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Preface

The present manuscript are lecture notes on an introduction to relativistic transport theory, held at the
SERC School on Modern Theories of Nuclear Reactions in Roorkee, India.
The aim of these lectures is to provide a self-contained presentation of the general foundations of rela-
tivistic transport theory with the aim to provide the theoretical tools for the application of such meth-
ods to relativistic heavy-ion collisions. Here, the main challenge lies in the fact that one has to de-
scribe strongly coupled systems of hadrons that mostly have a considerable finite width already in the
vacuum. In addition they are strongly interacting and thus their properties change drastically in the
medium. This leads to the necessity to develop equations for the propagation of particles off their mass
shell, which is still a challenging problem although a lot of progress in this respect has been made in
the recent years. These notes are structured as follows.
In Chapter 1 we develop the basic ideas of kinetic theory for classical relativistic particles. After a
short reminder on special relativity we consider the Boltzmann equation for a many-body system
with one species of indistinguishable particles with a collision term considering elastic two-body colli-
sions. Then we shall discuss the most important general applications of this equation, as the derivation
of the Boltzmann-H theorem, the equilibrium distributions, the validity of conservation laws, and hy-
drodynamical equations. We conclude this chapter with a brief discussion of the extension to take into
account quantum statistics (i.e., the case of degenerate gases) in the Boltzmann-Uehling-Uhlenbeck
approach.
In Chapter 2 we turn our attention to relativistic quantum-field theory, making the connection with
the previous Lectures of the School on fundamental interactions, but extending the quantum-field the-
oretical techniques to the case of many-body theory. In these notes I concentrate on the Schwinger-
Keldysh real-time formalism which is suitable for both equilibrium and non-equilibrium situations.
We shall introduce the path-integral formulation for the most simple relativistic quantum field the-
ory, the φ4 model and develop the important technique of generating functionals for the derivation
of self-consistent equations for the one-particle Green’s functions, the Kadanoff-Baym equations,
which provide the starting point for the derivation of transport equations in Chapter 3, where we dis-
cuss various levels of approximations for the off-shell kinetics of broad resonances and their properties
regarding fundamental issues as the validity of the conservation laws and the H-theorem.
Notation and conventions: In these notes we shall use a “natural system of units” as usually applied
in theoretical high-energy particle and nuclear physics, i.e., we set the modified Planck constant ħh = 1
and the speed of light c = 1. This implies that masses, energy and momenta are measured in, e.g., GeV
and times and lengths in GeV−1. Sometimes it is also convenient to measure times c t and lengths in fm
(1 fm = 10−15 m). Then the conversion factor ħhc = 0.197 GeVfm is used. Further we use the “west-
coast convention” concerning the Minkowski pseudo-metric, ηµν = η

µν = diag(1,−1,−1,−1). Masses
of particles always denote the invariant (or “rest”) mass of the particles. Local macroscopic quantities
like densities, temperatures, etc. always refer to the local rest frame of the “fluid cells” and thus are

5



Contents

Minkowski scalars.
Literature:
For Chapter 1 on classical kinetic theory: A very good general introduction into both classical and
quantum transport theory, including a lot of applications, however restricted to the non-relativistic
theory is [LP81]. For the relativistic theory I used [CK02] and the first chapters on the classical theory
of [dvv80].
For Chpater 2 on quantum-transport theory, I refer to the Schwinger-Keldysh realt-time formulation
of many-body relativistic quantum field theory. The seminal papers are [Sch61, Kel64]. A very good
introduction to the non-relativistic theory is [Dan84a, Dan84b]. A standard review reference, particu-
larly with applications to nuclear physics is [BM90]. For a recent review on a modern transport-code
realization for nuclear-physics applications1, which is discussed in detail by Janus Weil in this lecture
series, see [BGG+12].
The seminal papers on the Φ-functional approach to the quantum description of many-body systems
are [BK61, Bay62]. In these lectures we refer to [Cas09, KIV01]. For my manuscript on relativistic
equilibrium and nonequilibrium quantum-field theory, see [Hee13].
Some standard textbooks on non-relativistic many-body theory are [FW71, KB61, AS10, Ram07] and
for relativistic many-body theory in thermal equilibrium [LeB96, KG06].

Frankfurt, Summer 2013,
Hendrik van Hees.

1The Giessen Boltzmann-Uehling-Uhlenbeck Project, GiBUU
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Chapter 1

Classical Relativistic Transport Equations

In this Chapter we shall establish the basic ideas about kinetic theory for classical relativistic particles.
We start with a brief reminder on the special theory of relativity and then discuss the phase-space dis-
tribution function and derive a relativistic Boltzmann equation, including elastic two-body collisions.
After this we discuss the validity of conservation laws, the H Theorem and derive the distribution for
local and global thermal equilibrium. We conclude this chapter with an extension of these concepts to
take into account quantum-statistical effects for the kinetic description of degenerate relativistic gases
(Boltzmann-Uehling-Uhlenbeck equation).

1.1 Reminder on Special Relativity

The special theory of relativity originates from the problem that the Maxwell Equations of classical
electromagnetism are not invariant under Galilei transformations as is Newtonian mechanics. This
implies that there should be a preferred frame of reference, which was associated with the rest frame
of a hypothetical medium, called the ether. On the other hand, its existence could never be established
experimentally. After some previous work by FitzGerald, Lorentz, Poincaré, H. Hertz and others,
Einstein came to the conclusion that the description of space and time has to be modified, which af-
fects not only the theory of electromagnetic phenomena but all physics. Here, we will summarize the
special theory of relativity in modern covariant notation. We adapt the convention that we set the
speed of light, which is a fundamental natural constant according to relativistic physics, c = 1. Fur-
ther, following Minkowski, it is convenient to combine the time and the Cartesian coordinates of the
position vector, describing locations in space as appearing to an observer who is at rest with respect to
an inertial frame of reference to the four-vector

x = (xµ) =
�

t
~x

�

=









t
x
y
z









. (1.1.1)

Here µ ∈ {0,1,2,3} is an index, labeling the components of this four-vector.
The space-time structure is further determined by the fact that the speed of light is independent of the
velocity of the light source with respect to any inertial frame. Consequently, the transformation that
describes the space-time coordinates of another inertial frame, where the four-vector has components
x ′µ, moving with constant velocity relative to the original inertial frame must fulfill the condition

t 2− ~x2 = t 2− x2− y2− z2 = t ′2− ~x ′2 = t ′2− x ′2− y ′2− z ′2. (1.1.2)
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Chapter 1 · Classical Relativistic Transport Equations

For a light signal, that is sent from the origin of the coordinate system ~x ′ = ~x = 0 at time t = t ′ = 0
that as reached coordinates ~x at time t or ~x ′ at time t ′ with respect to the old and new inertial frames,
respectively, this means that t 2− ~x2 = t ′2− ~x ′2 = 0, i.e., in both coordinate systems, the light moves
with speed c = 1.
From the perspective of four-dimensional linear algebra that means that the 4×4-transformation matrix
Λµν has to fulfill certain constraints, which we shall derive now. The transformation from the four-
vector coordinates of the old inertial frame to the coordinates of the new one read

x ′µ =Λµν x
ν , (1.1.3)

where we adopt the Einstein summation convention, according to which one has to sum over equally
named indices, where one has to be written as a superscript and the other as a subscript. We shall come
back to this convention of upper and lower indices in a moment. The quadratic form (1.1.2) can be
written as

x · x = t 2− ~x2 = ηµν x
µxν , (1.1.4)

where

(ηµν ) =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









= diag(1,−1,−1,−1). (1.1.5)

We can generalize this quadratic form immediately to the bilinear form

x · y = ηµν x
µyν = tx ty − ~x · ~y. (1.1.6)

This bilinear form is called Minkowski product. It has all the properties of a usual scalar product
except that it is not positive definite.
Now the invariance of the quadratic form, cf. (1.1.2), should hold for all vectors, which implies

(x + y) · (x + y) = x · x + y · y + 2x · y != (x ′+ y ′) · (x ′+ y ′) = x ′ · x ′+ y ′ · y ′+ 2x ′ · y ′. (1.1.7)

Since x · x = x ′ · x ′ and y · y = y ′ · y ′ this implies that also

x · y = x ′ · y ′ (1.1.8)

Using the transformation law (1.1.3), this means that

x · y = ηµν x
′µy ′ν = ηµνΛ

µ
ρΛ

ν
σ xρyσ != ηρσ xρyσ = x · y (1.1.9)

must hold for all x, y ∈R4, and this implies that

ηµνΛ
µ
ρΛ

ν
σ = ηρσ . (1.1.10)

Any 4× 4 matrix that obeys this condition is called a Lorentz-transformation matrix. To see the
explicit form of a Lorentz transformation, we consider the case of a rotation free boost along the x-
axis, i.e., the new reference frame is assumed to move with constant speed along the x-direction with
the coordinate system in the same direction as the old one. This implies that y ′ = y and z ′ = z, which
means that this special Lorentz-transformation matrix must take the form

Λ̂= (Λµν ) =









a b 0 0
c d 0 0
0 0 1 0
0 0 0 1









. (1.1.11)
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1.1 · Reminder on Special Relativity

The condition (1.1.10) can be written in matrix-product notation

Λ̂η̂Λ̂T = η̂, (1.1.12)

which means
a2− c2 = 1, ab − cd = 0, b 2− d 2 =−1. (1.1.13)

Obviously we can fulfill the first equation by setting

a = coshη, c =− sinhη, η ∈R. (1.1.14)

From the second equation in (1.1.13) we find

b =
cd
a
=−d tanhη. (1.1.15)

Plugged this into the third equation in (1.1.13), we get

d 2(1− tanh2 η) = 1. (1.1.16)

Now

1− tanh2 η= 1−
sinh2 η

cosh2 η
=

1

cosh2 η
. (1.1.17)

Using this in (1.1.16) we find
d =±coshη. (1.1.18)

and with (1.1.15)
b =−d tanhη=∓ sinhη. (1.1.19)

Thus our transformation so far reads

t ′ = t coshη− x sinhη, x ′ =±(−t sinhη+ x coshη). (1.1.20)

The velocity of the origin of the new reference frame is given by x ′ = 0 ⇔ x = v t , i.e.,

v =
sinhη
coshη

= tanhη. (1.1.21)

From

coshη=
1

Æ

1− tanh2 η
=

1
p

1− v2
, sinhη= coshη tanhη=

v
p

1− v2
(1.1.22)

we get

x ′ =± 1
p

1− v2
(x − v t ). (1.1.23)

For |v | � 1 we find (up to corrections of order v2) the Galilei transformation, if we choose the upper
sign. Thus the desired Lorentz transformation is given by

t ′ = γv (t − v x), x ′ = γv (x − v t ), y ′ = y, z ′ = z with γv =
1

p
1− v2

. (1.1.24)
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Chapter 1 · Classical Relativistic Transport Equations

From this derivation we see that the relative velocity between two inertial frames can never exceed the
speed of light, because from (1.1.24) we must have |v |< 1 to guarantee that with t and x also t ′ and x ′

are real time and space components of a real four-vector.
Next we consider the kinematics of a classical point particle. To find covariant quantities we must
aim to formulate all the equations in terms of four-vectors or tensors and scalars. As in Newtonian
mechanics we can describe the motion of the particle by giving its position as a function of time, ~x =
~x(t ). If we want to describe the velocity of the particle, it is given by

~w =
d~x
dt

. (1.1.25)

However, under Lorentz transformations the time t is not invariant, and thus the velocity in the new
reference frame looks pretty complicated.
Fortunately we can form an invariant expression with the four-vector components of the four-vector
increment dx:

dx · dx = dt 2
�

�

dt
dt

�2

−
�

d~x
dt

�

�

= dt 2(1− ~w2). (1.1.26)

Since the velocity of a particle cannot exceed the speed of light, we can define the real quantity

dτ = dt
p

1− ~w2, (1.1.27)

which is called proper time of the particle under consideration. In an inertial frame, where the particle
is momentarily at rest, we have dτ = dt . This means that dτ is the time increment measured by an
observer which is momentarily at rest relative to the particle. From its derivation we see that this is a
Lorentz-invariant quantity, because

dτ2 = dx · dx = dx ′ · dx ′ = dt ′2(1− ~w ′2) = dτ′2 (1.1.28)

holds under arbitrary Lorentz transformations of the space-time vectors. Now we can define the four-
velocity of the particle by

uµ =
dxµ

dτ
=

dxµ

dt
dt
dτ
=

1
p

1− ~w2

�

1
~w

�

. (1.1.29)

