Stability of Matter

Atoms, Nuclei, Electron gas at the crust of NS, Neutron star matter and Quark Matter

become more stable in presence of B.

Non-interacting charge neutral degenerate n − p − e matter in β equilibrium with

B 6= 0:

URCA Processes:

n −→ p+ e− + ν̄e

p+ e− −→ n+ ν̄e

np = ne

µn = µp+ µe

n = np+ nn



Number Density

ni =
eB

π2

[ν
(i)
max]
∑

ν=0

(2− δν0)pFi

i = p or e

For neutron

nn =
1

6π2
p3Fn

The expressions for degenerate pressure and energy density:

Pi = −Ωi,V

=
qigiB

2π2

[ν
(i)
max]
∑

ν=0

[
1

2
µi(µ

2
i −M

(i)2
ν )1/2

− 1

2
M

(i)2
ν ln







µi+ (µ2i −M
(i)2
ν )1/2

M
(i)
ν







]



and

ǫi = Ωi,V + µini

=
qigiB

2π2

[νmax]
∑

ν=0

[1

2
µi(µ

2
i −M

(i)2
ν )1/2

+
1

2
M

(i)2
ν ln







µi+ (µ2i −M
(i)2
ν )1/2

M
(i)
ν







]

where µi chemical potential M
(i)
ν = (m2

i +2νqiB)1/2.

Whereas for neutron they are:

Pn =
1

8π2
[2µn(µ

2
n −m2

n)
3/2 − 3m2

nµn(µ
2
n −m2

n)
1/2

+ 3m4
n ln

{

µn+ (µ2n −m2
n)

1/2

mn

}

]

and

ǫn =
3

8π2
[2µ3n(µ

2
n −m2

n)
1/2 −m2

nµn(µ
2
n −m2

n)
1/2

− m4
n ln

{

µn+ (µ2n −m2
n)

1/2

mn

}

]



Considering β-equilibrium and charge neutrality one can see that

ǫ/nB|B>Bc
ǫ/nB|B<Bc

≪ 1

Stability of strange quark matter at T = 0- Witten −→ Quark matter in B -More

stable.

Formalism in brief:

u, d, s and e in β-equilibrium and charge neutral:

Now for B > B(c), with the relation p2F ≥ 0, the maximum value of Landau quantum

number at zero temperature is given by

νmax =

[

(µ2 −m2)

2eB

]

which is an integer but less than the actual value of the quantity within the third

brackets at the right hand side and µ is the chemical potential of the charged particle.

The upper limit of ν-sum will now be νmax instead of ∞.



The direct URCA process:

d→ u+ e− + ν̄e, s→ u+ e− + ν̄e

the reverse process

u+ e− → d+ νe. u+ e− → s+ νe

The system is also charge neutral

2nu − nd − ns − 3ne = 0

in β-equilibrium

µd = µs and µd = µu+ µe

The number density for ith species is given by

ni =
eB

2π2

νmax(i)
∑

ν=0

(2− δν0)pFi

Thermodynamic potential:

Ω = −T lnZ

=
∑

i

[

Ωi,V (T, µi)V +Ωi,S(T, µi)S +Ωi,C(T, µi)C
]

+BPV

Sum is over u, d, s-quarks and electron (e).



First term is the volume contribution:

Ωi,V (T, µi) = − Tgi
(2π)3

∫

d3k ln (1 + exp(β(µi − ǫi)))

gi is the degeneracy of the i-th species (= 6 for quarks and 2 for electron) and V is

the volume occupied by the system.

Second term is the surface contribution:

Ωi,S(T, µi) =
giT

64π2

∫

d3k

| ~k |

[

1− 2

π
tan−1

(

k

mi

)]

ln (1 + exp(β(µi − ǫi))) = σ

S is the area of the surface enclosing the volume V and σ is the surface energy per

unit area or the surface tension of quark matter.

The last term corresponds to curvature correction:

Ωi,C(T, µi) =
Tgi
48π3

∫

d3k

| ~k |2
ln [1 + exp(β(µi − ǫi))]

[

1− 3

2

k

mi

(

π

2
− tan−1

(

k

mi

))]

where C is the length of the line element drawn on the surface S.



