Search for Neutron-Antineutron Oscillation

Amlan Ray

Click to edit Master subtitle style Variable Energy Cyclotron Center Kolkata - 700064

Antineut ron

Anti-neutron discovered in 1956

Exactly same gravitational/inertial mass as a neutron.

Magnetic and electric dipole moments different from a neutron.

Why there would be oscillation between a neutron and an anti-neutron?

Particle and Anti-particle are considered eigenstates of a mass matrix.

$$
\begin{pmatrix} m & 0 \ 0 & m \end{pmatrix} \frac{n}{n} = m \begin{pmatrix} n \\ \overline{n} \end{pmatrix}
$$

From time dependent Schrodinger equation

$$
i\hbar \frac{\partial}{\partial t} \left(\frac{n}{\overline{n}} \right) = \left(\begin{array}{cc} m & 0 \\ 0 & m \end{array} \right) \left(\frac{n}{\overline{n}} \right)
$$

1/27/12 Plane wave solution. Population of particle, antiticle should; not change with time.

In the presence of external interaction, the mass matrix would be modified.

Time dependent Schrodinger equation would look like

$$
i\hbar \frac{\partial}{\partial t} \left(\frac{n}{\overline{n}} \right) = \left(\begin{array}{cc} m+A & 0 \\ 0 & m-A \end{array} \right) \left(\frac{n}{\overline{n}} \right)
$$

Still no particle to anti-particle transition

$$
\langle n|\overline{n}\rangle\!=\!0
$$

Particle-antiparticle transition is possible only if there are Off-diagonal terms in the mass matrix.

Time dependent Schrodinger equation should look like $\overline{}$ \overline{a} Ų $\bigg($ $\bigg)$ \overline{a} $\overline{}$ \setminus $\big($ $\Big| =$ $\bigg)$ \overline{a} $\overline{}$ \setminus $\big($ ∂ **a** *n n m E* E_n δm *n n t i n n* δ i δ i h

CPT invariance demands that the off-diagonal terms must be The same.

1/27/12 Let us assume $En = Enbar = m$ (no external field)

Then we get $\overline{}$ $\overline{\mathcal{K}}$ $\bigg($ $\overline{}$ \setminus $\big($ $\Big\} =$ $\overline{}$ \overline{a} $\overline{}$ \setminus $\big($ **a a** *n n m m m m n n t i* δ i δ i h

In this $\langle n | \overline{n} \rangle = \delta m$ case There is a small probability for particle to antiparticle transition.

However charge conservation has to be respected.

No transition for electron to positron or proton to antiproton. $\delta m = 0$ for such cases.

GW_{V1} (electro-weak+strong interaction) allows for baryon

Neutron-antineutron oscillation possible because of such

non-zero off-diagonal terms δm in the neutron manages recaltrix.

states

$$
|n_{\pm}\rangle = (\alpha |n\rangle \pm \beta |\overline{n}\rangle)
$$

1/27/12 With masses δm) $(m₁)$ Probability for neutron to antineutron transition $P_{n\to n} = \sin^2(\delta m)t$ 2 $\rightarrow \overline{n}$ = sin² (δ i Oscillation time period τ h =

In an external field, let En and Enbar are the energies of the

particle and anti-particle. Let ∆E= En-Enbar, then the probability of

transition from partigle to anti-particle is given by $(\Delta E)^{-} + 4(Om)^{-}$ $(\Delta E)^2 + 4(\delta m)^2 t$ $\bigg)$ \setminus Í $(\Delta E)^2$ + $(\Delta E)^2$ + $\lambda_{\overline{n}}(t) = \frac{1-\omega m}{(1-\overline{n})^2} \sin^2 \left[\sqrt{(\Delta E)^2 + 4(\delta m)^2} t \right]$ $(E)^2 + 4\delta m$ *m* $P_{n\to \overline{n}}(t)$ $2 \left[\frac{9}{4} \frac{10}{4} \frac{10}{12} \frac{$ 2^{11} 2^{15} **R** $\sin^2[\sqrt{(\Delta E)^2}+4]$ 4 $\boldsymbol{\hat{4}}$ $f(t) = \frac{1-\left(\sqrt{2Ht}\right)}{2\sqrt{2\pi}}\sin^2\left(\sqrt{2E}\right)^2 + 4\left(\delta t\right)^2$ δ i δ

For δ m< $\lt\Delta E$,

Free n to nbar transition

Tramsitioneus Bound neutrons in a inhibited

We get

\n
$$
P_{n\to\overline{n}}(t) \approx \left(\frac{\delta m}{\Delta E}\right)^{2} \sin^{2}(\Delta E t)
$$
\nFree n to nbar