This quantity obviously transforms as a four-vector, i.e.,

u ′µ =
dx ′µ

dτ
=

1
p

1− ~w ′2

�

1
~w ′

�

=Λµνu
ν . (1.1.30)

Plugging in the above result for the Lorentz-boost matrix we get

u ′0 =
1

p
1− v2

(u0− u1v), u ′1 =
1

p
1− v2

(u1− v u0), u ′2 = u2, u ′3 = u3. (1.1.31)

After some algebra this gives

~w ′ =
~u ′

u ′0
=

1
1− vw1





w1− v
w2/γv
w3/γv



 . (1.1.32)
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1.1 · Reminder on Special Relativity

The energy-momentum four-vector is defined as

pµ = muµ =
m

p

1− ~w2

�

1
~w

�

, (1.1.33)

where m is the invariant mass of the particle1. For | ~w| � 1 we can expand the square root to get

E := p0 = m+
m
2
~w2+O (| ~w|4), ~p = m ~w +O (| ~w|3). (1.1.34)

In this limit we find the Newtonian values for the kinetic energy (up to a constant shift of the energy
by the invariant mass of the particle!) and momentum of a particle. From (1.1.33) we find the energy-
momentum relation for a relativistic particle,

E =
Æ

m2+ ~p2. (1.1.35)

We can derive this by taking the invariant Minkowski product of the four-momentum vector,

p · p = m2u · u = m2ηµν
dxµ

dτ
dxν

dτ
= m2. (1.1.36)

Splitting in temporal and spatial components, we obtain

(p0)2− ~p2 = E2− ~p2 = m2, (1.1.37)

which immediately leads back to (1.1.35).
The equations of motion for a particle can again be guessed by generalizing the Newtonian equation
~F = d~p/dt in a covariant way. A four-vector, related to the time derivative of the momentum obviously
is d pµ/dτ. Thus we write the covariant equation of motion in the form

d pµ

dτ
=Kµ, (1.1.38)

where Kµ is the Minkowski-four-force vector. We note that the components of this vector can not be
independent of each other, because

p · p = m2 = const ⇒ p ·
d p
dτ
= 0, (1.1.39)

which implies
p ·K = ηµν pµK ν = 0. (1.1.40)

As an important example we give the force on a particle with charge q in an external electromagnetic
field. In relativistic notation the electromagnetic field is described via the four-potential Aµ by the
antisymmetric Faraday tensor

F µν = ∂ µAν − ∂ νAµ. (1.1.41)

1In the older literature one sometimes finds a “relativistic mass”, defined by m/
p

1−w2, which is not a Lorentz-covariant
quantity, and which we thus do not use in these lectures!
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Chapter 1 · Classical Relativistic Transport Equations

To make contact with the usual 1+ 3-dimensional notation of the electromagnetic field in terms of ~E
and ~B we look at the corresponding temporal-spatial and spatial-spatial components of this second-rank
tensor field2:

F 0 j =−F j 0 = Ȧj + ∂ j A
0 =−E j , F j k =−∂ j A

k + ∂kAj = εk j l B l . (1.1.42)

Here we have used that ∂ j =−∂ j =−∂ /∂ x j and

~E =−∂t
~A− ~∇A0, ~B = ~∇× ~A. (1.1.43)

The four-vector (Minkowski) force for a particle in an external electromagnetic field is then given

Kµ = qF µν
dxν
dτ
= qF µνuν . (1.1.44)

Since F µν builds the contravariant components of a second-rank Minikowski tensor, this is obviously
a four-vector as it should be. Further since pµ = muν , we have

pµKµ = qF µν
pµ pν

m
= 0, (1.1.45)

because Fµν = −Fµν . Thus the constraint (1.1.40) is fulfilled, and one of the four equations of motion
(1.1.38) is redundant. Thus it is sufficient to solve for the three spatial components. For these we find a
more familiar form by using (1.1.42) and writing out the tensor-vector product on the right-hand side
of (1.1.44):

K j = qF j νuν = q(F j 0u0+ F j k uk ) = q(E j u0− εk j l B l uk )

= q(E j u0+ ε j k l ukB l ) = q u0E j + q(~u × ~B) j .
(1.1.46)

Now we have u0 = γv and uµ = γv (1, ~v). This leads to

~K = γv q( ~E + ~v × ~B) = γv
~F . (1.1.47)

Thus we can write the spatial components of the equations of motion (1.1.38) in the form

d~p
dτ
= γv

d~p
dt
= γv q( ~E + ~v × ~B), (1.1.48)

which results in the three-dimensional (not covariant!) form

d~p
dt
= q( ~E + ~v × ~B). (1.1.49)

This is, although not manifestly covariant, a fully valid relativistic equation of motion. On the right-
hand side we have the well-known Lorentz force on a point particle in an external electromagnetic
field ( ~E , ~B). As we see, usually ~F is a function of both ~x and ~v (or in covariant form ~K a function of ~x
and ~p).

2In this manuscript we use the usual rationalized Gaussian units (Heaviside-Lorentz units) in electromagnetism, where
the unit of charge is defined such that the static Coulomb force is F = q1q2/(4πr 2), as is the common modern convention in
theoretical high-energy physics (QED).
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1.1 · Reminder on Special Relativity

We close this Section with a brief review of covariant vector calculus. A scalar field is defined as a
function φ(x) =φ(t , ~x) which transforms under Lorentz transformations according to the rule

φ′(x ′) =φ(x) =φ(Λ−1x ′). (1.1.50)

Now we want to see, how the four-dimensional generalization of the gradient transforms under
Lorentz transformations. To this end we simply use the chain rule for partial derivatives,

∂ φ′(x ′)
∂ x ′µ

=
∂ φ(x)
∂ x ′µ

=
∂ φ(x)
∂ xν

∂ xν

∂ x ′µ
. (1.1.51)

According to our summation convention the four-gradient should have a lower index, i.e.,

∂νφ(x) :=
∂ φ(x)
∂ xν

. (1.1.52)

Now we have
x ′ = Λ̂x ⇒ x = Λ̂−1x ′. (1.1.53)

This gives
∂ xν

∂ xµ
= ∂ ′µxν = (Λ−1)νµ. (1.1.54)

Now from (1.1.12) we find, because of η̂−1 = η̂,

Λ̂−1 = η̂Λ̂T η̂. (1.1.55)

To write this in index notation, we need to define

ηµν = η
µν = diag(1,−1,−1,−1). (1.1.56)

Then we have
(Λ−1)νµ = η

νσηµρΛ
ρ
σ . (1.1.57)

This implies that
∂ ′µφ

′ = (Λ−1)νµ∂νφ= η
νσηµρΛ

ρ
σ∂νφ. (1.1.58)

Contracting this with ηµα we find from ηµαηµρ = δ
µ
ρ , with the Kronecker symbol

δµρ =
¨

1 if ρ=µ,
0 if ρ 6=µ,

(1.1.59)

that
ηµα∂µ′φ

′ = ηνσδαρΛ
ρ
σ∂νφ=Λ

α
σ (η

νσ∂νφ). (1.1.60)

This means that the expression
∂ αφ := ηαµ∂µφ (1.1.61)

transforms as four-vector components with upper indices. One says that components like ∂µφ with
a lower index, which transforms according to the rule (1.1.58), transform contragrediently to four-
vector components with upper indices. One also says that xµ transforms contravariantly and ∂µφ
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Chapter 1 · Classical Relativistic Transport Equations

transforms covariantly. Vector components with upper indices are thus called contravariant com-
ponents and such with lower ones covariant components.
One can always uniquely switch from contra- to covariant components and vice versa, by the index-
dragging rule

xµ = ηµν x
ν ;⇒ xν = ηµν xν . (1.1.62)

We only have to show that xµ indeed transforms like covariant components should:

x ′µ = ηµν x
′ν = ηµνΛ

ν
σ xσ = ηµνη

σρΛνσ xρ
(1.1.57)
= (Λ−1)ρµxρ. (1.1.63)

Comparing this with (1.1.58) shows that xρ indeed transforms contragrediently to xρ as it should.

For completeness we also give the rotation-free Lorentz transformation for a reference frame Σ′ which
moves with an arbitrary velocity ~v (| ~v |< 1) against a frameΣ. This is easily found by looking at (1.1.24)
and setting ~ex → ~n = ~v/| ~v |:

t ′ = γv (t − ~v · ~x), ~x ′ = ~x +(γv − 1)~n (~n · ~x)− γv ~v t . (1.1.64)

The corresponding Lorentz-transformation matrix can be written in the form

Λ̂( ~v) =
�

γv −γv ~v
T

−γv ~v 1+(γv − 1)~n⊗ ~n

�

. (1.1.65)

We finally note that for time-like vectors, e.g., the four-momentum of a particle pµ, we can always
find a reference frame, where ~p ′ = 0. We only have to use the Lorentz boost (1.1.65) with a velocity
~v = ~p/

p

pµ pµ. Further also the sign of the temporal component p0 is invariant under Lorentz trans-
formations. One should keep in mind that the composition of two Lorentz boosts with non-collinear
velocities do not result in another Lorentz boost but a Lorentz boost followed by a rotation!

1.2 The Phase-Space Distribution Function

In this Section we shall discuss fundamental ideas of statistical physics. Historically statistical physics
goes back to the work of physicists like Bernoulli, Gibbs, Boltzmann, Maxwell, Einstein, and others.
The idea is to describe the behavior of macroscopic systems by a coarse grained description of the
behavior of its microscopic constituents, obeying fundamental dynamical laws as given by classical
mechanics and the fundamental interactions (which at the time were just gravitation and the electro-
magnetic interaction). Here we shall concentrate on the most simple case of dilute gases.
Of course, the 18th- and 19th-century physicists had no idea about the revolutionary development of
quantum theory in the early 20th century, and they described the motion of the fundamental con-
situents of matter (atoms or molecules) as small bodies (or point particles) moving under the influence
of forces among the particles (leading to collisions) according to the laws of Newtonian mechanics.
From this point of view statistical physics becomes just necessary due to the vast number of micro-
scopic constituents making up the gas in a container under everyday conditions of pressure and tem-
perature. It is simply impossible to write down the microscopic state of the system which consists
of 3N position coordinates and 3N momentum coordinates, where N ∼ NA ∼ 1024 is the number of
particles making up the gas and follow their trajectories in this 6N -dimensional phase space with time,
let alone to solve the coupled differential equations of motion, taking into account the interactions of
particles among themselves and with the wall of the container, etc. It is not even sensible to do so, since
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1.2 · The Phase-Space Distribution Function

what we want to know in practice is a more continuum like description, i.e., the time evolution of
the density, flow velocity, pressure and temperature of the gas as function of time and position in
the container in the spirit of a continuum-mechanical description. As we shall discuss later in these
lectures, there are different levels of description, depending on the way we average over microscopic
degrees of freedom to obtain the macroscopic bulk quantities mentioned above. One level is kinetic
theory, which soon shall lead us to the Boltzmann transport equation.
Here, the general idea is that for the description of the macroscopic properties of the gas we may define
a “grid” in phase space consisting of volume elements d3~x and d3~p in position and momentum space,
which are “infinitesimally small” on a macroscopic scale, i.e., on a scale over which the bulk properties
like the density of gas particles and the momentum-distribution of particles, taken on average over
such a cell, containing “many” particles, change. At the same time, this implies that these phase-space-
volume elements are large enough to contain many particles, over which we can take averages over
various quantities of interest. Then we describe the system by the phase-space distribution, f (t , ~x, ~p),
which is defined such that

dN = d3~x d3~p f (t , ~x, ~p) (1.2.1)

is the number of particles contained in the phase-space volume d6ξ = d3~xd3~p at the instant of time, t .
All this is defined for an observer in an arbitrary inertial frame of reference.
It is clear that any observer in another frame of reference moving with velocity v against the original
frame must count the same number of particles when he considers the same volume of the gas at the
same instant of time. We shall show now, that the phase-space distribution function can be defined as
a Lorentz scalar although this is not so obvious given that neither d3~x nor d3~p are invariant under
Lorentz transformations.
However, the spatial momentum components ~p together with p0 = E =

Æ

m2+ ~p2 build a four-vector.
Further the four-momentum volume element is a scalar since the volume element transforms with the
Jacobian of the transformation,

d4 p ′ = d4 p

�

�

�

�

�

det
∂ (p ′0, p ′1, p ′2, p ′3)
∂ (p0, p1, p2, p3)

�

�

�

�

�

= d4 p|det Λ̂|, (1.2.2)

but now, taking the determinant of (1.1.2), we find

det η̂= det(Λ̂η̂Λ̂T ) = det(Λ̂)det(η̂)det(Λ̂T ) = det(η̂)[det(Λ̂)]2

⇒ [det(Λ̂)]2 = 1 ⇒ |det Λ̂|= 1.
(1.2.3)