In presence of strong magnetic field:

Ωi,V = −T qigiB
2π2

∞
∑

ν=0

∫ ∞

0
dkz ln

(

1 + exp(β(µi − ǫ
(ν)
i ))

)

Ωi,S = T
qigiB

16π

∞
∑

ν=0

∫ ∞

0

dkz
√

(k2z + k2⊥,(i))
ln

(

1+ exp(β(µi − ǫ
(ν)
i ))

)

[

1− 2

π
tan−1

(

k

mi

)]

and

Ωi,C = T
qigiB

12π2

∞
∑

ν=0

∫ ∞

0

dkz

(k2z + k2⊥,(i))
ln

(

1 + exp(β(µi − ǫ
(ν)
i ))

)

[

1− 3

2

k

mi

(

π

2
− tan−1

(

k

mi

))]

where k
(i)
⊥ = 2νqiB

Surface and curvature terms play significant roles during quark bubble nucleation in

dense neutron matter, and are not important for a bulk quark matter system.



Bulk Strange Quark Matter

Consider only the bulk term at T = 0.

Free energy density (General expression):

Ui = Ωi,V + µini − T

(

∂Ωi,V

∂T

)

µi

The last term comes from the non-zero entropy of the system, which is zero for

T = 0. Then the total energy density of the confined SQM is given by

U =
∑

i

Ui+BP

The expressions for degenerate pressure and free energy density:

Pi = −Ωi,V

=
qigiB

2π2

[ν
(i)
max]
∑

ν=0

[
1

2
µi(µ

2
i −M

(i)2
ν )1/2

− 1

2
M

(i)2
ν ln







µi+ (µ2i −M
(i)2
ν )1/2

M
(i)
ν







]



and

ǫi = Ωi,V + µini

=
qigiB

2π2

[νmax]
∑

ν=0

[1

2
µi(µ

2
i −M

(i)2
ν )1/2

+
1

2
M

(i)2
ν ln







µi+ (µ2i −M
(i)2
ν )1/2

M
(i)
ν







]

where M
(i)
ν = (m2

i +2νqiB)1/2.

Whereas for s-quark, they are:

Ps =
1

8π2
[2µs(µ

2
s −m2

s)
3/2 − 3m2

sµs(µ
2
s −m2

s)
1/2

+ 3m4
s ln

{

µs+ (µ2s −m2
s)

1/2

ms

}

]

and

ǫs =
3

8π2
[2µ3s(µ

2
s −m2

s)
1/2 −m2

sµs(µ
2
s −m2

s)
1/2

− m4
s ln

{

µs+ (µ2s −m2
s)

1/2

ms

}

]



Considering β-equilibrium and charge neutrality one can see that

ǫ/nB|B>Bc
ǫ/nB|B<Bc

< 10
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Nucleation of Quark Bubble in Compact Neutron matter

Landau & Lifshitz, Statistical Mechanics, Part-2

First order quark-hadron phase transition initiated by the nucleation of droplets of

quark matter in presence of strong magnetic field.

Surface and curvature energies of the quark bubble play crucial role in droplet nucle-

ation.

Nucleation rate of stable quark bubble in metastable neutron matter per unit volume:

I = I0 exp (−Wm/T) ≈ T4 exp (−Wm/T)

whereWm is the minimum thermodynamic work to be done to create a critical quark

droplet and is given by

Wm =
4

3
π

σ3

(∆P)2
[2 + 2(1 + b)3/2 +3b]

where σ = σq + σn the surface tension and ∆P = Pq − Pn is the pressure

difference. Here ∆P = Pq − Pn > 0.



b= 2γ(∆P)/σ2, and γ = γq − γn, stands for curvature energy density.

q- quark phase n- metastable neutron matter.

Bubble nucleation time τbubble ≈ 10−23 sec ≈ τstrong, the strong interaction

time scale, the creation of strange quarks through weak processes within the quark

droplets may be ignored (u, d-quarks only).

Temperature (∼ 5−10 MeV)<< quark chemical potential (∼ 300 MeV),-anti-quarks

are ignored.

Hyperons at the core =⇒ u, d and s quarks in the quark bubble.

