

Role of IISc in the development of Cryopumps

S.Kasthurirengan IISc, Bangalore

Plan

- Need of UHV in fusion systems
- Cryosorption pump & its development
- IISc's Role towards the same

Experimental facility for adsorption characterization of activated carbons 4.5 K -77 K range & sample studies

Pumping speeds measurements on scaled down panels & sample studies with cryopumps

conclusion

Utra high Vacuum for Fusion Systems

- Fusion most promising technology for energy.
- Reaction plasma confined in magnetic field using Tokomak
- Good vacuum & clean surface conditions critical for tokomak.
- Typical base pressures ~ 10⁻⁸ mbar (under fuel conditions)
 ~10⁻¹⁰ mbar under for no-fuel conditions.
- Need for non-contaminating ultra high vacuum pumping systems.
- In view of several aspects such as operation in time-varying magnetic fields, high pumping speeds, Cryosorption Pumps are the only suitable ones.
- He and H2 isotopes are adsorbed on cryopanels bonded with adsorber materials and cooled to LHe temperatures by LHe flow.

ITER – Cryopuming systems

Cryosorption pumps

- Activated carbon adsorbent has improved pumping speeds when compared to other adsorbents.
- Experimental studies indicate the activated carbons of Coconut shell charcoals (of midsize range) produced the best performance [Christian Day, FZK, 2002]

1 m long x 0.2 m wide (3 parallel channels

Development Needs

- **Cryosorption pump development is now undertaken in IPR.**
- This needs

(a) the right choice of the activated carbons(b) the right bonding agent (adhesive)for the cryopanels to adhere the activated carbons.

- Commercial cryopumps normally used for applications such as pumping of air, water vapour etc. cannot be directly used. Their performances for pumping He & H2 not known.
- Hence there is a need for performance data of activated carbons especially in the temperature range below 77K down to 4.5 K.
- Not available in the open literature .

Role of IISc in the above

- Creation of the knowledge base of performances of several types activated carbons from 4.5 K to 10 K by setting up the experimental setup for adsorption studies.
- Eevaluation of small size cryopanels in terms of pumping speeds.
- Manpower training in cryogenics and vacuum technology.
- Serve as interface between Industry and IPR.

Experimental facility for characterization of adsorbents down to 4.2K

77K Micropore Analyser +

2 Stage GM Cryocooler

Sample chamber & Heat Switch

System Assembly

Total System

Experimental Studies at 77K with ASIQ

Standard Alumina Sample

Activated Carbons studied

ADSORPTION STUDIES AT 77K

Studies from 4.5K to 10 K

ACS-3 Globules

Pore size distribution of various charcoal at 4.2K with He

January 1, 2002

Pore size distributions

January 1, 2002

Surface areas of activated carbons

	SURFACE AREA MEASUREMENT –(m²/g)						
SAMPLES	77K (Nitrogen adsorbate)	4.2K (Helium adsorbate)	5K (Helium adsorbate)	8K (Helium adsorbate)	10K (Helium adsorbate)		
BLANK	0.00	0.12	0.00	0.00	0.00		
CARBON PELLETS	1003.1	1465.1	1031.5	894	887.2		
ACS3	2038.2	2700.3	2639.45	1963.4	1736.8		
ACFNW3	1773.2	1951.01	1924.1	1589.3	1335.2		
Srilanka Charcoal	1364.5	1801.2	1797.6	1188.5	1069.2		
ACF- FK3	2230		2697.2	2582.6	2014.9		
ACS3 +SS plate+ adhesive	1927	2600.7	2424.4	1831.2	1516.44		
Charcoal granule Coarse	1126.74	1668.00	1576.5	1374.5	1235.61		

January 1, 2002

Studies with adhesives

Sample under study	Surface area in 77K with N ₂ (m ² /g)	Average pore size in 77K with N ₂ (A ⁰)	Surface area in 4.5K with He(m²/g)	Average pore size in 4.5K with He (A ⁰)
ACS-3	2031.6	7.60	2700.1	6.21
SS sheet	0.00	0.00	0.00	0.00
SS coated with Adhesive	0.00	0.00	0.00	0.00
SS with Adhesive and ACS-3	1978.00	12.3	2600.7	11.81

Pumping Speed studies of scaled down cryopanels down to 11K

Schematic

Pumping Speed Measurements

Experimental Setup

Small size Activated carbon coated Cryopanels

Pumping speeds for N2 & Ar

1500 Pumping speed for Arg ^oumping speed (litres/sec) 1250 Indigenous large charcoal granule Crivotorr charcoal granule 1000 genous small charco al granule genous medium charcoal granule 750 500 250 1E-5 1E-4 1E-3 Pressure (mbar)

Pumping speed Vs pressure for Nitrogen gas for different panels Pumping speed Vs pressure for Argon gas for different panels

0.5% helium mixture

Pumping speeds for H2 & He

10

Pumping speed Vs pressure for H2 gas for different panels

Pumping speed Vs pressure for Helium gas for different panels

Pumping speed comparison of different charcoal panel

Panel	Nz	Ar	H ₂ *	Не
Panel without Act. Carbons	192	127	50	0.1
CryoTorr7 Act. Carbon panel	1450	1135	250.2	0.2
Small Granule Act. Carbon panel	600	825	100.8	0.14
Medium Granule Act. Carbon panel	575	720	155.3	0.08
Large Granule Act. Carbon panel	1370	1129	215.3	0.16

Conclusion

- The experimental setup has been established to characterize the performances of activated carbons down to 4.5 K.
- It is being used to arrive at the right choice of the activated carbon for the end application.
- The pumping speed measurements of scaled down sizes of cryopanels using cryocoolers are useful to know effect of different adhesives and the overall performances of the panels.
- The work has resulted in both in the knowledge base as well as manpower training in cryogenics & vacuum technology.
- Fruitful collaboration has been established between industry , R&D institution (IISc) and the end user (IPR).

Thank You for your kind attention!

January 1, 2002