

Turbo Pumps From Theory to Practice

Andreas Schopphoff

Pfeiffer Vacuum GmbH

35614 Asslar / Germany

andreas.schopphoff@pfeiffer-vacuum.de

- History of the development of Turbo Pumps
- Theory of pumping effect
- Different Design Concepts
- Bearing concepts
- Gas type depending pump performance
- Calculation of the chamber pressure
- Application: turbo pumps in radioactive environment
- Summary

History of High Vacuum

- It was possible to create high- and ultrahigh vacuum with diffusion pumps only
- High energy consumption
- Problem of oil contamination of the vacuum

Invention of the Turbo Pump

- In 1958 Dr. BeckerPfeiffer Vacuum invents the worlds first Turbo Pump
- Invention was done by coincidence

TVF 400

Pumping speed 140 l/s for N₂

Weight: approx. 60 Kg

Different Flow Regimes

Theory of Turbo Pumping Effect

Turbo Pump Design

Turbo Pump Design

Bearing Types and Rotor Design

Turbo Pumps today

HiPace 300

Pumping speed 260 l/s for N₂

Weight: 6.2 Kg

Pumping Speed vs. Regimes

Important Technical Data

Pumping speed

S [l/s]

Compression ratio (Q=0) :

 $K_0 = p_{FV}/p_{HV}$

Max. backing pressure:

p_{FV max.} [mbar]

Max. gasload:

Q_{max.} [mbar I / s]

(according to ISO 5302: Vacuum Technology TMP-Measurement and Performance)

Gas Type dependant Pumping Speed

Pumping speed

$$S_{N2} = 260 \text{ l/s}$$

$$S_{H2} = 220 \text{ I/s}$$

Compression ratio (Q=0) :

$$K_{0 N2} = > 1 E 11$$

$$K_{0 H2} = 9 E 5$$

Max. backing pressure:

$$p_{FV_{max}} = 20 \text{ mbar l/s}$$

Max. gas load:

$$Q_{max} = 14 \text{ mbar l/s}$$

(according to ISO 5302: Vacuum Technology TMP-Measurement and Performance)

Backing Pump Selection for UHV

$$p_{HVi} = \frac{p_{Atmi}}{k_{oiBP} \cdot k_{oiTMP}}$$

$$p_{HVH_2} = \frac{5 \cdot 10^{-3} \, mbar_{H_2}}{1 \cdot 10^6_{RVP} * 1 \cdot 10^4_{TMP}}$$

$$p_{HVH_2} = 5 \cdot 10^{-13} \, mbar_{H_2}$$

(w/o desorption effects)

Chamber Pressure Calculation

Gas Load Applications

$$p_{\text{HV}} = \frac{Q_{\text{P}} \! + \! Q_{\text{Des}} \! + \! Q_{\text{L}}}{S_{\text{TMP,eff}}} + \frac{p_{\text{FV}H_2}}{K_{0H_2}} + \frac{p_{\text{FV}G2}}{K_{0G2}} + \cdots$$

 Q_P = Process gas flow

 Q_{Des} = Desorption gas flow

Q = Gas flow caused by leaks

Chamber Pressure Calculation

UHV Applications

$$p_{\text{HV}} = \frac{Q_{\text{Des}} + Q_{\text{L}}}{S_{\text{TMP,eff}}} + \frac{p_{\text{FV}\textit{H}_2}}{K_{\textit{0}\textit{H}_2}} + \frac{p_{\text{FV}\textit{G2}}}{K_{\textit{0}\textit{G2}}} + \cdots$$

Q_{Des} = Desorption gas flow

Q_L = Gas flow caused by leaks

 K_0 = Compression ratio

p_{FV} = Fore vacuum pressure

Turbo Pumps with external Controller

TCP 350 - Controller for radiation environment

- Turbo controller for rack mounting
- For applications in radiation environment
- No semiconductor elements on the pump

- Bearing installed in a cartridge
- Easy to exchange
- Exchange possible on side
- No adjustment of the bearing
- No rotor rebalancing required
- Service interval 4 years in clean applications

Application Limits

Rotor Temperature < 120°C

- Gas friction
- Magnetic fields
- Heat radiation

- The turbo pump is suitable for very many applications
- It has been proven as a reliable tool in all kind of industries
- With modern technologies it is easy to operate and to maintain
- Even for UHV applications it is the right choice

Turbopumps from Theory to Practice

Andreas Schopphoff

Pfeiffer Vacuum GmbH

35614 Asslar / Germany

andreas.schopphoff@pfeiffer-vacuum.de