It is obvious that the surface energy diverges logarithmically in the infra red limit

(kz → 0) for ν = 0 (for the ground state Landau level).

To show this more explicitly:

Assume T = 0 −→ upper limit of the ν is νmax.



Then we have writing

σ =
TBm

16π

∑

i=u,d

giqi

∞
∑

ν=0

∫ ∞

0

dkz
√

k2z + k2⊥(i)

ln



1 + exp



−ǫ
(ν)
i − µi

T







G

where

G =

[

1− 2

π
tan−1

(

k

mi

)]

for T → 0

σ(G = 1) =
Bm

16π

∑

i=u,d

giqi{
ν
(i)
max
∑

ν=0

∫ kFi

0

kzdkz
√

k2z +m2
i + k2⊥,(i)

ln(kz +

√

k2z + k2⊥,(i))

−
νmax
∑

ν=0

ln(k⊥,(i))(µi −
√

k2⊥,(i) +m2
i )}

Since µi >
√

k2⊥,(i) +m2
i , therefore, for ν = 0 the second term becomes +∞.

The other part of integral, evaluated numerically, found to be a finite number.

Similarly the integral with the second part ofG (which is 6= 1) has also been obtained

numerically and is found to be finite.



Therefore the diverging property of σ(G = 1) for ν = 0 is also true for the whole

surface energy / area.

Although we have assumed here T → 0, this important conclusion is equally valid

for any finite T .

The nucleation rate of droplet formation becomes zero, i.e., there can not be a single

quark droplet formation from metastable neutron matter at the core region, if the

magnetic field is of the order of or greater than the corresponding critical value.



Curvature term:

γ =
T

12π2

∑

i=u,d

giqi

∞
∑

ν=0

∫ ∞

0

dkz

k2z + k2⊥,(i)
ln (1 + exp(−β(ǫi − µi)))G

where

G = 1− 3

2

k

mi
(
π

2
− tan−1(

k

mi
))

Term by term evaluation:

I1 =

∫ ∞

0

dkz

k2z + k2⊥,(i)
ln (1 + exp(−β(ǫi − µi)))

Diverges in the infra red limit for ν = 0. Here the divergence is 1/kz type.

Explicitly form: integrate by parts:

I1 =
1

Tk⊥,(i)

∫ ∞

0
tan−1(

kz

k⊥,(i)
)

kzdkz

(k2z + k2⊥,(i) +m2
i )

1/2

1

exp(β(ǫi − µi)) + 1

which diverges for ν = 0, but the divergence is not logarithmic (I1 ∼ 1/ν as ν → 0).



Second term:

I2 = − 3π

4mi

∫ ∞

0

dkz

(k2z + k2⊥,(i))
1/2

ln (1 + exp(−β(ǫi − µi)))

Integrating by parts:

I2 =
3π

4mi
[{ln(k⊥,(i)) ln (1 + exp(−β(ǫi − µi)))}

− 1

T

∫ ∞

0
ln(kz + (k2z + k2⊥,(i))

1/2)
kzdkz

(k2z + k2⊥,(i) +m2
i )

1/2

[

1

exp(β(ǫi − µi)) + 1

]

]

For ν = 0, the first term diverges logarithmically, but unlike the second term it

becomes −∞. All other terms remain finite for all values of ν in the infra red as well

as ultra violet limits. Now the divergences of first two terms of this eqn. can not

cancel each other. The first divergence is much faster as ν → 0 than the second

one, therefore the overall divergence of curvature remains positive as ν → 0.

As a consequence, nucleation of quark bubbles in metastable neutron matter will be

completely forbidden.



Interacting Neutron Star Matter in Absence of Magnetic Field

Reference

1. N.K. Glendenning, Compact Stars, Nuclear Physics, Particle Physics and Gen-

eral Relativity, Second Edison, Springer (2000).

Relativistic Mean Field Theory: σ-ω Model of Nuclear Matter

Scalar field:σ couples with baryon scalar density ρs = gσψψ.

Vector field ωµ (µ = 0,1,2,3) couples with baryon four-current jµ = gωψγµψ.

gi with i = σ and ω are the coupling constants.