Thus (1.2.2) gives
d4 p ′ = d4 p. (1.2.4)

Now in our classical particle picture all four-momenta of particles are “on shell”, i.e., the temporal
component is p0 =

Æ

m2+ ~p2 = Ep . This means that we can use a distribution function f (t , ~x, ~p) =
f (t , ~x, p0, ~p) and set p0 = Ep using a δ distribution. This leads to the substitution

d3~p→ d4 pδ(p0− Ep ). (1.2.5)

The δ distribution can be rewritten in manifestly covariant form, because

Θ(p0)δ(p · p −m2) =
1

2Ep
δ(p0− Ep ). (1.2.6)
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Chapter 1 · Classical Relativistic Transport Equations

Now, if we restrict the Lorentz transformations to orthochronous transformations, i.e., such trans-
formations for which the time ordering of events is preserved, which means that Λ0

0 ≥ 1, implying
that the sign of the time components of time-like vectors like p, i.e., such vectors for which p · p > 0,
stays preserved. Also p · p is a Lorentz invariant and thus we realize that for particles on their mass
shell

d3~p
Ep
=

d3~p ′

Ep ′
(1.2.7)

is a Lorentz invariant.
Further to count the particles with momentum ~p in a little momentum volume d3~p we can use a
Lorentz boost with velocity ~v = ~p/E to transform the particle’s three-momentum to 0 at a time t , the
comoving reference frame. Four-vector components with respect to this frame of reference will be
denoted with a star in the following. Then we can look at any volume element d3~x∗ at a fixed time dt ∗

and count the particles in this volume element. This number is

dN = d3~x∗d3~p∗ f ∗(x∗, ~p∗ = 0). (1.2.8)

Now we want to express the proper volume element d3~x∗ in terms of the reference frame of the
original observer, where the particle has momentum ~p. To this end we again use the invariance of the
four-volume element:

d4x∗ = dt ∗d3~x∗ = d4x = dtd3~x. (1.2.9)

Now we have dt ∗ = dτ = dt/γv = dt m/Ep so that

d3~x∗ =
dt
dt ∗

d3~x =
Ep

m
d3~x. (1.2.10)

Since, according to (1.2.7)

d3~p∗

Ep∗
=

d3~p∗

m
=

d3~p
Ep
⇒ d3~p∗ =

m
Ep

d3~p
(1.2.10, 1.2.11)
⇒ d3~x∗d3~p∗ = d3~xd3~p, (1.2.11)

we find from (1.2.8)

dN = d3~xd3~p f (x, ~p) = d3~x∗d~p∗ f (x, ~p) ⇒ f (x, ~p)
(1.2.8)
= f ∗(x∗, ~p∗ = 0), (1.2.12)

and thus that indeed f (x, ~p)≡ f (x, p) is a Lorentz-invariant function for on-shell particles, p0 = Ep .

As an example we look at the canonical equilibrium-distribution function. As we shall derive in the
next Sections from the Boltzmann equation, the equilibrium state is characterized by a temperature and
a chemical potential, both of which are defined as Lorentz-scalar quantities. In the case of equilibrium
of a gas, there exists a preferred reference frame, where the fluid cells are at rest. As we shall see soon,
in this case the equilibrium distribution is given by the Maxwell-Jüttner distribution

f ∗(x∗, p∗) =
1

(2πħh)3
exp

�

−
Ep∗ −µ

T

�

. (1.2.13)

Now we like to transform this to a reference frame, where the fluid cell is moving with velocity ~v.
Using the appropriate Lorentz boost we find that

p∗0 = Ep∗ = γv (Ep − ~v · ~p) = u · p with u = γv

�

1
~v

�

. (1.2.14)
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1.2 · The Phase-Space Distribution Function

Thus in an arbitrary frame we have

f (x, p) =
1

(2πħh)3
exp

�

−
p · u −µ

T

�

. (1.2.15)

We can now express macroscopic quantities in a covariant way by momentum integrations over the
phase-space distribution, taking appropriate weights. Using the invariance of d3~p/Ep , cf. (1.2.7), we
can define the four-vector current

Jµ(x) =
∫

R3
d3~p

pµ

Ep
f (x, p). (1.2.16)

Since always p0 = Ep the temporal component gives the particle-number density and the spatial
components the particle-number current

J 0(x) =
∫

R3
d3~p f (x, p), ~J (x) =

∫

R3
d3~p

~p
Ep

f (x, p) =
∫

R3
d3~p ~v f (x, p). (1.2.17)

Obviously Nµ(x) is a timelike four-vector, because from | ~v |= |~p|/Ep < 1 follows

JµJµ > 0. (1.2.18)

Thus we can define the flow-velocity field by the average velocity of the fluid cell in the sense of this
particle-number flow, the socalled Eckart definition of flow:

~vEck(x) =
~J (x)

J 0(x)
. (1.2.19)

This is, of course not a Lorentz-covariant description of the fluid-flow field. As for the single-particle
velocity we can, however, introduce a fluid-flow four-vector field,

uµ
Eck
= γvEck

�

1
~vEck

�

=
Jµ

Æ

JµJµ
=:

Jµ

n
. (1.2.20)

The latter form shows the Lorentz-covariance of this four-velocity field explicitly. Obviously n =
Æ

JµJ ν is the particle-number density in the local restframe of the fluid in the sense of the Eckart
framework, i.e., in the frame of reference, where ~vEck = 0. From (1.2.20) we have the relation between
the particle-number four-current and the Eckart-four-flow velocity,

Jµ(x) = n(x)uµ
Eck
(x). (1.2.21)

If there are no particle-annihilation or production processes involved in the dynamics of the many-body
system, the total number of particles is conserved, i.e., for any finite volume V (at rest in the considered
reference frame) the change of number of particles inside this volume can only originate from the flow
of particles through its boundary surface, ∂ V . We orient the surface-normal vectors d2 ~F always to
point outside of the volume V . Then we have

dNV

dt
=

d
dt

∫

V
d3~xJ 0(x) =

∫

V
d3~x∂t J 0(x) =−

∫

∂ V
d2 ~F · ~J (x). (1.2.22)
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Chapter 1 · Classical Relativistic Transport Equations

The right-hand side of the equation obviously gives the number of particles per unit time running
through the surface of the volume (counted negative if flowing outwards and positive if flowing in-
wards). Now we can use Gauss’s integral theorem on the right-hand side to write the surface integral
as a volume integral and combine it with the left-hand side,

∫

V
d3~x[∂t J 0(x)+ ~∇ · ~J ] =

∫

V
d3~x∂µJµ = 0. (1.2.23)

Since this relation holds for any resting volume, we can conclude the local covariant form of particle-
number conservation, i.e.,

∂µJµ = ∂t J 0+ ~∇ · ~J = 0, (1.2.24)

which is nothing else than the continuity equation of the current, describing the conservation of the
corresponding total charge. Here this “charge” is simply the particle number.
Another important quantity is the energy-momentum-stress tensor,

T µν (x) = T νµ =
∫

R3
d3~p

pµ pν

Ep
f (x, p). (1.2.25)

For µ= ν = 0 we get

T 00(x) =
∫

R3
d3~pEp f (x, p), (1.2.26)

which is the energy density of the fluid. For µ= k ∈ {1,2,3} and ν = 0 we find

T k0 = T 0k := Sk =
∫

R3
d3~p pk f (x, p), (1.2.27)

the momentum density of the fluid.
With the very same arguments as for the particle-number current we can conclude that for a closed
system, for which energy and momentum are conserved, the energy-momentum tensor obeys the con-
tinuity equation

∂µT µν = ∂t T 0ν + ∂kT kν = 0. (1.2.28)

Integrating this equation over a resting volume V and using Gauss’s theorem for the second term yields

dP νV
dt
=−

∫

∂ V
d2F kT kν =−

∫

∂ V
d2F kT νk . (1.2.29)

Here, on the right-hand side we use the Einstein convention for usual three-dimensional vector-tensor
products. That is why in this case we sum over two superscript indices. We can as well write

d pνV
dt
=+

∫

∂ V
d2F kT ν

k . (1.2.30)

For ν = 0 we get
dEV

dt
=−

∫

∂ V
d ~F · ~S. (1.2.31)
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1.3 · The Relativistic Boltzmann Equation

This shows that the loss of energy contained in the fixed volume V is due to momentum flow through
the surface. This shows that the momentum-density vector ~S is at the same time the energy-current
density. For ν = j ∈ {1,2,3} we find that

d~pV

dt
=
∫

∂ V
d2 ~F · σ̂ , (1.2.32)

where the three-dimensional Euclidean tensor

σk j = σ j k = T j
k =−T j k (1.2.33)

is the stress tensor.

1.3 The Relativistic Boltzmann Equation

The Boltzmann equation attempts at finding an (approximate) evolution equation for the phase-space
distribution function f (t , ~x, ~p). As we have discussed in the previous Section, this is a Lorentz-invariant
phase-space distribution function, where dN (t ) = f (t , ~x, ~p)d3~xd3~p is the number of particles in a
phase-space volume d6ξ = d3xd3 p, as counted by an observer in an arbitrary inertial frame of reference.
This number changes with time because of collisions among the particles. In the following we shall
assume short-range interactions between the particles, i.e., within the resolution of a macroscopically
determined position, ~x, the collision occurs locally in space, i.e., at the position given by ~x.
The change of this particle number dN (t ) with time is now given by

dN (t + dt ) = f (t + dt , ~x + dtd~x/dt , ~p + dtd~p/dt )d6ξ (t + dt ). (1.3.1)

The change of f is thus

d f = dt
�

∂

∂ t
+

d~x
dt
· ∂
∂ ~x
+

d~p
dt
· ∂
∂ ~p

�

f . (1.3.2)

Now for a particle moving under influence of an external force, e.g., due to an external electromagnetic
field, we have

d~x
dt
=

1
γv

d~x
dτ
=
~p
m

m
E
=
~p
E

(1.3.3)

and
d~p
dt
= ~F (t , ~x, ~p). (1.3.4)

Thus (1.3.2) can be written as

d f = dt

 

∂

∂ t
+
~p
E
· ∂
∂ ~x
+ ~F ·

~∂

∂ ~p

!

f . (1.3.5)

The phase-space volume element at t+dt is given in terms of the one at time t with help of the Jacobian

d6ξ (t + dt ) = d6ξ (t )det

�

∂ (~x + dt ~p/E , ~p + dt ~F )
∂ (~x, ~p)

�

= d6ξ (t )
�

1+ dt
∂

∂ ~p
· ~F
�

+O (dt 2). (1.3.6)
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Chapter 1 · Classical Relativistic Transport Equations

Thus we have

dN (t + dt )− dN (t ) = d6ξ (t )dt





∂ f
∂ t
+
~p
E
·
∂ ~f
∂ ~x
+
∂ ( ~F f )
∂ ~p



 (1.3.7)

Since the left-hand side is an invariant, also the right-hand side should be one. Thus, for completeness,
we show that we can write it in a manifestly covariant way. Indeed, for a particle with momentum ~p
the proper time increment along its trajectory reads dτ = dt/γv or dt = γvdτ = (E/m)dτ. Thus we
have

dt





∂ f
∂ t
+
~p
E
·
∂ ~f
∂ ~x



= dτ
pµ

m
∂ f
∂ xµ

, (1.3.8)

which is a manifestly covariant expression. Further we have

dt
∂ ~F f
∂ ~p

=
E
m

dτ
∂ ( ~F f )
∂ ~p

. (1.3.9)

We rewrite this expression in terms of the covariant Lorentz force (1.1.38). Because of (1.1.40)

pµKµ = 0 ⇒ p0K0 = ~p · ~K ⇒K0 =
~p
p0
· ~K . (1.3.10)

Because of the on-shell condition, p0 = Ep =
Æ

m2+ ~p2, we can think of p0 first as an independent
variable in Kµ(x, p) and then, using ∂ Ep/∂ ~p = ~p/E , write

E
m
∂ ( ~F f )
∂ ~p

=
E
m

�

~p
E
∂

∂ p0
+
∂

∂ ~p

�

·
�

m ~K f
p0

�

=
∂

∂ p0

�

~p · ~K f
p0

�

+
∂

∂ ~p
· ( ~K f )

(1.3.10)
=

∂

∂ p0
(K0 f )+

∂

∂ ~p
· ( ~K f ) =

∂

∂ pµ
(Kµ f ),

(1.3.11)

setting p0 = Ep after all derivatives are taken. Thus, substitution of (1.3.8) and (1.3.9) in (1.3.7) finally
leads to

dN (t + dt )− dN (t ) = dt





∂ f
∂ t
+
~p
E
·
∂ ~f
∂ ~x
+
∂ ( ~F f )
∂ ~p



= dτ
�

pµ

m
∂ f
∂ xµ

+
∂ (Kµ f )
∂ pµ

�

. (1.3.12)

Thus we have
d
dt

dN =
d6ξ (t )

E

�

pµ
∂ f
∂ xµ

+m
∂ (Kµ f )
∂ pµ

�

. (1.3.13)

If there where no collisions between the particles this expression would vanish, because the particle
number in an invariant phase-space element d6ξ would stay constant. Now, with collisions at position
~x, within a time interval dt there is a certain amount dN− of particles with momentum ~p scattered to
other momentum values ~p ′ (“loss term”) but as well a number dN+ of particles with momentum ~p ′

might get scattered into particles with momentum ~p (“gain term”). This means that

d
dt

dN =
d
dt
(dN+− dN−). (1.3.14)
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1.3 · The Relativistic Boltzmann Equation

To evaluate the number of particles scattering in and out of the phase-space element d6ξ we have to
make some simplifying assumptions, known as Boltzmann’s Stoßzahlansatz3. It consists of the fol-
lowing postulates

1. The gas is assumed to be so dilute that only the elastic scattering of two particles are relevant,
because the collision of three particles within one fluid cell is extremely unlikely.

