Conceptual Design of Vacuum Chamber for Testing of High Heat Flux Components using Electron beam as a Source

M.S.Khan

Prototype Divertors Division

Institute for Plasma Research Bhat, Gandhinagar -382428

➢ Introduction

- > Objectives of HHF test facility
- Conceptual approach of vacuum chamber
- Design procedures
- ➤ Analysis
- Conclusions

Introduction

Institute For Plasma Research

Scrape-Off-Layer

(SOL)

Introduction

Parts of divertor system

Divertor Cassette of ITER

Reference: Engineering of Plasma-Facing Components – Mario Merola, PFMC-11 (Oct-2006), Griefswald, Germany

Introduction

Institute For Plasma Research

Facilities Worldwide

FACILITIES	JUDITH 2	JEBIS	TSEFEY	FE 200	EB 1200	PBEF	GLADIS	INDIA
Max voltage (KV)	30-60	100	30	200	40	50	50	45
Max power (KW)	200	400	60	200	1200	1500	2200	200
Max heated area (m ²)	0.25	0.18	0.25	1.0	0.27	0.1	0.3	0.16
Particle type	e⁻	e⁻	e⁻	e⁻	e⁻	H⁺, He⁺	H⁺	e⁻
Power density (GWm ⁻²)	10	2	0.2	60	10	0.06	0.05	1.2
Institute ITER partner	FZJ EU	JAEA JA	Efermov RF	CEA EU	SNLA US	JAEA JA	IPP EU	IPR, INDIA
Beam spot	scanned beam Ø ~5mm	Beam sweeping Ø~1- 2mm	Scanned beam Ø=20mm	Scanned beam Ø=2-3mm	Scanned beam Ø=2-12mm	Two ion sources 0.75MW Ø=150 mm	Two ion sources 1.1 MW Ø =70 mm	scanned beam Ø~15mm

JUDITH 2

FE 200

EB 1200

Ref: []

Institute For Plasma Research

Features of Vacuum chamber

To study the thermal response of high heat flux components using electron beam as a heat source of power 200 KW and with different diagnostic devices

Vertical target full scale prototype

HPHTWCS to test mock –ups

Divertor mockups	Dimensions (mm)
Small scale	50X30X30
Medium scale	400x50x200
Full scale	1600x300x300

Maximum inlet pressure	60 bar
Maximum pressure drop expected in the test mock -up	~2 bar
Expected pressure range operated at inlet	5 bar – 60 bar
Adjustable Inlet Temperature	RT -150°C
Maximum expected temperature rise across test mock-up	~ 10°C
Maximum volumetric flow rate required	300 LPM
Pipe size (ID) of test mock –up	5 mm – 10 mm

Institute For Plasma Research

Thermal loads to plasma facing components

Electron beam scanning during thermal fatigue tests (left) and transient thermal loads (right) [ref(2)]

Development of Conceptual Design

Institute For Plasma Research

HHF test facility Technical Specifications

D-shaped Double wall vacuum chamber				
Operating Parameters				
Vacuum inside the chamber	10 ⁻³ mbar to 10 ⁻⁶ mbar			
Maximum temperature inside the chamber due to radiation	350°C			
Materials tested inside the chamber				
Mock-ups	Tungsten, CFC blocks with CuCrZr as heat sink			
Materials used for chambe	r			
D-shaped vacuum chamber	SS 304L			
Beam dumps	CuCrZr alloy			
Support stand, railing systems, collar	Mild steel			
X – ray shielding	Lead			
Vacuum pumping system	Turbo molecular pump, Cryopump			

ELECTRON BEAM SYSTEM	[
Maximum beam power	200 KW
Maximum accelerating voltage	45 kV
Maximum deflection angle (superimposed static and dynamic)	+/- 250
Maximum dynamic deflection angle for 1 KHZ	+/- 100
Minimum spot diameter (at a distance of 1 m & max beam power & 45 KV)	~ 15 mm
Mode of operation	Steady state/ pulsed mode

Diagnostic devices			
IR camera	15º C to 3000º C		
Optical Pyrometers (2)	One color 600 – 1400 ⁰ C Two color 1000 – 3500 ⁰ C		
Thermocouples (5 – 10)	Type K, 0.5 mm diameter		
CCD camera (2)	Visual monitoring		
Bore Scope (3)	In situ surface observations		
Water calorimetry (1)	Platinum resistance temperature device (RTD)		