Then we have the Lagrangian density

L = ψ[iγµ(∂
µ+ igωω

µ)− (n− gσσ)]ψ

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
ωµνωµν +

1

2
m2
ωωµω

µ

where ωµν = ∂µων − ∂νωµ-vector field tensor.



EL-equation:

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0

where φ:σ, ωµ, ψ, ψ =⇒ we have with ∂µωµ = 0 (comes automatically since

∂µjµ = 0)

[✷+m2
σ]σ = gσψψ

[✷+m2
ω]ωµ = gωψγµψ

and finally

[γµ(i∂
µ − gωω

µ)− (m− gσσ)]ψ(x) = 0

Set of equations are coupled, non-linear and hence extremely difficult to solve nu-

merically. =⇒ Introduced an approximation, called mean field approximation: Matter

is assumed to be static and uniform in ground state and mean fields or the mean

values of the scalar and vector fields are considered:

σ(x) −→< σ(x) >= σ and ω(x) −→< ω(x) >= ω (we are using same symbols

for the mean fields). =⇒

m2
σσ = gσ < ψψ >

m2
ωω0 = gω < ψ†ψ >

m2
ωωk = gω < ψγkψ > i



With mean fields, Dirac eqn. is is given by:

[γµ(i∂
µ − gωω

µ)− (m− gσσ)]ψ(x) = 0

Now σ and ω are treated as background field.

With ψ(x) ∼ ψ(k)exp(−ik.x), we have

[γµ(k
µ − gωω

µ)− (m− gσσ)]ψ(k) = 0

Define:Kµ = kµ − gωωµ and effective baryon mass m∗ = m − gσσ. Then the

energy eigen value ε(k) = k0 = K0 + gωω0, with K0 = [(~k − gω~ω)2 +m∗2]1/2.

Spatial Component of ω-Field = 0

Let Γ is any operator. Define single-particle expectation value: < ψ|Γ|ψ >k,s,τ .

Subscripts: k-momentum, s-spin and τ -isospin. Expectation value in the ground

state of many nucleon system:

< ψ|Γ|ψ >=
∑

s,τ

1

(2π)3

∫

d3k < ψ|Γ|ψ >k,s,τ Θ(µ− ε(k))

where µ-Fermi energy ≡ chemical potential (at T = 0).



From Dirac equation:

k0ψ(k) = γ0(~γ.~k+ gωγµω
µ+m∗)ψ = HDψ

where HD is the Dirac Hamiltonian. Consider any variable ξ, such that

∂

∂ξ
< ψ†|HD|ψ >k,s,τ=< ψ†

∣

∣

∣

∣

∣

∂HD
∂ξ

∣

∣

∣

∣

∣

ψ >k,s,τ +k0
∂

∂ξ
< ψ†ψ >k,s,τ

The last term on rhs is zero.

ρ =< ψ†ψ >=
4

(2π)3

∫

d3kΘ(µ− ε(k))

Hence by ξ −→ ki and taking E(k) as the single-particle eigen value, we have

∂

∂ki
E(k) =< ψ|γi|ψ >k,s,τ

Then

< ψ|γi|ψ > =
4

(2π)3

∫

d3k

[

∂

∂ki
E(k)

]

Θ(µ− ε(k))

=
4

(2π)3

∫

dkidkjdkk
[

∂

∂ki
E(k)

]

Θ(µ− ε(k))

=
4

(2π)3

∫

dkjdkk
∫

dE(kj, kk)



The last integral explicitly becomes zero since at any point on the Fermi surface the

energy value is the Fermi energy (rotational invariance).

Therefore, < ψ|γi|ψ >, the baryon three-current in the medium vanishes identically.

Hence

ωi =
gω

m2
ω
ji = 0

Only ω0 6= 0. Further, the single-particle energy E(k) = (k2 +m∗2)1/2.