2. The two incoming particles with momenta ~p1 and ~p2 are uncorrelated, as well as the two out-
going particles with momenta ~p ′1 and ~p ′2 are uncorrelated, i.e., the numbers are given by

d3~xd3~p1 f (x, ~p1)d
3~xd3~p2 f (x, ~p ′2) or d3~xd3~p ′1 f (x, ~p1)d

3~xd3~p ′2 f (x, ~p ′2). (1.3.15)

This is the assumption of molecular chaos.

3. The phase-space distribution function varies slowly over a time interval which is on the one hand
much smaller than the time between two collisions (“mean free time” of a particle) but on the
other hand much larger than the duration of a collision (“collision time”), i.e., the time where the
influence of the interaction is effective for the particle’s motion. This separation of scales implies
that the interaction should be short ranged. The assumption is, e.g., violated when long-range
forces like the Coulomb interaction for charged particles in a plasma are taken into account.

Now we have to care about the question, how to describe the scattering. In our classical picture, the two
incoming particles with momenta ~p1 and ~p2 start out very far from each other so that the interaction
between the particles can be neglected until they come close to each other within the range of the
interaction. Then they exchange energy and momentum and flow away from each other. When they
become much farther away from each other, as compared to the interaction range, they again fly away
independently of each other with new momenta ~p ′1 and ~p ′2. The energies are always given by the
onshell-condition, and energy and momentum are conserved after the interaction is ineffective again
after the collision. This energy-momentum conservation we can write in terms of the four-momenta
as

p1+ p2 = p ′1+ p ′2. (1.3.16)

To characterize the collision, we want to define a quantity, which tells us how the two particles are
scattered, i.e., how the momentum changes occur, the socalled invariant scattering-cross section, i.e.,
a quantity which is invariant under Lorentz transformations. The number of elastic collisions of two
particles with four-momenta p1 and p2 to be scattered to momenta p ′1 and p ′2 during a short time
interval dt should be proportional to the densities of the incoming particles, i.e., d3~p1 f1 d3~p2 f2, where
f j = f (x, ~p j ), the volume element d3~x, and the time interval dt , i.e., d4x. In order to get an invariant
characterization of this number, we define it in terms of an invariant transition rate per unit volume,

dNcoll(p
′
1, p ′2← p1, p2) = d4x

d3~p1

E1

d3~p2

E2

d3~p ′1
E ′1

d3~p ′2
E ′2

f1 f2W (p ′1, p ′2← p1, p2). (1.3.17)

Next we shall show, how this rate is related to the invariant cross section. First of all we note that due
to (1.3.16) we must have W (p ′1, p ′2← p1, p2)∝ δ (4)(p ′1+ p ′2− p1− p2). To characterize the scattering
kinematics further in an invariant way, we introduce the Mandelstam variables4

s = (p1+ p2)
2 = (p ′1+ p ′2)

2, t = (p1− p ′1)
2 = (p2− p ′2)

2, u = (p1− p ′2)
2 = (p ′1− p2)

2. (1.3.18)

3Stoßzahlansatz is German for collision-number assumption.
4For a four-vector p, we use the abbreviation p2 = p · p = ηµν pµ p ν .
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Chapter 1 · Classical Relativistic Transport Equations

From the on-shell conditions we conclude that these three quantities are not independent of each other.
Multiplying out the Minkowski products gives

s = 2m2+ 2 p1 · p2, t = 2m2− 2 p1 · p
′
1, u = 2m2− 2 p1 · p

′
2

⇒ s + t + u = 6m2+ 2 p1 · (p2− p ′1− p ′2) = 6m2− 2 p2
1 = 4m2.

(1.3.19)

Thus we have two independent invariants to characterize the collision, e.g., s and t .
Obviously s = 2m2+ 2(E1E2− ~p1 · ~p2) > 0, because ~p1 · ~p2 ≤ P1P2 and E1E2 > P1P2. Thus p1+ p2 is
a time like four-vector, and we can always use the Lorentz boost with velocity ~v = (~p1+ ~p2)/(E1+E2)
to make ~p (cm)

1 + ~p (cm)
2 = 0, defining the center-momentum frame. This implies that

s = (E (cm)
1 + E (cm)

2 )2, (1.3.20)

i.e.
p

s is the total energy of the incoming particles as measured in the center-momentum frame.
Because P (cm)

1 = P (cm)
2 we also have

E (cm)
1 = E (cm)

2 = E ′(cm)
1 = E ′(cm)

2 =
p

s
2

⇒ P (cm)
1 = P (cm)

2 = P ′(cm)
1 = P ′(cm)

2 =
È

s
4
−m2 =

p
s − 4m2

2
.

(1.3.21)

Here we have used that due to momentum conservation also in the final state we have ~p ′1
(cm) =−~p ′2

(cm).
Traditionally, however, in high-energy physics the scattering cross section is defined in the socalled
laboratory frame since in the early days of particle accelerators the usual experiments were fixed-target
experiments, where one particle in the initial state is at rest. Thus we define the laboratory frame by

~p (lab)
2 = 0. (1.3.22)

Since p2
2 = m2 > 0 we can always use the Lorentz boost with velocity ~v = ~p1/E1 to transform from an

arbitrary frame to this laboratory frame. In terms of the laboratory momenta we have

s = (p1+ p2)
2 = 2m2+ 2 p1 · p2 = 2m2+ 2mE (lab)

1 , (1.3.23)

i.e., the energy of the incoming particle in the laboratory frame is given by

E (lab)
1 =

s − 2m2

2m
(1.3.24)

and the lab momentum

P (lab)
1 = |~p (lab)

1 |=
È

�

E (lab)
1

�2
−m2 =

p

s(s − 4m2)
2m

=
p

s
m

P (cm)
1 . (1.3.25)

In the center-momentum frame the collision kinematics is further completely determined by the scat-
tering angle, which is defined by

cosθ(cm) =
~p (cm)

1 · ~p ′1
(cm)

P (cm)
1 P ′(cm)

1

. (1.3.26)
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1.3 · The Relativistic Boltzmann Equation

It can be written in an invariant way by using the Mandelstam-t variable:

t =
�

p (cm)
1 − p ′(cm)

1

�2
= 2m2− 2

h

(E cm
1 )

2−
�

P (cm)
1

�2
cosθ(cm)

i

. (1.3.27)

Using (1.3.21) we find

cosθ(cm) =
2t

s − 4m2
− 1. (1.3.28)

The invariant differential cross section is now defined in the laboratory frame as the number of
particles per unit time scattered into a solid-angle range dΩ(lab) (where the solid angle is defined in
terms of spherical coordinates in the laboratory frame with the polar axis defined by the direction
of the momentum of the incoming particles, ~p1, as dΩ(lab) = dϑdϕ sinϑ) per incoming flux of the
projectiles and per particle density in the target region. According to (1.3.17) this is given by

dσ =
W (p ′1, p ′2← p1, p2)d

4x d3~p1
E1

d3~p2
m

d3~p ′1
E ′1

d3~p ′2
E ′2

f1 f2

d4xd3~p1vrel f1d3~p2 f2
, (1.3.29)

where all momenta are to be taken as lab momenta and

vrel =

�

�

�

�

�

�

~p (lab)
1

E (lab)
1

�

�

�

�

�

�

. (1.3.30)

Now to show that dσ is indeed Lorentz invariant, we bring (1.3.29) in a covariant form by using

p (lab)
1 · p (lab)

2 = E (lab)
1 m ⇒ vrel =

p

(p1 · p2)2−m4

E (lab)
1 m

=:
I

p1 · p2
. (1.3.31)

This shows that the so defined cross section is indeed invariant,

dσ =
d3~p ′1

E ′1

d3~p ′2
E ′2

W (p ′1, p ′2← p1, p2)
I

. (1.3.32)

The dimension of dσ in our natural units is GeV−2. In usual SI units it is an area5. Now we take into
account the energy-momentum-conserving δ distribution and write

W (p ′1, p ′2← p1, p2) = s
d

dΩ(cm)
σ(s , t )δ (4)(p1+ p2− p ′1− p ′2). (1.3.33)

Then we have

σtot =
1
2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2

s
I

d
dΩ(cm)

σ(s , t )δ (4)(p1+ p2− p ′1− p ′2). (1.3.34)

The factor 1/2 is due to the indistinguishability of the particles, i.e., we cannot distinguish the here
considered scattering event from a situation, where the final momenta are interchanged. To integrate
out the δ distributions we evaluate the integral in the center-momentum frame. The integration over

5One can simply convert from natural to SI units by multiplying with the appropriate power of ħhc ' 0.197 GeV fm. For
the cross section one multiplies by (ħhc)2 to obtain the cross section in fm2 = 10−30m2. Another typical unit for cross sections
are milli-barns, 1mb= 10−31m2 = 0.1 fm2.
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~p ′1
(cm) is immediately done, ensuring four-momentum conservation, which we tacitly assume in the

following, i.e., we have

σtot =
1
2

∫

R3

d3~p ′2
(cm)

E ′2
(cm)

s

I E ′1
(cm)

d
dΩ(cm)

σ(s , t )δ
�p

s − 2
È

�

P ′2
(cm)

�2
+m2

�

, (1.3.35)

where we have used that E (cm)
1 + E (cm)

2 =
p

s and E ′1
(cm) = E ′2

(cm). Now we introduce spherical coordi-
nates and use

δ

�p
s − 2

È

�

P ′2
(cm)

�2
+m2

�

=
E ′2
(cm)

2P ′2
(cm)

δ

�

P ′2
(cm)−

p
s − 4m2

2

�

, (1.3.36)

I
(1.3.31)
=

Æ

(p1 · p2)2−m4 =
p

s
2

p

s − 4m2. (1.3.37)

which indeed leads to

σtot =
1
2

∫

S2

dΩcm d
dΩ(cm)

σ(s , t ). (1.3.38)

Here we note that we have defined the total cross section as the integral of the differential cross section
over the total solid angle (unit sphere S2), although due to the indistinguishability of the particles we
should have integrated only over half the solid angle.
Finally we note that from (1.3.33) we find the detailed-balance relation

W (p ′1, p ′2← p1, p2) =W (p1, p2← p ′1, p ′2), (1.3.39)

because obviously a simple interchange of the initial momenta with the final momenta doesn’t change
the Mandelstam variables, s and t .
With this convention we finally can write down the Boltzmann Equation. We start from (1.3.13) and
(1.3.14) using (1.3.17) and (1.3.39) for both the gain and the loss rates of particles in the phase-space
volume d6ξ

pµ
∂ f
∂ xµ

+m
∂ (Kµ f )
∂ pµ

=
1
2

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2

×W (p ′1, p ′2← p, p2)( f
′

1 f ′2 − f f2),
(1.3.40)

where the factor 1/2 is again due to the indistinguishability of the particles. This is the Boltzmann
Equation in manifestly covariant notation. Using (1.3.12) and dt/dτ = E/m we find the more conven-
tional form

∂ f
∂ t
+
~p
E
·
∂ f
∂ ~x
+
∂ ( ~F f )
∂ ~p

=
1
2

∫

R3
d3~p2

∫

R3
d3~p ′1

∫

R3
d3~p ′2w(p ′1, p ′2← p, p2)( f

′
1 f ′2 − f f2), (1.3.41)

where we have introduced the non-covariant transition rate,

w(p ′1, p ′2← p, p2) =
W (p ′1, p ′2← p, p2)

EE2E ′1E ′2
. (1.3.42)
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The integration over ~p ′1 and ~p ′2 can be simplified in the same way as in our above evaluation of σtot,
using (1.3.33) in (1.3.40) which leads to

pµ
∂ f
∂ xµ

+m
∂ (Kµ f )
∂ pµ

=
1
2

∫

R3

d3~p2

E2

∫

S2

dΩ(cm)I
dσ

dΩ(cm)
( f ′1 f ′2 − f f2). (1.3.43)

For the non-covariant form we have to introduce the Møller velocity,

vM =
I

EE2
, (1.3.44)

leading to
∂ f
∂ t
+
~p
E
·
∂ f
∂ ~x
+
∂ ( ~F f )
∂ ~p

=
1
2

∫

R3
d3~p2

∫

S2

dΩ(cm)vM
dσ

dΩ(cm)
( f ′1 f ′2 − f f2). (1.3.45)

It is very important to remember that vM, often called vrel in the literature, is only the naive relative
velocity, if the incoming momenta are collinear as, e.g., in the center-momentum frame. For the general
case we find

vM =
I

EE2
=

p

(p · p2)2−m4

EE2
. (1.3.46)

By straightforward but lengthy algebra (Exercise!) one can show that this can be rewritten as

vM =
Æ

( ~v − ~v2)2− ( ~v × ~v2)2, (1.3.47)

i.e., indeed the Möller velocity is identical with the “naive relative velocity” if and only if ~v × ~v2 = 0,
i.e., for collinear velocities.