\n
$$
P_{n\to\overline{n}}(t) \approx (\delta m.t)^{2}
$$
\ntransition

\nBound neutrons in a

\n
$$
P_{n\to\overline{n}}(t) \approx (\delta m.t)^{2}
$$
\nBound neutrons in a

\n
$$
P_{n\to\overline{n}}(t) \approx \left(\frac{\delta m}{\Delta E}\right)^{2}
$$

 $\overline{}$

 \setminus

Expt using free

\n
$$
\tau \geq 10^8 \text{ sec}
$$

$$
\delta m \leq 6 \times 10^{-33} \, GeV
$$

Bound neutrons in a nucleus, ∆E 100 MeV

$$
\tau_{nucleus} \approx 10^{34} \,\text{years}
$$

1/27/12 Considering detailed nuclear physics effects $\tau_{nucleus} \approx 10^{32} \text{years}$ Model dependent From large solar neutrino experiments (SNO, Super-K etc.)

Stability of 16O known up to

$$
\tau_{16O} \ge 1.77 \times 10^{32} \text{ years}
$$

Impli es

 $\tau_{n\to\overline{n}} \geq 2.3 \times 10^8$ sec Nuclear model dependent number

1/27/12 Limit on stability of matter cannot be improved much from those experiments due to irreducible atmospheric neutrino ba**ckee neutron experiments required**

Experiment with free neutrons to search for neutron-antineutron oscillation

- Very simple basic idea
- Allow neutrons to pass through vacuum shielded from all possible
- External interactions.
- Watch for neutrons to be converted to anti-neutrons which will
- Annihilate by striking a detector and produce 4 -5 pions in coincidence.
- Average kinetic Energy of each pion about 250-300 MeV.
- Easy_1 , y_2 detect. Background signal level should be very low because of

Difficulties of the experiment

Very good shielding from external interactions . Earth's magnetic field (0.5 Gauss) has to be shielded very well By µ-metal shield.

Even due to the earth's magnetic field, the difference in the mindictive in the value of the University of the University of the Eutron is r δ pn \leq So (n to nbar transition) would be inhibited very strongly in Earth's magnetic field. Reduce magnetic field < nano-Gauss level.

Use cold/ultracold neutrons.

Why

Speed of a neutron with 1 MeV kinetic $\approx 1.4 \times 10^7$ meters / sec energy

Put neutrons in a box of dimension 10 meters.

A neutron with 1 MeV kinetic energy will strike the other end

of the container in a micro-second.
Initial $\left(\frac{\alpha}{n}\right) + \frac{\beta}{n}$

state $(\alpha|n\rangle \pm \beta|\overline{n}\rangle)$

After striking the wall, it will collapse to either $|n\rangle$ or $|$ nbar> state.

Starting with neutrons, after a micro-second, they will essentially

ESPGW down neutron speed to 6-8 meters/sec. They
remain neutrons. **WilleTh.IKE THE**

1/2d large wall every second. Watch for transitions in a second

number of neutrons. Requires ultra-cold neutrons

Trapping of neutrons Trapping of charged particles requires a electromagnetic field (Penning or Paul trap).

Neutrons can be trapped magnetically.

However ultra-cold neutrons can be trapped by Usually Feutrons pass through material without
"Cellection also. rection also.

E. Fermi and Zeldovich realized that the coherent scattering

of very slow neutrons (wavelength >> many lattice lengths;

500 Angstrom) would result in an effective potential for

Neutrons travelling through matter.

Production of cold/ultra-cold neutrons

High intensity proton/electron beam strikes a target to produce neutrons.

Target surrounded by room temperature heavy water moderator to make the neutrons thermal.

1/27/12 In the next layer, it is surrounded by liquid D2 (20 K) (cold neutrons) and then by solid D2 (8 K) to produce ultra-cold neutrons. Cold/ultra-cold neutrons reflected by metal reflector and a Parallel beam is made.

Schematic of spallation target with UCN converter (view along the beam)

Present Status

Neutron-antineutron oscillation time 2×10^8 sec period [

ILL experiment and stability of matter studies

Future studies

Using strong neutron source

Problems with reactor-based neutron source

Need > 20 MW research reactor and close access to reactor core.

Future possibility

Intense cold neutron source

Sensitivity of cold neutron experiments can be increased by a factor 1000.