Baryon density (vector density):

ρ=< ψ†|ψ >=
4

(2π)3

∫

d3kΘ(µ− ε(k)) =
2k3F
3π2

Scalar density:

Now

< ψ|ψ >k,s,τ=
∂E(k)

∂m
=

m∗

(k2 +m∗2)1/2



Then

ρs =< ψ|ψ >=
2

π2

∫ kF

0
k2dk

m∗

(k2 +m∗2)1/2

Energy density:

ǫ = − < L > + < ψγ0k0ψ >

Pressure:

P =< L > +
1

3
< ψγikiψ >

where i = 1,2,3 Hence

ǫ =
1

2
m2
σσ

2 +
1

2
m2
ωω

2
0 +

2

π2

∫ kF

0
(k2 +m∗2)1/2k2dk

and

P = −1

2
m2
σσ

2 +
1

2
m2
ωω

2
0 +

1

3

2

π2

∫ kF

0

k2

(k2 +m∗2)1/2
k2dk

then the EOS:P ≡ P(ǫ)

Role of σ and ω fields are opposite in nature: σ-decreases the energy of the system,

where is ω0 increases the energy. At a particular density, σ and ω0 will be such



that energy will be minimum −→ saturation energy at saturation density. Saturation

energy gives saturation binding energy. Binding energy/nucleon:

B

A
=

(

ǫ

nB

)

0

−m

Note: gσσ has an upper limit (m∗ 6= 0). gωω0 grows with ρ.



Isospin Force:

To distinguish n and p- interaction with ρ-meson exchange is introduced. Interaction

part of this Lagrangian:

Lint = −gρ~ρν.~Iν

where the vector (in isospin space) meson current:

~Iν =
1

2
ψγν~τψ+ ~ρµ × ~ρνµ+2gρ(~ρ

ν × ~ρµ)× ~ρµ

Then in the EL-equation, the extra term is

∂Lint
∂ψ

=
gρ

2
γν~ρ

ν.~τψ

Dirac eqn. becomes:
[

γµ

(

kµ − gωω
µ − 1

2
gρτ3ρ

µ
3

)

−m∗
]

ψ(k) = 0

Other new equations:

As usual

gρρ
k
3 =

1

2

(

gρ

mρ

)2

< ψγkτ3ψ >= 0



gρρ
0
3 =

1

2

(

gρ

mρ

)2

< ψγ0τ3ψ >=

(

gρ

mρ

)2
1

2
(ρp − ρn)

Here ±1/2 are the isospin eigen values for p and n. In this case also three vector

part ρk3 does not contribute because of same reason. Further, ρ1 and ρ2, which can

be expressed in terms of ρ+ and ρ− do not contribute for obvious reason.

Energy density:

Energy eigen value:

εI3(k) = E(k) + gωω
0 + gρI3ρ

0
3

where

E(k) = (k2 +m∗2)1/2

Since I3|p >= +1
2|p > and I3|n >= −1

2|n >, we have energy density

ǫ =
1

3
bm(gσσ)

3 +
1

4
c(gσσ)

4 +
1

2
mσσ

2 +
1

2
mωω

2
0 +

1

2
mρρ

2
03

+
1

π2

∫ kp

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 +
1

2
gρρ

0
3

]

+
1

π2

∫ kn

0
k2dk

[

(k2 +m∗2(σ))1/2 + gωω0 − 1

2
gρρ

0
3

]



Pressure:

P = −1

3
bm(gσσ)

3 − 1

4
c(gσσ)

4 − 1

2
mσσ

2 +
1

2
mωω

2
0 +

1

2
mρρ

2
03

+
1

3

1

π2

∫ kp

0
k2dk

k2

(k2 +m∗2)1/2

+
1

3

1

π2

∫ kn

0
k2dk

k2

(k2 +m∗2)1/2



Interacting Neutron Star Matter in Presence of Strong Magnetic Field
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Mean field interaction: Hartree and Hartree-Fock Interaction:



σ − ω − ρ- meson exchange.

In a uniform magnetic fieldB along z-axis, the relativistic Hartree Lagrangian is given

by

L = ψ̄

[

iγµD
µ −m+ gσσ − gωγµω

µ − 1

2
gργµτ · ρµ

]

ψ

+
1

2
(∂µσ)2 − 1

2
m2
σσ

2 −
∑

k=ω,ρ

[

1

4

(

∂µV
k
ν − ∂νV

k
µ

)2 − 1

2
m2
k(V

k
µ )

2
]

,

Here, Dµ = ∂µ+ iqAµ, where the choice of gauge corresponding to the constant B

along z-axis is A0 = 0, A ≡ (0, xB,0).