1.4 The Master Equation and Conservation Laws

In the following we shall derive a master equation for the currents of various conserved quantities,
leading to macroscopic descriptions of matter in the sense of fluid dynamics.
We start from the Boltzmann equation in its manifestly covariant form (1.3.40). Multiplying it by an
arbitrary phase-space functionψ(x, p) and integrating over ~p with the invariant measure d3~p/E yields6

∫

R3

d3~p
E
ψ(x, p)

�

pµ
∂ f
∂ xµ

+m
∂ (Kµ f )
∂ pµ

�

=Coll[ψ] (1.4.1)

with the collision functional

Coll[ψ] =
1
2

∫

R3

d3~p
E

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2

ψ(x, p)W (p ′1, p ′2← p, p2)( f
′

1 f ′2 − f f2). (1.4.2)

Because of the detailed-balance relation (1.3.39) we can interchange the four-momentum pairs (p1, p2)
and (p ′1, p ′2) in the first term of this equation and write

Coll[ψ] =
1
2

∫

R3

d3~p
E

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2
(ψ′1−ψ)W (p

′
1, p ′2← p, p2) f f2, (1.4.3)

6Remember that the momenta are always considered to be on the mass shell, i.e., p0 = Ep =
Æ

m2+ ~p2!
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Chapter 1 · Classical Relativistic Transport Equations

where we use the same abbreviations ψ = ψ(x, p), ψ2 = ψ(x, p2), etc. as for the distribution func-
tions f . Finally, because of the indistinguishability of the particles we can also interchange the four-
momentum pairs (p, p ′1) and (p2, p ′2). Adding this expression and dividing again by two, we finally get

Coll[ψ] =
1
4

∫

R3

d3~p
E

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2
(ψ′1+ψ

′
2−ψ−ψ2)W (p

′
1, p ′2← p, p2) f f2. (1.4.4)

Now we consider the left-hand side of (1.4.1). The first term we can rewrite as

∫

R3

d3~p
E
ψ(x, p)pµ

∂ f
∂ xµ

=
∂

∂ xµ

∫

R3

d3~p
E

f ψpµ−
∫

R3

d3~p
E

f pµ
∂ ψ

∂ xµ
. (1.4.5)

To simplify the second term we have to remember the definition of the derivatives with respect to pµ.
They have to be read in the sense to first take the derivatives of the covariantly written expression with
p0 considered as independent and only after the differentiation set p0 = E . Thus the meaning of the
second expression under the integral on the left-hand side of (1.4.1) is

m
E
ψ
∂ (Kµ f )
∂ pµ

(1.3.11)
= ψ

∂ ( f ~F )
∂ ~p

=
∂

∂ ~p
· (ψ f ~F )− f ~F · ∂

∂ ~p
ψ(x, E , ~p)

=
∂

∂ ~p
· (ψ f ~F )− f ~F ·

�

~p
E
∂

∂ p0
− ∂

∂ ~p

�

ψ(x, p)

(1.3.10)
=

∂

∂ ~p
· (ψ f ~F )− m

E
Kµ ∂ ψ

∂ pµ
.

(1.4.6)

Integrating over ~p and using Gauss’s integral theorem on the first term to rewrite the integral as an
integral over a surface in ~p space at infinity, which makes this contribution vanish, gives

∫

R3

d3~p
E

mψ
∂ (Kµ f )
∂ pµ

=−
∫

R3

d3~p
E

mKµ ∂ ψ

∂ pµ
. (1.4.7)

Now using (1.4.5), (1.4.7), and (1.4.4) in (1.4.1) gives the general master equation

∂

∂ xµ

∫

R3

d3~p
E

pµ f ψ−
∫

R3

d3~p
E

f
�

pµ
∂ ψ

∂ xµ
+mKµ ∂ ψ

∂ pµ

�

=
1
4

∫

R3

d3~p
E

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2
(ψ′1+ψ

′
2−ψ−ψ2)W (p

′
1, p ′2← p, p2) f f2.

(1.4.8)

This expression becomes particularly simple, if the collision functional on the right-hand side vanishes,
which is the case if ψ(x, p) fulfills the functional equation

ψ+ψ2 =ψ
′
1+ψ

′
2, (1.4.9)

where we can assume the energy-momentum-conservation constraints in the elastic scattering process,
because of the corresponding δ distributions contained in W (cf. 1.3.33). A function which fulfills
(1.4.9) under the contraint of energy-momentum conservation is called a summational invariant.
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1.5 · The entropy and the H -Theorem

We can find the general form of the invariant by introducing the constraints via Lagrange parameters
for the energy-momentum constraints, which can be dependent on x, and then taking the variations
(1.4.10) with respect to ~p, ~p2, ~p ′1, and ~p ′2

~p
E
∂ ψ

∂ p0
+
∂ ψ

∂ ~p
= λ0 ~p

E
+ ~λ. (1.4.10)

This is solved by
ψ(x, p) =A(x)+Bµ(x)p

µ, (1.4.11)

where the on-shell constraint p0 = E is tacitly assumed again.
Particularly, choosing A(x) = 1, Bµ = 0, i.e., ψ(x, p) = 1 we find from (1.4.8) the conservation of
particle number in form of the continuity equation for the particle-flow four-current density follows:

∂

∂ xµ

∫

R3

d3~p
E

pµ f
(1.2.16)
=

∂ Jµ

∂ xµ
= 0. (1.4.12)

Setting A(x) = 0 and Bµ(x) = δ
α
µ, i.e., ψ(x, p) = pα we find from (1.4.8)

∂

∂ xµ

∫

R3

d3~p
E

pα pµ f =
∫

R3

d3~p
E

f mKα =
∫

R3
d3~p f F α with F α =

m
E

Kα. (1.4.13)

The spatial parts of the right-hand side of this equation have the meaning of a force density.
For α = 0 (1.4.14) has the meaning of a local energy-bilance equation. Due to the constraint (1.1.40)
we have

pµKµ = EK0− ~p · ~K = 0 ⇒ K0 =
~p
~E
· ~K = ~v · ~K ⇒ F 0 =

m
E

K0 = ~v · ~F . (1.4.14)

Thus indeed for α= 0 the right-hand side of (1.4.13) becomes the meaning of the density of mechanical
power due to the work of the external forces on a fluid element around ~x.
The spatial components α= a ∈ {1,2,3} of (1.4.13) take the form of a local equation of motion for the
fluid element at x subject to external forces.
In the same way one can derive the angular-momentum-torque relation by setting ψ(x, p) = xα pβ −
xβ pα (Exercise!).

1.5 The entropy and the H -Theorem

To define entropy, even in the classical limit, the cleanest way is to consider quantum theory. To this
end, again we assume a cubic volume of length L and periodic boundary conditions for the wave func-
tions of the particles, which we also assume to be indistinguishable. Then the momentum eigenvalues
for a single particle within this box are7

~p =
2πħh

L
~n, ~n ∈Z3. (1.5.1)

Now we consider classical phase space as separated into phase-space cells∆6ξ which are microscopically
large, i.e., as containing many states. Here∆3~x = L3 can be seen as a box in position space of the type

7Here we explicitly introduce Planck’s constant ħh, which is important in the argument.
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just considered above. On the other hand the phase-space cell is considered macroscopically small, i.e.,
we assume that the single-particle phase-space distribution f (x, p) does not change considerably over
each of these phase-space cells. Then according of (1.5.1) each of these phase-space cells corresponds to

G j =
g∆6ξ j

(2πħh)3
(1.5.2)

single-particle states, where g counts the intrinsic quantum numbers like spin, for which g = 2s + 1
for massive particles or g j = 2 for the two helicity states of massless particles of any spin s j 6= 0.

For a dilute gas, i.e., if the number N j of particles contained in the phase-space element ∆6ξ j is on
average small compared to the number of quantum states, G j , we can neglect the degeneracy according
to quantum (Bose-Einstein or Fermi-Dirac) statistics. Then the statistical weight of the corresponding
phase-space distribution is estimated as

∆Γ j =
1

N j !
G

N j

j . (1.5.3)

The factorial in the denominator takes into account the indistinguishability of particles, i.e., it does
not matter which individual particle of the N j particles populates one of the G j quantum states be-
longing to a macroscopic phase-space cell. So any distribution of the N j particles which differs from
one such “macro state” only by permutation of all particles must be considered as the same N j -particle
state, and this is taken into account by the factorial in the denominator.
Following Boltzmann and Planck the entropy of the system for a given distribution of the N particles
in phase space, given by the numbers N j of particles in the phase-space cells∆6ξ j , is defined as

S =
∑

j

ln∆Γ j =
∑

j

[N j lnG j − ln(N j !)]'
∑

j

[N j lnG j −N j (lnN j − 1)]. (1.5.4)

In the last step we have used Stirling’s approximation, ln(N !)∼=N→∞N j (lnN j−1). Now we introduce
the average number of particles per quantum state

n j =
N j

G j
. (1.5.5)

Then we can write (1.5.4) as

S =
∑

j

N j ln

�

eG j

N j

�

=
∑

j

n j G j ln

�

e
n j

�

=
∑

j

g∆6ξ j

(2πħh)3
n j ln

�

e
n j

�

. (1.5.6)

Now in the limit of macroscopically small phase-space cells we can write

n j =
(2πħh)3N j

g∆6ξ j
'
(2πħh)3

g
f (x, p). (1.5.7)

Thus the entropy of a dilute gas is given in terms of phase-space by the semiclassical expression

S(t ) =−
∫

d3~x d3~p f (x, p){ln[(2πħh)3 f (x, p)/g ]− 1}. (1.5.8)

28



1.5 · The entropy and the H -Theorem

The above consideration shows that for a detailed foundation of classical statistical mechanics one needs
quantum-theoretical arguments in order to give a proper definition of entropy in terms of the phase-
space distribution function. The reason is that in classical physics there is no “natural measure” for
the size of phase-space cells, i.e., one cannot unambiguously count the number of microscopic states
leading to a given macroscopic distribution of particles in phase space. As we have shown above, this
problem is quite simply solved by using basic concepts of quantum theory. The factor (2πħh)3 in the
logarithm in (1.5.8) is important in order to make this argument dimensionless as it must be.
The relativistically covariant definition of the entropy uses the entropy-density four-current

Sµ(x) =−
∫

R3

d3~p
E

pµ f (x, p){ln[(2πħh)3 f (x, p)/g ]− 1}. (1.5.9)

Boltzmann’s H-theorem8 follows from the general master equation (1.4.8) by putting

ψ= ln[(2πħh)3 f (x, p)/g ]− 1. (1.5.10)

Since here we have
∂ ψ

∂ xµ
=− 1

f
∂ f
∂ xµ

,
∂ ψ

∂ pµ
=− 1

f
∂ f
∂ pµ

(1.5.11)

we find for the 2nd term on the left-hand side of (1.4.8), using the Boltzmann equation (1.3.40)
∫

R3

d3~p
E

f
�

pµ
∂ ψ

∂ xµ
+mKµ ∂ ψ

∂ pµ

�

=−
∫

R3

d3~p
E

�

pµ
∂ f
∂ xµ

+mKµ ∂ f
∂ pµ

�

=−Coll[1]
(1.4.4)
= 0. (1.5.12)

Thus the master equation for (1.5.10) gives

∂ Sµ

∂ xµ
=−1

4

∫

R3

d3~p
E

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2

f f2 ln
�

f ′1 f ′2
f f2

�

W (p ′1 p ′2← p, p1). (1.5.13)

On the other hand we can add half of the collision functional forψ= 1, which vanishes identically due
to (1.4.4), which gives

∂ Sµ

∂ xµ
:= ζ =+

1
4

∫

R3

d3~p
E

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2

f f2

×
�

f ′1 f ′2
f f2
− ln

�

f ′1 f ′2
f f2

�

− 1
�

W (p ′1 p ′2← p, p1).

