Electron Linac Development for Radiation Processing and Neutron Production

K.C. Mittal

Electron Beam Center, APPD, BARC

kcm@barc.gov.in

IVS2012 February 17, 2012, VECC Kolkatta

ELECTRON BEAM APPLICATIONS

Application	Energy	Dose
•Cross Linking of PE	0.3-10 MeV	50-300 kGy
•Thermo Shrinkable Plastics	0.5-4	100-250
 Teflon Degradation 	2	
•Curing of Coatings on wood	0.15-0.5	20-500
•Exotic Colors in Diamonds	2-10	few MGy
oSewage & Sludge Treatment	0.5-4	0.5-1.0
•Food Preservation	5-10	5-10
Disinfestation of Grain	1	0,5-1.0
•Purification of Exhaust Gases	0.3-1.5	10-15
OSterilization of Medical Prodts	1-10	20-50
OVulcanization of Rubber	0.5-1.5	20-500
 Graft polymerization 	0.3-2.5	10-300

Industrial & Research Electron Accelerator Program Indigenous Technology Development

Accomplished

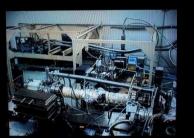
- DC Accelerator : 500 keV, 10 kW
- RF Accelerator : 10 MeV, 10 kW
- RF Accelerator : 9 MeV, 1 kW x-ray source (Technology demonstration)

In progress

- DC Accelerator : 3 MeV, 30 kW
- RF Accelerator x-ray source for cargo-scanning (dual energy) 6/3 MeV for production

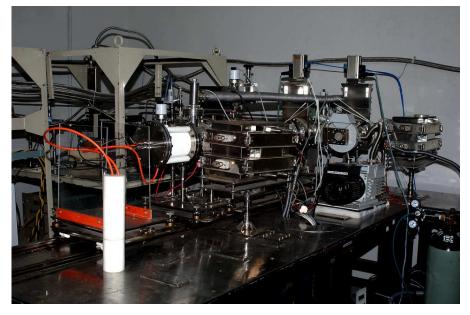
Projects

- DC Accelerator : 700 keV, 7 kW
- RF Accelerator : 30 MeV, 3.5 kW for neutron generation
- RF Accelerator : 100 MeV, 100 kW for exptl neutron facility


Future

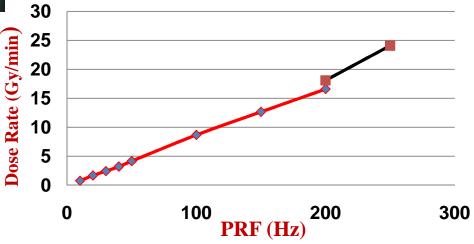
 DC & RF Accelerators : 150 kW and above

Electron Irradiation for Industry & Research with RF Linac


Dose Uniformity is ±5% over 100 cm length

10 MeV RF Linac Utilization

- Polyethylene o-rings for use up to 250°C
- Reverse recovery time (trr) of Diodes reduced from 15 us to 7us (BHEL production trials)
- Potato irradiation (Food Technology Division ,BARC)
- Cross-linking of heat shrinkable rubber (Raychem)
- Gelation of Polyvinyl acetate (Pidilite Industries)
- Fissile material detection development by measurement of neutron fraction (BARC)
- Photofission data for Mo-99 (BARC)
- Utilized for many more research projects of Universities


9 MeV RF Linac x-ray source at ECIL Linac Test Facility Demonstration for cargo-scanning

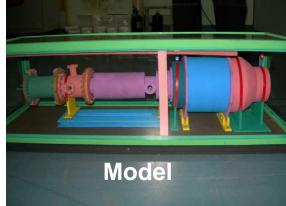
X-ray Spot diameter ~ 2.5 mm

X-ray measured = 24 Gy/min/m

Prototype Dual Energy (6/3 MeV) Compact Linac for Material Discrimination - Assembly & Testing