The general solution for protons is

ψ(r) ∝ e−iǫ
Ht+ipyy+ipzzfpy,pz(x),

where fpy,pz(x) is the 4-component spinor solution.

The Dirac-Hartree equation for protons in a magnetic field is then given by
[

−iαx∂/∂x+ αy(py − qBx) + αzpz + βm∗ + UH0,p

]

f
(r)
py,pz(x) = ǫHf

(r)
py,pz(x) .



Equation of motion for neutrons −→ q = 0 and UH0;p −→ UH0;n; =⇒ plane wave

soln.

For T = 0, only positive energy spinors: (Chiral representation)

f
(1)
py,pz(x) = Nν













(ǫHν + pz)Iν;py(x)

−i√2νqBmIν−1;py(x)

−m∗Iν;py(x)
0













,

f
(2)
py,pz(x) = Nν













0

−m∗Iν−1;py(x)

−i√2νqBmIν;py(x)

(ǫHν + pz)Iν−1;py(x)













,

Nν = 1/
√

2ǫHν (ǫHν + pz), and ǫHν = ǫH − UH0;p = (p2z +m∗2 + 2νqBm)1/2 −→
effective Hartree energy.

Effective nucleon mass m∗ = m+ UHS and UHS = −(gσ/mσ)2nS.



Scalar density: nS = n
(n)
S + n

(p)
S , with

n
(n)
S =

m∗

2π2



µ∗nO
1/2
n −m∗2 ln







µ∗n+O1/2
n

m∗









 ,

n
(p)
S =

m∗qBm
2π2

ν
(p)
max
∑

ν=0

gν ln







µ∗p+O1/2
p,ν

(m∗2 +2νqBm)1/2






,

where On = µ∗n
2 −m∗2, and Op,ν = µ∗p

2 −m∗2 − 2νqBm.

Interaction energy density: UH0 (protons and neutrons) UH0;p = (gω/mω)2nB +

(gρ/mρ)2ρ3/4 and UH0;n = (gω/mω)2nB − (gρ/mρ)2ρ3/4,

where ρ3 = np − nn.

Total baryon number density: nB = nn+ np, with

nn =
O3/2
n

3π2
, np =

qBm

2π2

ν
(p)
max
∑

ν=0

gνO1/2
p,ν .



The total energy density:

ǫ =
g2σ

2m2
σ
n2S +

g2ω
2m2

ω
n2B +

g2ρ

8m2
ρ
ρ23

+
1

8π2



2µ∗n
3O1/2

n −m∗2µ∗nO
1/2
n −m∗4 ln







µ∗n+O1/2
n

m∗











+
qBm

4π2

ν
(p)
max
∑

ν=0

gν






µ∗pO

1/2
p,ν +m∗2

p,ν ln











µ∗p+O1/2
p,ν

m∗
p,ν

















+
qBm

4π2

ν
(e)
max
∑

ν=0

gν



µeO1/2
e,ν +m2

e,ν ln







µe+O1/2
e,ν

me,ν









 .

Here Oe,ν = µ2e −m2
e − 2νqBm and m∗2

i,ν = m∗2
i + 2qνBm, where m∗

i s denote

m∗s(mes) for i = p(e).

The total pressure: P = n2B∂(E/A)/∂nB, where E/A is the energy per baryon.



Hartree-Fock (σ − ω-meson exchange)

Bm is along z-axis, Lagrangian:

L = ψ̄ [iγµD
µ −m− gσσ − gωγµω

µ]ψ+
1

2
(∂µσ)2

− 1

2
m2
σσ

2 − 1

4
(∂µων − ∂νωµ)

2 +
1

2
m2
ω(ωµ)

2,

Solution for protons:

ψ(r) ∝ exp(−iǫHF t+ ipyy+ ipzz)fpy,pz(x),

We take ν = 0, then

fν=0
py,pz(x) = Nν=0













ǫHFν=0 + pvz

0

−m∗

0













Iν=0;py(x),

where Nν=0 = 1/
√

2ǫHFν=0(ǫ
HF
ν=0 + pvz) and ǫHFν=0 = ǫHFpz − UH0 − UF0 (pz) =

√

p2vz +m∗2.