Using existing cold neutron technology Recent Improvements in neutron optics Longer observation time $>$ 3 years. Large scale experiment

Neutron-antineutron If DiscoveredCillation

This will violate (B-L) by 2 units. Establish a new force of nature. Illuminate beyond Standard Model Matter-antimatter asymmetry

If Not Discovered

New limit on the stability of matters>years

In combination with LHC results, can eliminate many Possible B- violating models below elctro-weak phase transition

Experiment might be done in several stages **Possibilities in India**

First stage

Get a moderately strong neutron $\text{source} \approx 10^{12} - 10^{14}$ neutrons / sec

Pass throut ensing water and liquid D2 moderators to produce

Cold neutrons and then ultra-cold neutrons by using solid D2.

Cold/ultra-cold neutrons useful for condensed matter research.

 $1/2$ dged for imaging.

```
In future, the experiment could be done 
elsewhere in 
India using a spallation neutron source.
Intensity 
          \approx 10^{17} neutrons/sec
```
With a long vertical flight path using cold neutrons.

Schematic view of the vertical NNbar experiment **Conceptual sketch**

END

Thank you for your attention

Possible connection between neutrino mass and neutron-antineutron $\frac{Pr$ **ds&illation**
decay $p \rightarrow e^+ + \pi^0$ $p \rightarrow e$

Violets both B and L number conservation. Neutrinoless (B-L) beta decay

1/27/12 $A_Z \rightarrow A_{Z+2} + 2e^-$ Violets (B-L)
Weutron-antineutronits oscillation \overline{n} \overline{n} \overline{n} Violets (B-L) Violets L by 2 Violets B by 2 units

In standard model,

Neither B nor L are good symmetry.

(B-L) considered conserved in SM

Neutrino mass=0 in standard model

Scale of (B-L) symmetry breaking believed to be associated With the origin of neutrino mass.

In some models, neutron-antineutron oscillation related to the neutrino mass.

There are models that use Neutron-Antineutron oscillation to explain the observed mass symmetry (more matter than antimatter)

in the Universe today. As a result of big bang, equal amount of matter and anti-

matter created.

At high temperature, in equilibrium, $\Gamma(n \to \overline{n}) = \Gamma(\overline{n} \to n)$ CPT invariance

As the universe started expanding and cooling, it was in non-equilibrium

condition.

1/27/12 Matter-antimatter asymmetry probably developed as the universe Started expanding and cooling and was in nonequilibrium condition.

A Model to explain matter-antimatter asymmetry

Postulate (n to nbar transition) through heavy intermediate particles S1 and S2 (More than one mass hierarchy).

Let M(S2)>M(S1).

In equilibrium, T>M(S2), due to CPT invariance $\Gamma(n \to S18 \text{ s}^2 \to \overline{n}) = \Gamma(\overline{n} \to S18 \text{ s}^2 \to n)$

However, in $\Gamma(n \to S1 \to \overline{n}) \neq \Gamma(\overline{n} \to S1 \to \overline{n})$
general,

1627My 2took place So for M(S1)<T<M(S2), transition through S2 not allowed for Phase-space reason. Then transition through S1 \mathcal{C} ausing baryon asympatry.

UCN Energy Scales

Energy of UCN moving 8 m/sec: 340 neV (nano-eV) 3 3.6 mK

Energy of UCN in 1T magnetic field: 60 neV

Energy change associated with a 1 m rise: 104 neV

 \rightarrow implications for optimized design of N-Nbar... UCN can be polarized and stored using magnetic fields Typical UCN can bounce no higher than about 3m!

Spallation neutrons are produced in $4\Box$ but used for ucn conversion only in

a small fraction of a solid angle.

SOLITEE2 In best A. Young's (NCSU) scenario with dedicated 1.9K, 200 kW

3.3108 ucn/s can be made available in the transport tube. Albert Young Support in the second

Systematic studies of the PSI UCN source optimized for NNbar by A. Serebrov and V. Fomin

and $\frac{1}{2}$ $\frac{1}{2}$ N stored in system (can, in principle, accumulate) Mode of operation: beam pulsed w/ valve open, then valve closed

NNbar with UCN

Box filled with UCN gas...many samples/neutron longer average flight times $(\sim 1/3 \text{ sec})$ large neutron current required

Albert

 \mathbf{C}

Schematic view of the vertical NNbar experiment at DUSEL with spallation neutron source provided by dedicated highcurrent accelerator, e.g. by a CW cyclotron 0.2 – 1 MW proposed by DAE_{[ALUS} Collaboration