(1.5.14)

Now we discuss the function
f (z) = z − 1− ln z, z > 0. (1.5.15)

Obviously its derivative f ′(z) = 1− 1/z changes sign from negative to positive at z = 1. Thus the
function is monotonously decreasing for z < 1 and increasing for z > 1. At z = 1 is thus a strict
minimum with f (z) = 0. This means

f (z)≥ 0; f (z) = 0 ⇔ z = 1. (1.5.16)

From (1.5.14) we can thus conclude that the entropy production is never negative, ζ ≥ 0. Integrating
over the entire spatial volume shows that the total entropy is never decreasing with time, and it is
constant in time if and only if the square bracket of (1.5.14) vanishes.

8Note that H stands for the capital greek letter Eta, Boltzmann’s nomenclature for entropy!
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1.6 Equilibrium Distributions

From this we can immediately derive the form of the stationary solutions of the Boltzmann equation,
i.e., find the distribution functions which are time independent. From the demand, that the square
bracket in (1.5.14) has to vanish, we can conclude that

f ′1 f ′2
f f2
= 1. (1.6.1)

Taking the logarithm of this shows that

φ=− ln
�

(2πħh)3

g
f
�

(1.6.2)

is a summational invariant in the sense of (1.4.9) and thus, according to (1.4.11) must be of the form

φ=−α(x)+βµ(x)p
µ ⇒ f (x, p) =

g
(2πħh)3

exp [α(x)−β(x) · p] . (1.6.3)

Since the particle-number-density four-current

Jµ(x) =
∫

R3

d3~p
E

pµ f (x, p) = n(x)uµ(x) (1.6.4)

is a time-like four-vector we can introduce the Eckart definition of the four-velocity cf. (1.2.17-1.2.20).
As shown in (1.2.20) n(x) has the physical meaning of the particle density in the local rest frame of the
fluid. Since Jµ is a four-vector and βµ is the only four vector in (1.6.3) we must have Jµ∝βµ

βµ(x) =β(x)uµ(x) with uµuµ ≡ 1. (1.6.5)

In the local rest frame of the fluid, where uµ = (1,0,0,0), we must have β> 0 in order to have a finite
particle-number-density four-vector (1.6.4). It is also convenient to write

α(x) =β(x)µ(x), (1.6.6)

so that the equilibrium distribution takes the Boltzmann-Jüttner form

feq(x, p) =
g

(2πħh)3
exp

�

−β(x)
�

u(x) · p −µ(x)
��

, p0 = E =
Æ

m2+ ~p2. (1.6.7)

Next we evaluate the energy-momentum tensor

T µν (x) =
∫

R3

d3~p
E

pµ pν feq(x, p). (1.6.8)

Since this obviously is a symmetric tensor of 2nd rank, it only can be a linear combination of ηµν and
uµuν since these are the only general tensors of this kind that can be built from the available building
blocks of quantities available: The Minkowski metric is a Lorentz-invariant tensor, and the only other
Lorentz-covariant quantity in our scheme that can used to form a 2nd-rank tensor is uµ. We can build
two independent invariants from this tensor by applying the projection matrices

Pµν‖ = uµuν , Pµν⊥ =∆
µν = ηµν − uµuν (1.6.9)
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that allow to poject on parallel and perpendicular components of the fluid-four velocity of arbitrary
vectors in the sense of the Minkowski product. Thus we define

ε= ne = T µνuµuν , P =−1
3
∆µνT

µν . (1.6.10)

Then the energy-momentum tensor takes the form

T µν = εuµuν − P∆µν = (ε+ P )uµuν − Pηµν . (1.6.11)

In the local rest frame it simplifies to9

T µν
∗ = diag(ε, P, P, P ). (1.6.12)

As discussed after Eq. (1.2.33) the purely spatial components of the energy-momentum tensor have the
meaning of a stress tensor. In the local rest frame of the fluid according to (1.6.12) the stress tensor takes
the form σab

∗ =−Pδab , i.e., P is the pressure of the gas, which in equilibrium is locally isotropic in
the local rest frame, as expected. According to (1.2.26) The purely temporal component of the energy-
momentum tensor has the meaning of the energy density of the medium, and thus T 00

∗ = ε= ne is the
energy density of the medium in the local rest frame, i.e., e is the mean energy of a single particle in
the gas, measured in the local rest frame, i.e., it is the average thermal energy of one particle in the
medium.
Finally we evalute the entropy-current four vector, cf. (1.5.9). Using (1.6.7) we find

Sµ =
∫

R3

d3~p
E

feq(x, p)pµ[1−α(x)+βuν (x)p
ν] = [1−α(x)]Jµ(x)+βT µνuν . (1.6.13)

From this we find the entropy density in the local rest frame by contraction with uµ:

s = uµSµ = (1−α)n+βε. (1.6.14)

Now we can evaluate the various quantities defined in the local rest frame by setting uµ = (1,0,0,0).
According to (1.6.4) particle density is given by

n =
g

(2πħh)3
exp(α)

∫

R3
d3~p exp(−β

Æ

m2+ ~p2). (1.6.15)

Introducing polar coordinates ~p = p(cosϕ sinϑ, sinϕ sinϑ, cosϑ) we find

n =
4πg
(2πħh)3

exp(α)
∫ ∞

0
d p p2 exp(−β

p

m2+ p2). (1.6.16)

Substitution of p = m sinh y gives

n = 4πm3 expα
∫ ∞

0
dy cosh y sinh2 y exp(−βm cosh y). (1.6.17)

We can evaluate this and the following integrals in terms of the modified Bessel functions, which we
can define as

Km(z) =
∫ ∞

0
dy cosh(mz)exp(−z cosh y). (1.6.18)

9In the following we denote vector and tensor components wrt. the local restframe with an asterisk subscript or super-
script.
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Chapter 1 · Classical Relativistic Transport Equations

In the following we’ll need some basic properties of these functions, which we will derive in Appendix
A.1.
Substitution of

cosh y sinh2 y =
cosh(3y)− cosh y

4
(1.6.19)

in (1.6.16) leads to

n =
4πg m2 expα
(2πħh)3β

K2(mβ), (1.6.20)

where we have used the relation (A.1.2).
For the pressure we find, using (1.6.12) and (1.6.8) to get

P =
1
3

3
∑

a=1
T aa
∗ =

g expα
3(2πħh)3

∫

R3

d3~p
E
~p2 exp(−βE). (1.6.21)

In the same way as for the density we get (Exercise!)

P =
4πg m2 expα
(2πħh)3β2

K2(mβ) =
n
β

. (1.6.22)

Comparing with the well-known ideal-gas equation of state P =NT /V leads to

P = nT ⇒ T =
1
β

. (1.6.23)

In this way we have identified the parameter β with the temperature of the system10.
To find the energy density, we only need to take the derivative of n with respect to β (at fixed α!)
leading to

ε=−
�

∂ n
∂ β

�

α=const

(A.1.4)
=

4πg m2 expα
(2πħh)3β2

[mβK1(mβ)+ 3K2(m,β)]. (1.6.24)

Using (1.6.23) in the entropy density (1.6.14) we can write it in the form

T s = P + ε−µn, µ= αT . (1.6.25)

We shall show now that µ has the usual meaning of the chemical potential.
To that end we assume that α andβ are constants, i.e., not dependent on x in the rest frame of the fluid
(global thermal equilibrium). Then we can write for the total energy, particle number, and entropy

U =V ε, S =V s , N =V n, (1.6.26)

respectively. Thus, multiplying (1.6.26) with V we find

U = T S − PV +µN = T S −NT +µN , (1.6.27)

where in the last step we have used (1.6.14) in the form

pV =NT . (1.6.28)

10Note that we use a system of units, where we measure temperatures in units of energy, i.e., we have set the Boltzmann
constant kB = 1.
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Now we can consider N as a function of V , T , and µ, using (1.6.15)

N (V ,T ,µ) =V n =
gV
(2πħh)3

exp(µ/T )
∫

R3
d3~p exp

�

−E
T

�

. (1.6.29)

From this we find
∂V N =

N
V

, ∂T N =
U −µN

T 2
, ∂µN =

N
T

, (1.6.30)

which leads to

dN =
N
V

dV +
U −µN

T 2
dT +

N
T

dµ ⇒ Ndµ= T dN − NT
V

dV −
U −µN

T
dT (1.6.31)

or finally with (1.6.28)

Ndµ= T dN − PdV −
U −µN

T
dT . (1.6.32)

Now using (1.6.27) gives

dU = T dS − (S −N )dT +(µ−T )dN +Ndµ. (1.6.33)

Plugging in (1.6.32) for the last term and using (1.6.27) we find (Exercise!) the First Law of Thermo-
dynamics:

dU = T dS − PdV +µdN . (1.6.34)

This shows that any change of state in internal energy, keeping the system in equilibrium is due to
the change of entropy (dQ = T dS: heat energy), the mechanical work of the gas against the pressure
(dW = −PdV ), and due to a change in particle number (µdN ). Thus µ is the amount of energy
necessary to change the particle number within the volume by one particle, and this quantity is thus
known as chemical potential.
For later use we note that from (1.6.33) and (1.6.27) we have

dU = T dS − PdV +µdN = d(T S − PV +µN ) ⇒ SdT −V dP +Ndµ= 0. (1.6.35)

Dividing the latter Eq. by V we find the relation

sdT = dP − ndµ. (1.6.36)

Now we investigate the solutions of the Boltzmann equation (1.3.40). We know from (1.6.1) that the
collision term vanishes identically for f = feq. Thus we have

pµ
∂ feq

∂ xµ
+mKµ

∂ feq

∂ pµ
= 0. (1.6.37)

In the following we consider the case of vanishing external forces. For Kµ = 0 (1.6.37) simplifies to

pµ
∂ feq

∂ xµ
= 0. (1.6.38)

Obviously the same equation holds for

φ= ln
�

(2πħh)3 f
g

�

=φ
(1.6.3)
= α(x)+βµ(x)p

µ. (1.6.39)
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This gives

pµ
∂ φ

∂ xµ
= pµ

∂ α

∂ xµ
+ pµ pν

∂ βν
∂ xµ

= pµ
∂ α

∂ xµ
+

1
2

pµ pν
�

∂ βν
∂ xµ

+
∂ βµ
∂ xν

�

= 0. (1.6.40)

In principle only the three spatial components of pµ are independent variables, because it is always
understood that the on-shell condition p0 = E =

Æ

m2+ ~p2 holds. Nevertheless, for ~p = 0 we have
p0 = m 6= 0, and thus (1.6.41) demands that for all µ, ν ∈ {0,1,2,3}

∂ α

∂ xµ
= 0, ∂µβν + ∂νβµ = 0, (1.6.41)

where we have written ∂µ = ∂ /∂ xµ. The first condition implies that

α=βµ=
µ

T
= const. (1.6.42)

The second equation can be solved by differentiating it with respect to xρ, leading to

∂ρ∂µβν + ∂ρ∂νβµ = 0, (1.6.43)

cylclically change the indices (µ→ ν, ν→ ρ, ρ→µ) to

∂µ∂νβρ+ ∂µ∂ρβν = 0 (1.6.44)

and subtracting this equation from (1.6.44):

∂ν (∂ρβµ− ∂µβρ) = 0. (1.6.45)

This implies that

∂ρβµ− ∂µβρ =
1
2
ωµρ = const. (1.6.46)

together with the second equation in (1.6.41) this implies

∂ρβµ =ωµρ ⇒ βµ =ωµρxρ+ aµ with aµ = const. (1.6.47)

For a time-independent distribution, we must haveωµ0 =−ω0µ = 0. Then this distribution describes
a fluid which is rigidly rotating with a constant angular velocityω j = 1/2ε j k lωk l , and the most general
global-equilibrium distribution reads

feq(x, p) =
g

(2πħh)3
exp

�

a · p + ~ω · ~J +α
�

with ~J = ~x × ~p. (1.6.48)

Thus, the form of the global equilibrium function is completely governed by the conserved additve
quantities from space-time symmetry, i.e., energy and momentum due to temporal and spatial transla-
tion invariance and angular momentum due to rotation invariance.
To further characterize the global equilibrium state we use

βµ =
1
T

uµ (1.6.49)
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1.7 · The relativistic perfect fluid

in (1.6.41). The second equation leads to

T (∂µuν + ∂νuµ) = uµ∂νT + uν∂µT . (1.6.50)

Since uµuµ = 1 we have uµ∂νu
µ = 0 and thus multiplying (1.6.51) with uµuν gives

uµ∂µT = 0. (1.6.51)

In the local rest frame uµ = (1,0,0,0) this means that T is locally time-independent. In this sense uµ∂µ
can be interpreted as a convective time derivative.
Multiplying (1.6.50) only with uν we find

uν∂νuµ =
1
T
∂µT µ, (1.6.52)

which tells as that in global equilibrium a temperature gradient is compensated by a acceleration of
the fluid elements.
Finally, in the same way by setting

α=
µ

T
(1.6.53)

in the first equation (1.6.41) and contracting with uµ we find that

uµ∂µµ= 0, (1.6.54)

i.e., the convective time derivative of the chemical potential also vanishes.