Design Procedure for Cylindrical Shell

S.No	Parameter		Unit	Value
	Design of shell t	hickness for external pressure as per UG-28 (C)	– ASME Se	ction VIII Div 1
1	External pressure		Pe (Bar/PSI)	1.013/14.7
2	Temperature		T(°C)	27
3	Material for cons Shell plates Collar for the Reinforcing F304L Column: M 	truction , flanges, blanks: ASTM/ASME SA 240 Grade SS 3 he rectangular front plate: forged plate F304L g bars (channel) made from plates of ASTM/ASM S channels of IS2062	304L IE SA 240 (Grade SS 304L or SA 182
4	1 st assumed thick	ness (due to external pressure)	ta (mm)	8
5	Unsupported length		L (mm)	1500
6	Outside diameter		Do (mm)	2400
7	Allowable pressure $Pa = 4B/(3(Do/t))$, where $t = ta$		Pa(PSI)	52.44, Safe
8	Provided thickness		tp (mm)	12
]	Design of Flat hea	d (Non circular cross section) – as per appendix	13 – ASME	Section VIII Div 1
9	Thickness $t = d_{\sqrt{\frac{ZCP}{S \cdot e}}}$	Where t = Minimum required thickness for head d = Diameter of circular heads e = Joint efficiency, S= code allowable stress, P = design pressure C= attachment factor = 0.33, Z = factor =1.77	t (mm)	Top plate: 20 Bottom plate: 20 Front plate: 20

Static FE analysis

Structural analysis: CATIA V5 R12 Generative Structural Analysis to		
Material	SS 304L for chamber and mild steel for the stand	
Element type	Solid 185 having three (3) degrees of freedom	
	Tetrahedron	
Boundary conditions	 External surface load: pressure 1x10⁵ Pa 	
	 Gravity load 	
	 Lower key points for support columns as a fix 	
	point	
Vector sum deflection	1.3 mm	
Von Mises stress Max	30.05 MPa, within the yield strength of the material	
	and is safe	

Radiation analysis: ANSYS 12			
Method	AUX 12 radiation matrix generator method		
Element type	Solid Tet 10 node 87, Shell 57 with temperature as a one degree of freedom		
Radiation surface	PFC and VV		
Boundary conditions	 Temperature on the surface of PFC 1773 K Space temperature: 300 K 		
Maximum surface temperature	643.7 K		

Contour plot of nodal temperature

Vector plot representing thermal gradient

Vacuum Pump Calculations

Assumptions

Pressure: 10⁻⁶ Torr Pumping gas: air Vacuum pump: Turbo Pump and Cryo Pump No. of pumps: 2 Pumping speed: 2000 litre/sec, 3000 lt/s

Pumping Speed Free mean path (air) $\frac{1}{S} = \frac{1}{S_{s}} + \frac{1}{C}$ $\lambda = \frac{5 \times 10^{-3}}{P}$

Conductance elbow	

Total gas load

$$C = 3.81 \sqrt{\frac{T}{M}} \frac{D^3}{(L_1 + L_2)} \qquad Q_g = Q_L + Q_D + Q_P$$

Where $Q_D = q_D S$

Time required for lowering the pressure in the chamber from P_i (initial) to P is given by

 $t = \left(\frac{\nu}{S_i}\right) \left[1 + \left(\frac{S_i}{C}\right)\right] \ln \frac{P_i - \left[1 + \left(\frac{S_p}{C}\right)\right] P_0 - \left[1 + \left(\frac{P_0}{P_p}\right)\right] P_u}{P - \left[1 + \left(\frac{S_p}{C}\right)\right] P_0 - \left[1 + \left(\frac{P_0}{P_p}\right)\right] P_u}$

•The total effective specific speed $S_{eff} = 3500$ lt/sec •The ultimate pressure in the chamber $Pu = 6.884 \times 10^{-7}$ Torr •Total out gassing rate $Q_D = 1.094 \times 10^{-3}$ Torr litre/sec •Time required is t = 68 min (approx)

