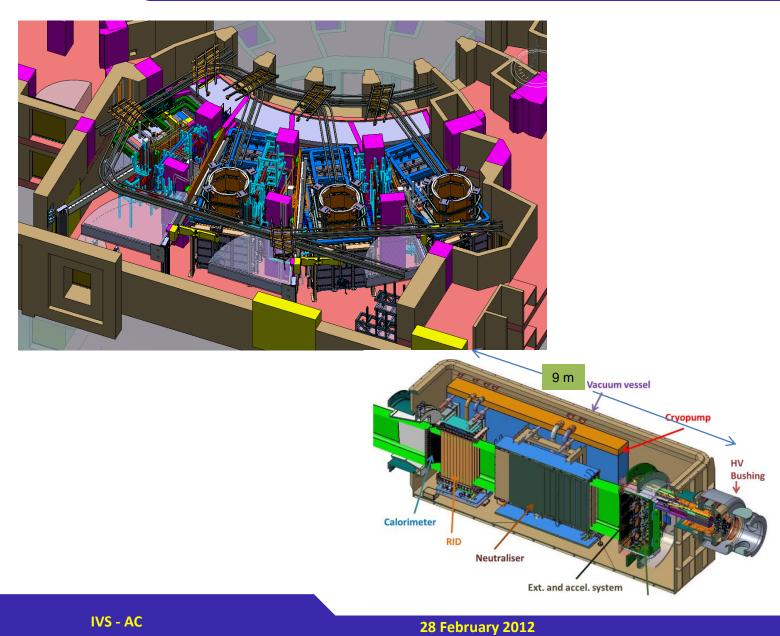


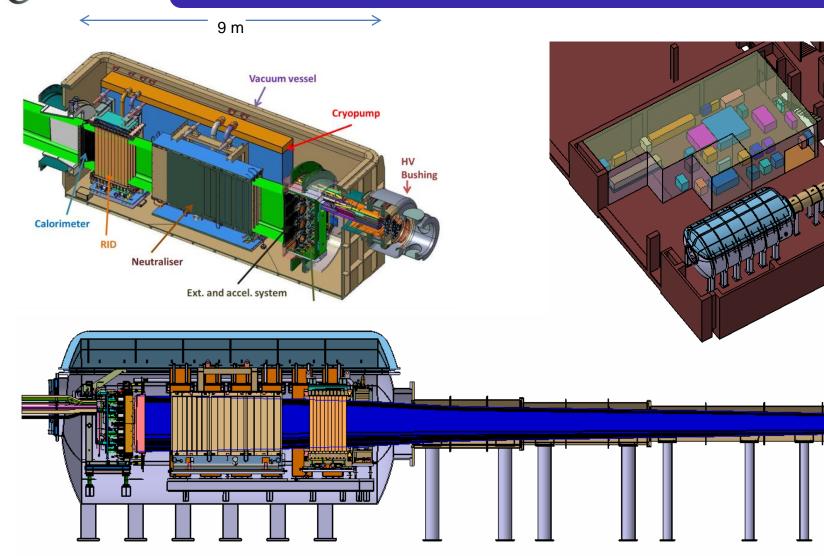
Vacuum system in the IN-TF and optimisation of pumping requirements

Rambilas Prasad^a, M.J.Singh^a, Jaydeep Joshi^a, M.Bandyopadhyay^a, G.Bansal^b, K.Pandya^a, A.K. Chakraborty^a