1.7 The relativistic perfect fluid

The limiting case of a perfect fluid applies, if the mean-free path of the fluid particles, i.e., the typical
length a particle can move between two collisions, is very small compared to the typical length scales
over which macroscopic properties change. Then we can assume that over the typical macroscopic
scales the fluid is always in local thermal equilibrium.
As we have seen in the previous Section, the phase-space distribution of a fluid local equilibrium is
characterized as a fluid motion, for which the entropy stays locally constant, which implied the general
form of the equilibrium distribution as the Boltzmann-Jüttner distribution (1.6.7). It is determined by
the fields T (x), µ(x) and uµ(x), i.e., temperature, chemical potential, and the fluid-flow vector. The
latter obeys the constraint uµuµ = 1 and thus has only three independent components. This means
we need also five independent equations of motion to specify the perfect-fluid flow completely. As we
shall show now, these equations are given by the general conservation laws for particle number, energy,
and momentum.
We find the hydrodynamic equations for a perfect fluid, analogous to the Euler equations for the
non-relativistic case, by considering the general conservation laws for the particle number (1.4.12) and
energy and momentum (1.4.13) for vanishing external forces, Kµ = 0,

∂µJµ = 0, ∂µT µν = 0 (1.7.1)

and plugging in the expressions for these quantities for a fluid in local thermal equilibrium (1.6.4) and
(1.6.11) respectively

Jµ = nuµ, T µν = (ε+ P )uµuν − Pηµν . (1.7.2)
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The unknown quantities to be determined in this formulation are the proper particle-number density
n, the proper energy density ε, pressure P , and the three spatial components of the fluid four-flow uµ.
However, since in local thermal equilibrium we can express the number and energy densities as well as
the pressure in terms of the temperature and chemical potential, we have an equation of state

P = P (ε, n), (1.7.3)

which closes the set of equations (1.7.1) for the five independent quantities n, ε, and ~u.
For a better physical understanding of these equations of motion of the perfect fluid we decompose
the space-time gradients in a covariant way into a temporal and a spacial derivative. Given the four-flow
velocity field of the fluid we can write the time derivative in the local restframe of the fluid cell as

∂ ∗t = uµ∂µ =: D (1.7.4)

and decompose the four-gradient into this temporal and the spatial pieces wrt. the local restframe as

∂µ = uµD+∇µ, (1.7.5)

where we can use the projection matrix (1.6.9) to define

∇µ =∆µν∂
ν . (1.7.6)

Applying this to the conservation of the particle number, i.e., the first Eq. (1.7.1) together with (1.7.2)
one finds

∂µJµ = ∂ (nuµ) = Dn+ n∂µuµ = 0. (1.7.7)

On the other hand we have
∂µuµ = uµDuµ+∇µuµ =∇µuµ, (1.7.8)

because

uµDuµ =
1
2

D(uµuµ) = 0. (1.7.9)

This leads to
Dn =−n∇µuµ. (1.7.10)

Next we take the “perpendicular part” of the energy-momentum conservation (2nd Eq. (1.7.1)) which
together with the 2nd Eq. (1.7.2) leads to (Exercise!)

(ε+ P )Duµ =∇µP. (1.7.11)

Introducing the enthalpy per particle,

h =
ε+ P

n
, (1.7.12)

we can write
nh Duµ =∇µP. (1.7.13)

For the spatial components, µ ∈ {1,2,3} we can write

nh D~u =− ~∇P + ~u DP. (1.7.14)
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1.7 · The relativistic perfect fluid

In the non-relativistic limit, due to u0 = γv = 1/
p

1− ~v2 we have

~v = ~u u0 = ~v[1+O (v2)], D= uµ∂µ = (∂t + ~v · ~∇)[1+O (v
2)]. (1.7.15)

Further we have
h =

ε+ P
n
= m[1+O (v2)]. (1.7.16)

Thus up to corrections of oder O (v2) (1.7.15) reads

mn(∂t + ~v · ~∇) ~v =− ~∇P, (1.7.17)

where on the right-hand side we can use the usual meaning of ~∇ as the spatial partial derivatives (again
up to corrections of order O (v2)). This is nothing else than Euler’s equation of motion for an ideal
fluid. That we have in Eq. 1.7.14) nh, i.e., the enthalpy density and not the mass density as in the
non-relativistic approximation (1.7.17), is due to the fact that in the relativistic equations of motion all
forms of energy contribute to the inertia of the fluid element, which in here consists of the mass of
the particles, their kinetic energy (which together contribute the density of the inner energy ε = ne),
and the inner tension of the fluid, which is given by the pressure for the here considered ideal gas. On
the right-hand side of (1.7.17) we have the force on the fluid element due to the tension (i.e., pressure)
acting on this fluid element. In (1.7.14) there are additional relativistic correction terms which must
occur in order to make the (1.7.13) consistent: Because of the constraint uµuµ = 1 we get uµDuµ = 0
and thus contracting the right-hand side of (1.7.13) with uµ must also give zero, and that’s precisely the
case, because on the right-hand side covariant projection ∇µ = ∆µν∂ ν of the four-gradient operator
appears.
The projection of the 2nd Eq. (1.7.1) leads to

Dε=−(ε+ P )∂µuµ =−nh∇µuµ. (1.7.18)

From (1.5.14) and the equilibrium condition (1.6.1) it follows that the perfect-fluid motion is always
isentropic. This follows immediately from our derivation of the local-equilibrium distribution as the
distribution of maximum entropy. Thus, in the perfect-fluid limit, where we assume that the fluid is
always in local thermal equilibrium, no entropy production occurs and thus all dissipative effects are
neglected. We shall come back to this issue in Sect. 1.9.
So for perfect-fluid motion we necessarily have

∂µSµ = 0. (1.7.19)

From (1.6.13) and (1.7.2) we find

Sµ = (1−α)Jµ+βT µνuν =
ε+ nT −µn

T
uµ

(1.6.23)
=

ε+ P −µn
T

(1.6.25)
u

µ

=s uµ. (1.7.20)

Thus from (1.7.19) we find
Ds =−s∂µuµ =−s∇µuµ. (1.7.21)

From this we find for the entropy per particle

D
� s

n

�

(1.7.10)
=

Ds
n
− s

n2
Dn =

Ds
n
+

s
n
∇µuµ

(1.7.21)
= 0. (1.7.22)
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Both (1.7.19) and (1.7.22) imply that the total entropy is conserved for an ideal fluid.
Finally we consider sound-wave solutions, i.e., we assume that the fluid is nearly at rest and in global
thermal equilibrium, i.e., we assume

P (x) = P0+ P̃ (x), s(x) = s0+ s̃(x), ~v(x) = ~̃v(x) (1.7.23)

and that we can neglect all products of the small quantities with a tilde in the equations of motion.
In this limit the 1st Eq. (1.7.14) reads

n0h0∂t ~̃v =− ~∇P̃ (1.7.24)

and (1.7.10)
∂t ñ+ n0

~∇ · ~̃v = 0. (1.7.25)

In (1.7.24) and (1.7.25) we can interpret ~∇ as the usual gradient. To find a closed equation for the
pressure we take the divergence of (1.7.24) and the time derivative of (1.7.25). This gives

1
h0
∂ 2

t ñ =−∆P̃ . (1.7.26)

To close this equation we write

ñ =
�

∂ n0

∂ P0

�

S
P̃ , (1.7.27)

which holds in linear approximation. Since, as we have shown above, the total entropy is conserved
we have to take the derivative of the equation of state at constant entropy. Then we can write (1.7.27)
in the form

1
v2

s
∂ 2

t P̃ +∆P̃ = 0 (1.7.28)

with the adiabatic speed of sound

vs =

√

√

√
1
h0

�

∂ P0

∂ n0

�

S
. (1.7.29)

In the non-relativistic limit we can set h0 ' m and we find the well-known formula

vs '

√

√

√

�

∂ P0

∂ %0

�

S
, (1.7.30)

where %0 is the mass density of the fluid in global equilibrium.
For the application of ultrarelativistic heavy-ion collisions one makes ample use of this formalism
of the perfect-fluid approximation. The idea is that after a surprising short time of tfo ' 1 fm/c after
the collision the medium can be treated approximately as a (nearly) perfect fluid. As shown in the
introduction, at RHIC and LHC (and to less accuracy also at the SPS), such a model gives a good
description of a lot of hadronic transverse-momentum ( pT ) spectra and elliptic flow v2 for low pT .
To switch back from the fluid dynamics with its macroscopic fields given by n, P , ε, s , and ~u, one makes
use of the fact that the phase-space distribution function is given by the local-equilibrium Maxwell-
Jüttner distribution function (1.6.7) and switches back to a particle picture for the various hadrons
measured in the detectors. This switch is a non-trivial issue. The basic idea is that we observe mo-
mentum spectra of particles which are determined by the moment, when the medium has become so
dilute through the expansion and cooling of the fireball that all elastic scatterings have ceased. This
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is called the thermal freeze-out. Even before, i.e., at higher temperatures and densities already the
inelastic scatterings have ceased. At this chemical freeze-out all the particle abundancies are fixed
(except for decays of heavier resonance states to lighter stable particles). From thermal models one
finds that the chemical freeze-out occurs pretty close to the phase transition at the pseudo-critical tem-
perature Tc ' 160 MeV. To determine temperature and chemical potentials at the thermal freeze-out
one needs an equation of state, which is taken from the thermal lattice-QCD calculations and can
be parametrized well by a hadron-resonance gas in the hadronic phase and a Quark-Gluon Plasma with
effective in-medium (temperature dependent) masses above Tc with some interpolating smooth func-
tion in the region around Tc , describing the pretty rapid cross-over transition from the partonic to the
hadronic phase.
As soon has one has determined the chemical potentials and temperature at an assumed thermal-freeze-
out point (given by some energy density or temperature of the fluid cells), one can use the local-
equilibrium Boltzmann-Jüttner distribution function to evaluate the momentum spectra of the par-
ticles. This is done in the Cooper-Frye freeze-out description [CF74]. To that end one uses the
freeze-out criterion (e.g., ε(x)< εfo) to determine the three-dimensional hypersurface in Minkowski
space, where the particles in the corresponding fluid elements decouple from the collective motion of
the fluid and start freely streaming to the detectors. The volume element in the corresponding integral
is characterized by a covariant hypersurface “normal” vector. If the hypersurface is parametrized by
some generalized coordinates q j ( j ∈ {1,2,3}) this hypersurface normal vector is given by

d3σµ = d3q εµνρσ
∂ xν
∂ q1

∂ xρ
∂ q2

∂ xσ
∂ q3

, (1.7.31)

where

εµνρσ = sign[(µ, ν,ρ,σ)] (1.7.32)

is the totally antisymmetric Levi-Civita tensor. Since detη=−1 the covariant components obey

εµνρσ =−ε
µνρσ , (1.7.33)

and since for proper orthochronous Lorentz transformations detΛ= 1 these are tensor components of
an invariant tensor of 4th rank under such transformations, which makes (1.7.31) a Lorentz vector.
Then the momentum distribution of the frozen-out hadrons is given by

dN
d3~p
=
∫

Vfo

d3σµ
pµ
E

feq(x, p) (1.7.34)

with the Boltzmann-Jüttner distribution function

feq(x, p) =
g

(2πħh)3
exp

�

−
p · u(x)−µ(x)