Institute For Plasma Research

Notations

- $\bullet S_t$ =Theoretical pumping speed of pump, litre/sec
- $\cdot S_p = Real pumping speed, litre/sec$
- •S = Pumping speed
- $\bullet P_i$ = Initial pressure inside chamber, Torr
- $\bullet P_{o} =$ Lowest pressure of pump, Torr
- •P = Ultimate pressure, Torr
- $\bullet P_u$ = Ultimate pressure due to gas load, Torr
- •C = Conductance, litre/sec
- $\bullet V = Volume of chamber, litre$

Conclusions

A conceptual design approach of setting up HHF test facility at IPR has been discussed and high lighted the features of the vacuum chamber with the design calculations. Theoretical calculations were done to support the conceptual design and FEA structural analysis was carried out to identify the deflections and observed to be in the safe limit. Through radiation analysis, the surface temperature inside the chamber is determined which gives an outline for the cooling of the chamber.

REFERENCES

- 1. J. Linke, "Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions", Phys. Scr. T123 (2006) 45–53.
- 2. R. Tivey et al, "ITER divertor, design issues and research and development", Fusion Eng. Design 46, 207 (1999).
- M. Scheerer, H. Bolt, A. Gervash, J. Linke, I. Smid: "The design of actively cooled plasmafacing components", Physica Scripta T91, 98 (2001).
- I. Smid, "Material Processing and Testing of Plasma-Interactive Components for Fusion Energy Systems", Material Science Forum Vols. 475 – 479, 1355 (2005).
- J. Schlosser et al.: 'Technologies for ITER divertor vertical target plasma facing components', Nucl. Fusion 45, 512 (2005).
- H. Bolt et al.: "Plasma facing and high heat flux materials needs for ITER and beyond", J. Nucl. Mater. 307 311, 43 (2002).
- L. Giancarli, J.P. Bonal, A. Li Puma, B. Michel, P. Sardain, J.F. Salavy, "Conceptual design of a high temperature watercooled divertor for a fusion power reactor", Fusion Engineering and Design" 75–79 (2005) 383–386.
- 8. A. Li Puma, L. Giancarli, H. Golfier, Y. Poitevin, J. Szczepanski, "Potential performances of a divertor concept based on liquid metal cooled SiCf/SiC structures", Fusion Engineering and Design 66–68 (2003) 401–405.
- E. Diegele, R. Krüssmann, S. Malang, P. Norajitra, G. Rizzi, Modular He-cooled divertor for power plant application, Fusion Engineering and Design 66–68 (2003) 383–387.
- P. Norajitra, S.I. Abdel-Khalik, L.M. Giancarli, T. Ihli, G. Janeschitz and S. Malang *et al.*, "Divertor conceptual designs for a fusion power plant", Fusion Eng. Des. 83 (2008), pp. 893–902.
- M. Rodig, M. Akiba, P. Chappuis, R. Duwe, M. Febvre, A. Gervash, J. Linke, N. Litounovsky, S. Suzuki, B. Wiechers, D.L. Youchison, "Comparison of electron beam test facilities for testing of high heat flux components", Fus. Eng. Des. 51–52 (2000) 715–722.

Continued....

- 12. John F. O' Hanlon, "A user's guide to vacuum Technology", 3rd edition, Wiley- Interscience.
- 13. ASME Boiler and Pressure Vessel Code (BPVC):

BPVC Section VIII - Rules for construction of pressure vessels Division 1

BPVC Section VIII – Rules for construction of pressure vessels Division 2 – Alternate rules

BPVC Section II - Materials - Part D - Properties (Metric)

- 14. "Pressure Vessel Design Manual", Dennis Moss, 3rd Edition, Elseiver Science Publishers.
- 15. "Heat transfer", J. P. Holman, 6th Edition, MCGraw Hill publications.
- 16. "Vacuum Technology", A. Roth, 3rd Edition, Elsevier Science Publishers.
- Paritosh Chaudhuri et.al, "Design and thermal hydraulic analysis of PFC baking for SST -1 Tokamak", Fusion Engineering and Design 55 (2001) 521 534.
- Paritosh Chaudhuri et.al, "Study of radiation heat transfer between PFC and vacuum vessel during SST 1 baking", Fusion Engineering and Design 65 (2003) 119 – 132.
- 19. ANSYS Release 11.0 documentation for ANSYS, Swanson Analysis System Inc., User's Manual, 2007.