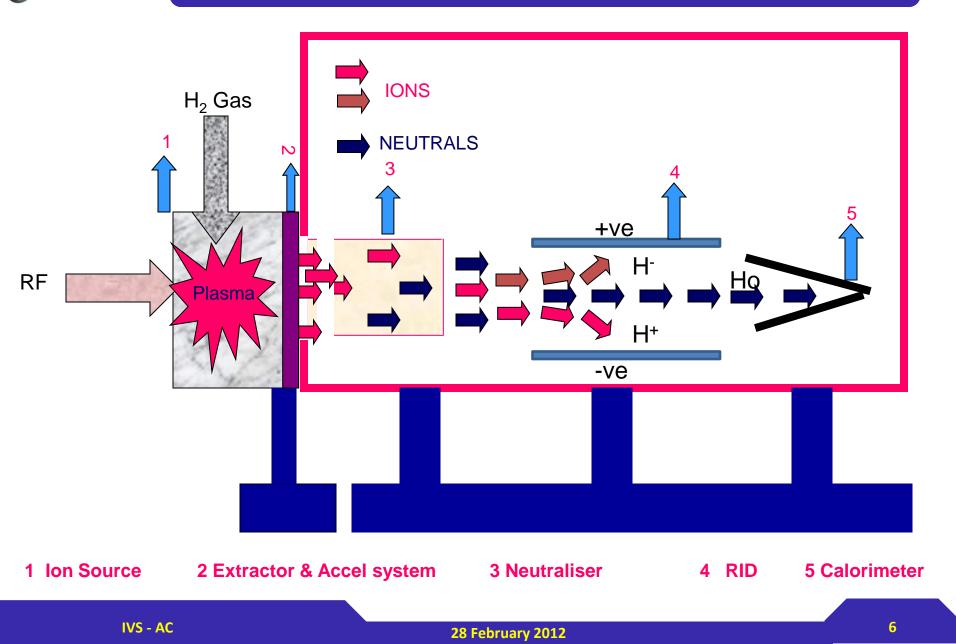

^aITER-India, Institute for Plasma Research,, A-29, Sector 25, GIDC, Gandhinagar, Gujrat - 380025, India ^bInstitute for Plasma Research, Bhat, Gandhinagar, Gujrat-382428, India

- Indian Test Facility (IN-TF) need, configuration & mandate
- Vacuum System requirements in IN-TF External & internal
- Gas feeds, operational pressures, pressure profiles and reionisation loss
- Effective pumping area and options
- Decisions, pump configuration & cryo loads
- Summary

Need..

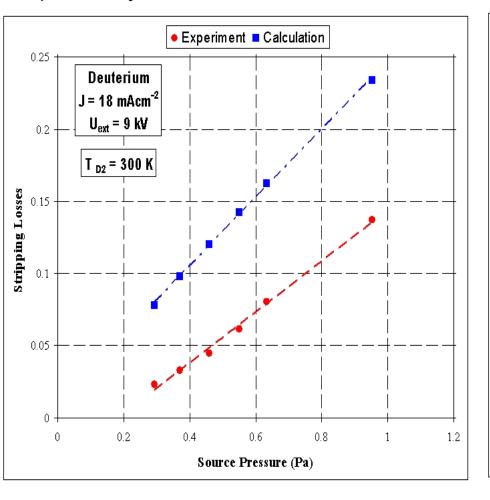


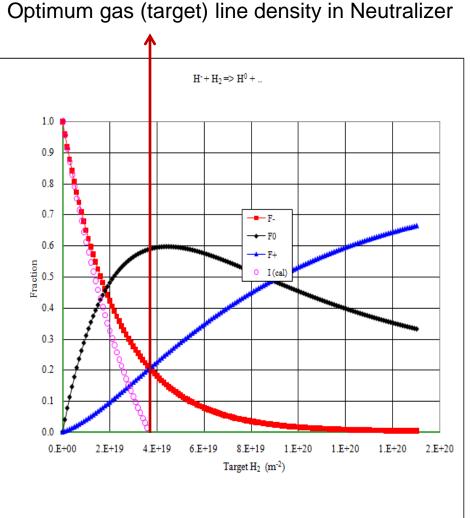
IN-TF need, configuration & mandate


- ITER-India (ITER-IN) procurement has Diagnostic Neutral Beam (DNB) as one of its deliverable
- DNB is an R&D intensive system largest RF based -ve ion source in operation
 - Key issues

- Plasma uniformity and Ion beam optics partially addressed in the NBTF coming up @ RFX
- Transport (no facility available)
- ITER-IN & IPR agreed to support R&D need and approved IN-TF. ITER-IO extended support for Beam Source & PS
- IN-TF configured to replicate DNB including its transport
- Mandate therefore to operate facility as a global facility and establish deliverable beam parameters for ITER-DNB on best effort basis

INTF & DNB

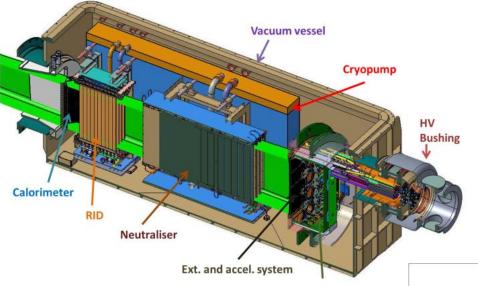

Principle of Neutral beam injector



Need for pressure optimization

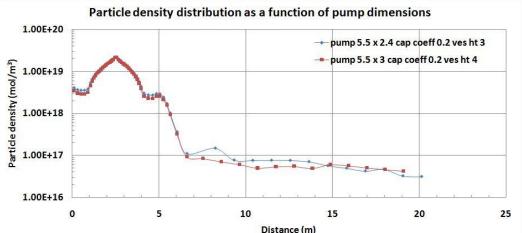
Stripping loss in negative ion source (Courtesy – IPP – BATMAN source