T (x)

�

, (1.7.35)

where p is the on-shell four-momentum of the hadron species under consideration and u(x) is the fluid
four-flow velocity field as determined from the hydrodynamical simulation.
For further reading on the application of relativistic perfect-fluid dynamics in the description of heavy-
ion collisions many review articles are awailable, e.g., [KH03, Hei04, Oll08].
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1.8 The Boltzmann-Uehling-Uhlenbeck Equation

So far we have not taken into account the quantum statistics of indistinguishable particles in our
transport equation. In this Section we shall give a semiclassical argument to take quantum effects due
to Bose-Einstein and Fermi-Dirac statstics into account [UU33, Ueh34]. We shall give a more formal
foundation from quantum field theory, as the most convenient description of many-body systems on a
fundamental level in the next Chapter. Even before the discovery of the “modern quantum theory” the
importance of the right statistical account of the occupation numbers of single-particle states, making a
“macro state” by taking the average of these numbers, has been seen by the pioneers of “early quantum
theory”. So, Einstein has shown that the Planck distribution, describing black-body radiation can be
derived under the assumption of a kind of particle structure of electromagnetic waves, if one assumes
that these “light quanta” or photons are emitted and absorbed in quantized energy portions ħhω, where
ω is the frequency of the corresponding plane-wave field and that each photons carries a momentum
ħh~k. However, to obtain the correct Planck distribution, Einstein had to assume also the possibility of
spontaneous emission, which takes into account that photons as particle-like entities we call bosons
prefer to occupy states that are already occupied by other particles of the same kind.
Contrary to that other particles are fermions of which only one particle can occupy a single-particle
state. In other words, if a single-particle state is already occupied by a fermionic particle, this state is
blocked for all other fermions with the same quantum number. This is the Pauli exclusion principle,
which is, e.g., crucial for an understanding of the shell structure of multi-electron atoms and the specific
heat and electric conductivity of metals as described by the Drude model of the conduction electrons
as a nearly ideal gas moving in the positively charged background of the crystal lattice making up the
metal.
As we shall see in a moment, the so far considered classical statistics becomes valid as an approximation
for both bosons and fermions, if the average occupation number of each single-particle states is small.
The argument, how to modify the Boltzmann equation to take into account the “quantum indistin-
guishability” of particles is somewhat simpler for fermions. So we start with this case. Again, our aim
is to derive an equation for the time evolution of the single-particle phase-space distribution due to
the drift of the particles (also under the influence of an external force), represented by the left-hand
side of the Boltzmann equation (1.3.40). The derivation of this part shows that this is unaffected by
the mentioned quantum effects, because it simply describes the time derivative of the particle numbers
expressed in terms of the single-particle phase-space distribution.
On the other hand in the derivation of the collision term on the right-hand side we tacitly made the
assumption that in a collision process it is not important, whether the phase-space cell of size d6ξ =
d3~xd3~p of the final state is already occupied by (one or more) particles or not. Now, contrary to this
assumption, the Pauli exclusion principle tells us that a scattering process is not possible, if the final
state is already occupied by other particles of the same kind. As we have seen in the derivation of
(1.5.2), the number of single-particle states corresponding to the phase-space element d6ξ is given by

G j =
gd6ξ j

(2πħh)3
, (1.8.1)

where g is the degeneracy factor due to the spin-degrees of freedom11.
In the collision term for fermions we have to take the Pauli exclusion principle into account, according
to which a scattering can only occur, if the single-particle final states are not occupied. This in the

11 g = 2s + 1 for massive particles of spin s ∈ {0,1/2,1, . . .}, g = 1 for massless scalar particles, and g = 2 for massless
particles with spin s ∈ {1/2,1, . . .}
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collision term we have to use the available number of final states, i.e.,

G(avail)
j =G j − f d6ξ j =

gd6ξ j

(2πħh)3

�

1−
(2πħh)3 f

g

�

. (1.8.2)

Thus we have to multiply the collision term by the corresponding Pauli-blocking factors for the par-
ticles in the final state.
The transport equation with the accordingly adapted collision term becomes a bit more convenient
when written as an equation for the quantity

F (x, p) =
(2πħh)3

g
f (x, p). (1.8.3)

In this way we obtain the Boltzmann-Uehling-Uhlenbeck (BUU) equations for fermions

pµ
∂ F
xµ
+m

∂ (KµF )
∂ pµ

=
1
2

g
(2πħh)3

∫

R3

d3~p2

E2

∫

R3

d3~p ′1
E ′1

∫

R3

d3~p ′2
E ′2

W (p ′1, p ′2← p1, p2)

×
�

F ′1F ′2 F F 2− F F1F
′
1F
′
2

�

.

(1.8.4)

Here we have introduced the abbreviation

F (x, p) = 1− F (x, p) (for fermions). (1.8.5)

The BUU equation (1.8.4) also holds for bosons. We only have to redefine (1.8.5) to

F (x, p) = 1+ F (x, p) (for bosons) (1.8.6)

to take into account Bose enhancement as opposed to Pauli blocking in (1.8.5).
All the general steps in analyzing the physical meaning of the BUU equation are analogous to that given
in the previous Sects. for the classical case. The main difference is the definition of entropy, where we
have to take into account Fermi-Dirac or Bose-Einstein statistics.
We start with the case of fermions and follow the arguments in Sect. 1.5 taking the Pauli exclusion
principle into account. So let G j be the number of single-particle states in the phase-space volume
element d6ξ j and N j the number of particles occupying this state. Now due to the Pauli exclusion
principle we can have at most one particle in a single-particle state, and the number of many-body
states with N j particles in the j th phase-space cell is given by the number of selecting N j of the G j
states. Of course, for fermions we must have N j ≤G j . This number of combinations is given by

Γ j =
�

G j

N j

�

=
G j !

N j !(G j −N j )!
. (1.8.7)

Using the approximate Stirling formula for lnN ! for large N we find for the total entropy for a given
distribution of particles N j

S =
∑

j

[G j lnG j −N j lnN j − (G j −N j ) ln(G j −N j )]. (1.8.8)

Introducing now the mean occupation number F j =N j/G j of the j th phase-space cell, we find

S =−
∑

j

G j [F j ln F j+(1−F j ) ln(1−F j )] =−g
∫

R3
d3~x

∫

R3

d3~p
(2πħh)3

[F ln F +(1−F ) ln(1−F )]. (1.8.9)
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This derivation also shows that the above introduced function F is the phase-space occupation-number
density of indistinguishable particles.
For bosons each quantum state can contain an arbitrary number of particles, but we cannot distinguish
which individual particle occupies a given phase-space cell. This means that the number of many-body
states given the distibution N j over the phase-space cells is given by the number of ways to distribute
N j particles over the G j states, which is given by12

Γ j =
�

G j +N j − 1

N j

�

=
(G j −N j − 1)!

(G j − 1)!N j !
. (1.8.10)

The entropy then is given by

S =
∑

j

[(G j +N j ) ln(G j +N j )−N j lnN j −G j lnG j ]

= g
∫

R3
d3~x

∫

R3

d3~p
(2πħh)3

[(1+ F ) ln(1+ F )− F ln F ],
(1.8.11)

where again we have used the Sterling approximation for factorials. We note that we can combine
(1.8.9) and (1.8.11) into one equation for the entropy four-current vector by writing

Sµ(x) = g
∫

R3

d3~p
(2πħh)3

pµ

E
[ξ (F + ξ ) ln(1+ ξ F )− F ln F ] (1.8.12)

with

ξ =
¨

1 for bosons,
−1 for fermions.

(1.8.13)

We also see that we are led back to the Boltzmann equation and the expression for the entropy four-
current if F � 1, i.e., if the average occupation number per phase-space volume is small compared to
the number of single-particle states in this phase-space volume.
The derivation of the H theorem is now fully analogous to the one given in Sect. 1.5. The only dif-
ference is that, with the modified collision term in (1.8.4) and entropy four-current denisity (1.8.12) it
turns out that for the equilibrium distribution, which leads to a stationary entropy, instead of (1.6.2)
the expression

φ=− ln
� F

1+ ξ F

�

(1.8.14)

is a summational invariant. This immediately leads to (Exercise!)

φ=β(uµ pµ−µ) ⇒ F (x, p) =
1

exp[β(x)(p · u(x)−µ(x))]− ξ
. (1.8.15)

We note that our normalization convention is consistent with the one chosen in (1.6.7), because ac-
cording to (1.8.3) the particle-number phase-space distribution reads

f (x, p) =
g

(2πħh)3
F (x, p), (1.8.16)

12This can be understood as follows: A distribution of N j particles over G j states can be symbolically noted by drawing
(G j − 1) vertical lines, giving G j columns of a table, numbering the G j individual single-particle states available in the j th

phase-space cell. A possible distribution of N j particles over these single-particle states is then given by making as many marks
in each column as particles are contained in it. Thus the possibilities are given by the number of arrangements of N j marks
and G j − 1 vertical lines indicating the columns of our table, and this number is given by the binomial expression (1.8.10).
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which leads back to (1.6.7) for ξ = 0, which is a valid approximation if the exponential expression is
very large compared to 1 and the classical statistics becomes a good approximation.
We also note that for bosons, we are not free to choose the chemical potential, µ, arbitrarily anymore.
To understand this, we go to the local rest frame of a fluid cell, i.e., u = (1,0,0,0). Then we see that
p · u−µ= E∗−µ=

Æ

m2+ ~p∗2−µ≥ 0 in order to avoid a non-integrable singularity in F in (1.8.15).
This implies that the chemical potential is constrained to

µ≤ m for bosons. (1.8.17)

The reason physical reason for this is the following: Suppose we put a gas in a container and cool it
down, keeping the total number of particles fixed. Below a certain temperature, we cannot keep the
particle number fixed, because we cannot enhance µ further above the mass of the particles due to the
constraint (1.8.17). The resolution of this apparent paradox is that below that critical temperature
a phase transition occurs, where the single-particle “ground state” (~p = 0) becomes occupied by a
macroscopic number of particles. These particles are collectively described by the corresponding single-
particle ground-state wave function. This phenomenon is known as Bose-Einstein condensation.
In passing we note that Bose-Einstein condensation can be understood as an example of spontaneous
symmetry breaking in many-body quantum-field theory. For more details, see, e.g., [Kap81, KG06].

1.9 Outlook on Methods for the Solution of the Kinetic Equations

As a nonlinear integro-differential equation the Boltzmann equation is very hard to solve analytically.
Thus one relies on the development of approximations, which are simpler to solve or on numerical
treatments.
One example for the former strategy is the derivation of hydrodynamical equations, of which the
above discussed hydrodynamics of an ideal fluid is only the leading order.
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Appendix A

Some useful Formulas

A.1 The Modified Bessel Functions

We define the modified Bessel functions as the integrals

Km(z) =
∫ ∞

0
dy cosh(my)exp(−z cosh y). (A.1.1)

First we derive a recursion relation:

Km+1(z)−Km−1(z) =
2m
z

Km(z) (A.1.2)

This is shown by integrating (A.1.1) by parts, which gives

Km(z) =
z
m

∫ ∞

0
dy sinh(my) sinh y exp(−z cosh y)

=
z

2m

∫ ∞

0
dy{cosh[(m+ 1)y]− cosh[(m− 1)y}

=
z

2m

�

Km+1(z)−Km−1(z)
�

.

(A.1.3)

In a similar way we find for the derivative of the Bessel functions

d
dz

Km(z) =−
∫ ∞

0
dy cosh y cosh(my)exp(−z cosh y)

=−1
2

∫ ∞

0
dy {cosh[(m+ 1)y]+ cosh[(m− 1)y]}exp(−z cosh y)

=−1
2

�

Km+1(z)+Km−1(z)
�

(A.1.3)
= −

mKm(z)+ zKm−1

z
.

(A.1.4)

Further we need the behavior of the functions for z� 1. To find the asymptotic behavior for z→∞
we can use the saddle-point approximation of the defining integral (A.1.1). To that end one writes the
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integrand in the form

cosh(my)exp(−z cosh y) = exp
�

−z
�

1+
y2

2

��

cosh(my)exp
�

−z
�

cosh y − 1−
y2

2

��

= exp
�

−z
�

1+
y2

2

���

1+
m
2

y2+
m4− z

24
y4
� (A.1.5)

Plugging this into (A.1.1) we find the first two terms of the asymptotic expansion

Km(z) ∼=z→∞

È

π

2z
exp(−z)

�

1+
4m2− 1

8z
+O

�

1
z2

�

�

. (A.1.6)
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