The DHF equation of protons for ν = 0:
[

αzpz + β
(

m+ UH + UF
)]

u(pz) = ǫHFpz u(pz),



Effective mass m∗ = m+ UHS + UFS (pz), and u(pz) is the momentum dependent

part of the spinor.

Hence one can obtain the EOS etc of interacting neutron star matter in Hartree-Fock

approximation.



Tolmann-Oppenheimer-Volkoff (TOV) Equation for Neutron Stars:

We use Gravitational or Geometrical units:

G = c= 1.

Hence the TOV or the GR hydrostatic equilibrium equation along with the subsidiary

mass equation:

dP

dr
= −ρm

r2

(

1+
P

ρ

)(

1+
4πPr2

m

)

(

1− 2m

r

)−1

dm

dr
= 4πr2ρ

TOV equation is obtained from GR Einstein’s equation with Schwarzschild metric,

valid for a static, non-rotating system in vacuum.



How to solve the equations (numerically)?:

1. EOS P(ρ) is known from the core to the crust.

2. Pick a value of central density ρc. The Pressure is known.

3. At the centre m = 0 (take an extremely small number for numerical calculation.)

4. Integrate the above equations out ward from r = 0.

5. Each time a new value for ρ and also a new value for m(r) will be obtained, hence

get P(ρ).

6. At r = R, the radius of the star, P = 0.

7. At r =, m(R) =M , the mass of the star.

8. Hence we get M(R) and density profile for a given ρc

9. Change the value of ρc and repeat (1-8).

10. We get M(ρc).

11. The value of ρc be such that dM/dρc > 0, otherwise the system becomes

general relativistically unstable.



At the core of NS chemical equilibrium among the constituents: =⇒

n→ p+e−+νe, p+e− → n+νe=⇒ µn = µp+µe. Neutrinos are non-degenerate,

leave the immediately after their formation.

Charge neutrality: np = ne.

Self-consistent solution of these equations along with the equations discussed in

σ − ω − ρ-meson model will give EOS for the core material.



More complicated cases:

(i) If µe > mµ, µ-mesons or muons will be created.

(ii) if µn−p > mB, B-is some baryon resonances- they have to be considered.

(iii) Presence of π-mesons and kaons are also important.



Schwarzschild exterior line element

ds2 =

(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

M → total mass. The interior line element is given by

ds2 = e2φdt2 − e2λdr2 + r2dΩ2

where φ and λ are functions of r and t and dΩ2 ≡ dθ2 = sin2 θdφ2.

GR Hydro-static Stability Equation:

Spherically symmetric non-rotating neutron star- obtained from the Einstein equation:

Rµν = 8π

(

Tµν −
1

2
gµνT

λ
λ

)

where

gµν =













(1− 2M/r) 0 0 0

0 −(1− 2M/r)−1 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ















The energy momentum tensor Tµν:

Tµν = −Pgµν + (P + ρ)uµuν

uµuµ = 1, P → kinetic pressure and ρ→ matter density.

Components of Ricci tensor Rµν- Schwarzschild metric- from the Einstein’s equation

⇒
dm

dr
= 4πr2ρ(r)

dP

dr
= −ρ(r)P(r)

r2

(

1 +
P(r)

ρ(r)

)

,

(

1 +
4πP(r)r2

m(r)

)(

1− 2m(r)

r

)−1

,

dφ

dr
= − 1

ρ(r)

dP

dr

(

1+
P(r)

ρ(r)

)−1

The Oppenheimer-Volkoff or Tolman, Oppenheimer-Volkoff equation (OV or TOV

equation) .

G = c= 1.

complementary mass equation -m(r), mass inside radius r

φ→ gravitational potential in the Newtonian limit.