ITER-India


IVS - AC

Vacuum System requirements in IN-TF – External & internal

External	Type of pump	Pumping speed (I/s)	Purpose
	Rough and roots combination	Rough Roots	Base vacuum at start Support regeneration mode of cryopumps
	Turbo molecular pump	5000	Base vacuum to start cryopumping Support regeneration mode of cryopumps
	Cryopumps	Desired pumping speed in ITER DNB : 3 x 10 ⁶	Pumping hydrogen (7.6 Pa m ³ /s from source and 7 Pa m ³ /s from neutraliser)



Vacuum System requirements in IN-TF – internal*

Source gas : 7.6 Pa m³/s Neutraliser gas : 7 Pa m³/s

DNB uses 2 cryo sorption panels on the two sides. These pumps are developed by KIT. For IN-TF, options are explored for alternate pump configurations

*The calculations for pressures, reionisation etc. represented here (in the ppt) have been carried out using BTR code, developed by the RF DA and made available to ITER-IN by IO

IVS - AC

1.00E+20

1.00E+19

1.00E+18

1.00E+17

1.00E+16 0

1.00E+20

1.00E+19

1.00E+18

1.00E+17

1.00E+16 0

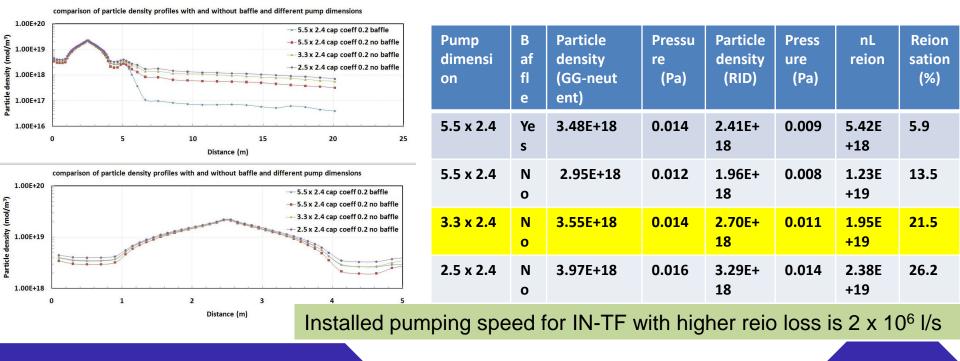
^{particle density (mol/m³)}

Particle density (mol/m³)

Gas feeds, operational pressures, pressure profiles and reionisation loss

Source gas : 7.6 Pa m³/s Neutraliser gas : 7 Pa m³/s

→ 5 x 2.76 m cap coeff 0.3 → 5 x 2.76 m cap coeff 0.2 → 5.5 x 2.5 m cap coeff 0.3 → 5.5 x 2.5 m cap coeff 0.2	Source throughp ut (Pa m3/s)	Neutraliser throughput (Pa m3/s)	Pump dimension (m)	Capture coeffici ent	NL effective	Pressure in GG-neut region (Pa)
0 5 10 15 20 25 Distance (m)	7.6	7	5.5 x 2.4	0.3	3.82E+1 9	0.011 (2.64E+18 /m³)
	7.6	7	5.5 x 2.4	0.2	4.10E+1 9	0.014 (3.48E+18 /m ³)
- 5 x 2.76 m cap coeff 0.3 - 5 x 2.76 m cap coeff 0.2 - 5.5 x 2.5 m cap coeff 0.3	7.6	7	5 x 2.76	0.2	3.96E+1 9	0.013 (3.17E+18 /m³)
→ 5.5 x 2.5 m cap coeff 0.2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Distance (m)						

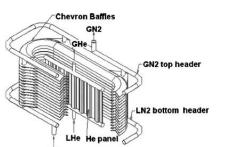

Operational NBI, interfacing with Tokamak, requires high investments in pumping to minimise re-ionisation. Could we live with a higher %?

Particle density distribution as a function of pump dimensions and cap coeff

28 February 2012

Effective pumping area and options

- A well tailored pressure profile leads to low re-ionisation
- However, pumping area & cost increases if reionisation loss is to be maintained <5%
- Therefore a reassessment, based on a higher reionisation loss undertaken including w/o baffles
- Effective area assessed to be ~ 50% lower if reionisation is allowed ~20%
- Impact of reionisation assessed to be in consequential for transport studies, excepting deflection of beam due to erath's B field – mitigated by a magnetic shield


Option Evaluation – Cryocondensation vs cryo sorption

Paramete rs	Pumping speeds	Regenerat ion frequency	Operation al temperat ures	Cryo genic Ioads	Refrigerator configuratio n
Cryo- condensat ion	~10 I/s/cm²	Limited by 12 torr lit/lit of safety	3.8 k for H	Low on He panel due to reflective panel	Complex & expensive
Cryo sorption	similar	similar	Up to 15 K	High for He panels due to coating	Simplified.

Configuration decision & cryo loads

Present cryopump configuration in IPR SST-1 NBI Overall pump dimensions : 3100 x 550 x 250 mm³

Journ^{All} of Vacuum Science and Technology A: Vacuum, Surfaces and Films 25, 90-95, 2007

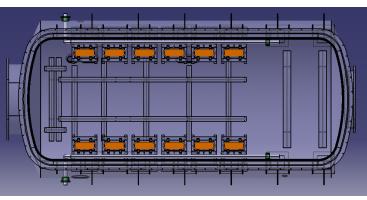


TABLE I. Parameters of the cryopump.

Parameter	Values
Baffle width (cm)	2.9
Angle (deg)	120
Interbaffle spacing (cm)	1.3
Overall dimensions of LHe panel (mm)	2720×330
(including \emptyset 60 mm each top and bottom header)	
Pumping area (m ²)	1.9
(surface area of elliptical channels+straight portions+headers)	
Chevron area (m ²)	3.4
Bounce parameter	5
Particle transmitivity	0.23
Photon transmitivity	1.3×10^{-3}

Pumping speed for H_2 : 1.6 E 5 l/s Capture coeff. : 0.2 Proposal: To operate the same pumps as cryosorption pumps with operational temp ~ 15 K

28 February 2012

Cryo loads

Operation	80 K	15 K
Stand by	 Thermal Radiation Solid heat conduction 	 Thermal Radiation Solid heat conduction
Pulsed	 Thermal radiation by a) Beam Line Vessel (BLV) b) Beam Line Components (BLCs) Solid heat conduction Gaseous heat conduction Cooling of the gas 	 Thermal Radiation Solid heat conduction Gaseous heat conduction Cooling of the gas Heat transferred by the gas accumulated to charcoal

Parameters	Components	Value	Parameters	Components	Value
			Temperature	BLC's	375 K
Pressure	Pressure in vessel	0.001 Pa (7.5 x 10 ⁻⁶ Torr)		BLV	310 K
	Pressure between neutralizer and accelerator	0.04 Pa (3.0 x 10 ⁻⁴ Torr)		Radiation Shield (N ₂ - Panel)	80 K
		0.5 Pa-m ³ /s		Cryopanel (He-panel)	15 K
Gas Flow	Gas flow- RID		Emissivity	Charcoal coated panel	0.9
	Gas flow-Neutralizer	7 Pa-m³/s		BLC's	0.3
	Gas flow-Beam source	7.59 Pa-m³ /s		BLV	0.15
	Gas now-beam source	7.55 Fa-III- /S			
	Total gas flow during continuous operation	14.59 Pa-m³ /s			

80 k Load (Total heat load)

Operation	Per cryopump (W)	For all 12 cryopump(W)
Stand by	645 (1290)	7748 (15496)
Pulsed	737 (1474)	8854 (17708)
		e ₁ =0.9 (coated panel) e ₂ = 0.15 (SS vessel) A ₁ = 42.2 m ² (12 cryopump surfa
	al load (total boat load	12 front face+12 $\Lambda = 133 \text{ m}^2/\text{measured vessel surres}$

15 k panel load (total heat loads)

Operation	Per cryopump (W)	For all 12 cryopump(W)
Stand by (1+2)	4.8 (9.6)	57.7 (115.4)
Pulsed (1+2+3+4+5)	14.2 (28.3)	170 (340)

e₁= 0.9 (inner panel-15K)

e₂= 0.9 (charcoal coated panel-80K)

 A_1 = 23.5 m² (12 front face+12 back face+0 side face), 330x2966x2x12

A₂= 39.2 m²(12 front face+12 back face+0 side face), 550x2966x2x12

- Internal Vacuum Pumping for IN-TF is cryosorption based
- Pumping area optimised for IN-TF purposes with higher reionisation loads in operation
- Pumping configuration similar to SST-1 NBI cryopump & made to operate in cryosorption mode
- Cryo loads calculated and benchmarked with available design for ITER cryo pumps
- Option assessment for Cryo system for the 80 K and 15 K panels ongoing..