Numerical soln. of TOV equation along with the supplementary mass equation- follow

the following steps:

a) Choose a central density ρc. From the equation state obtain Pc, the central pres-

sure. Further m(r = 0) = 0.

b) Integrate the eqns numerically from the centre (r = 0) to the surface. During

integration, each time a new value of P and from the equation of state ρ are

obtained.

c) Since pressure vanishes at the star’s surface, the value r = R, the radius of the

star is obtained for P = 0, and the corresponding m(r = R) = M , the mass

of the star.

m(R) must equal M ⇐ interior metric coefficient:

e2λ ≡
(

1− 2m

r

)−1



match smoothly to the exterior Schwarzschild metric coefficient:

e2λ ≡
(

1− 2M

R

)−1

Analytical Soln. of TOV Eqn.- uniform matter density approximation, i.e.,

ρ=constant. ⇒

M = M(R) =
4π

3
ρR3

and

P(r) =
3M

4πR2

(

1− 2M
R

)1/2 −
(

1− 2Mr2

R3

)1/2

(

1− 2Mr2

R3

)1/2
− 3

(

1− 2M
R

)1/2

P(r = R) = 0 ⇒ surface.

Important feature of the soln.:

Constraint connecting the star’s mass and radius- pressure at the centre (say at r =

r0) can be infinity provided

r20 = 9R2 − 4R3

M



Avoid this unphysical result ⇒ r0 - imaginary, i.e.,

M

R
<

4

9
true for any equation of state. The same constraint can also be obtained directly

from the Einstein field equation.

Physical meaning: Pack more mass- fixed radius or contract- fixed mass ⇒ above

inequality breaks ⇒ destroy the hydrostatic equilibrium condition (due to increased

gravitational attraction).

The above constraint can be re-written as

M2 <
16

243πρ

Geometrical Units

Choice of unit:c = G = 1 −→ time is in cm: 1sec= 3× 1010cm, mass is in length

unit: 1g= 0.7425× 10−28cm. Then M⊙ = 1.4766km.

Something interesting happening at the radii r = 0 −→ the real singularity and r =

Rs = 2M −→ the Schwarzschild radius- Schwarzschild singularity- characteristic

length scale for curvature in the Schwarzschild geometry.



Newtonian Neutron Stars with Polytropic Equation of State

Newtonian limit- rest mass density ρ0(r) dominates over energy density ρ(r)- gravi-

tational potential 2GM/r is everywhere small enough −→ TOV equation ⇒

1

r2
d

dr

(

r2

ρ0

dP

dr

)

= −4πGρ0

Polytropic EOS: P = KρΓ0 - adiabatic EOS, K and Γ - constants.

With Γ = 1+ 1/n, n - polytropic index, writing

ρ0 = ρcθ
n

r = aξ

a =





(n+1)Kρ
(1/n−1)
c

4πG





1/2

ρc = ρ0(r = 0) - central density ⇒ hydrostatic stability equation:

1

ξ2
d

dξ
ξ2
dθ

dξ
= −θn

-Lane-Emden equation -second order differential equation- unique solution- two

boundary conditions: θ(0) = 1 and θ′(0) = 0



Integrated numerically- starting from ξ = 0- for n < 5 (Γ > 6/5)- solution decreases

monotonically and → 0 at a finite value, say ξ = ξ1- stars surface- ρ0 = P = 0 ⇒
the radius of the star:

R =

[

(n+1)K

4πG

]1/2

ρ
(1−n)/2
c ξ1

and the mass:

M = 4π

[

(n+1)K

4πG

]1/2

ρ
(3−n)/2
c ξ21 | θ′(ξ1) |

Eliminating ρc ⇒ mass-radius relation:

M = 4πR(3−n)/(1−n)
[

(n+1)K

4πG

]n/(n−1)

ξ
(3−n)/(1−n)
1 ξ21 | θ′(ξ1) |

Special solutions: low density non-relativistic

1. Γ =
5

3
, n =

3

2
, ξ1 = 3.65375, ξ21 | θ′(ξ1) |= 2.71406,

high density ultra− relativistic

2. Γ =
4

3
, n = 3, ξ1 = 6.89685, ξ21 | θ′(ξ1) |= 2.01824



Hence for white dwarfs: NR

R ≈ 1.22× 104
(

ρc

106 gm cm−3

)−1/6
km

M ≈ 0.7011

(

R

104 km

)−3

M⊙

Relativistic Case:

R ≈ 3.347× 104
(

ρc

106 gm cm−3

)−1/3
km

M ≈ 1.457M⊙

This limiting value of White Dwarf mass- The Chandrasekhar mass.