Egun

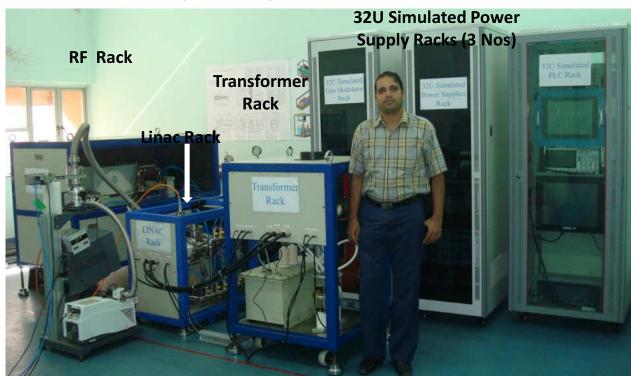
Linac

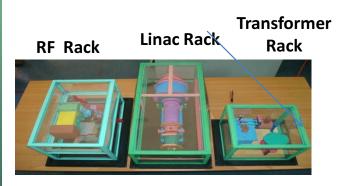

structure

Magnetron

Magnetron modulator

Egun modulator


X-ray target



X-ray collimator

6MeV/3MeV Dual Energy Compact Linac X-Ray Source for Container Cargo Scanning

Prototype System for Productionisation by M/S ECIL

Model of Compact Linac

Compact LINAC X-Ray Source System for Mobile Platform

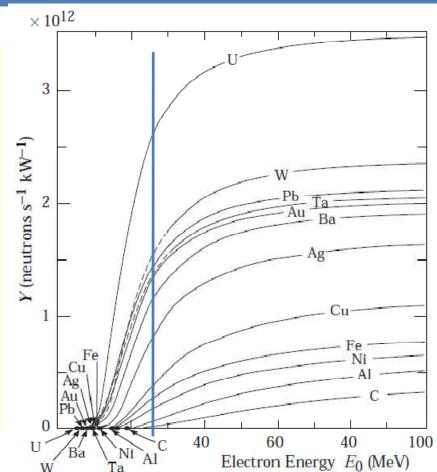
Dual energy for Z (material) discrimination

Cold Conditioning of Linac

Electron linac technology development for next 5 years

10 MeV, 10 kW Linac (at EBC, Kharghar) Utilization and Upgradation of Facility	2856 MHz	0.9 m
Compact Linac 9 MeV, 6/3 MeV X-Ray source for cargo scanning, research accelerators- productionization at ECIL	2856 MHz	0.9 m and 0.6 m
30 MeV, 7 kW neutron generator for shielding & nuclear physics (n-TOF) studies (IGCAR, Kalpakkam)	2856 MHz	2.5 m
100 MeV, 100 kW neutron generator for ADS and material related studies	2856 MHz	11 m
Superconducting linac	1497/ 1300 MHz	9 cavity cells

Electron Accelerators as Drivers for ADS


- **1. Electron accelerator technology is a mature technology**
- 2. Easily used for Bremsstrahlung / photoneutron source
- 3. Isotope production for medical diagnosis and therapy
- 4. Nuclear physics studies related to ADS spallation, higher energy neutron reactions
- 5. Less efficient than proton machines in neutron production but has lower capital cost and comparable energy cost
- 6. ADS application is reliable because of less beam trips

A thorough evaluation is required for ADS application on a larger scale; its suitability for experimental ADS studies is generally accepted.

Electron Beam as a neutron source

- neutrons are generated via photonuclear and photo fission reactions from Bremsstrahlung photons.
- In the photon energy range from threshold (few MeV) to about 30 MeV, neutron production is via the Giant Dipole Resonance (GDR) mechanism.
- For 5 MW, 100 MeV e- beam, in a dual zone reactor, power increases by 12 times for k=0.98
- Output Power will be ~ 5 x 12 = ~ 60 MW.

Ref:Swanson, IAEA Tech Rep 188 (1979)

Beam Energy (MeV)	Neutron Yeild (n s ⁻¹ kW ⁻¹)	Beam Current (mA)	Beam Power (MW)	Neutron Flux (n/s)
100 (U – Target)	3.25X10 ¹²	50-100	5-10	1.625-3.2X10 ¹⁶
100 (W –Target)	2.17X10 ¹²	50-100	5-10	1.085-2.17X10 ¹⁶
100 (Pb – Taget)	1.97X10 ¹²	50-100	5-10	0.985-1.97X10 ¹⁶
100 (Ta-Target)	1.91X10 ¹²	50-100	5-10	0.955-1.91X10 ¹⁶

Specifications of Linacs for Neutron Production

The Electron Linac facility specifications are

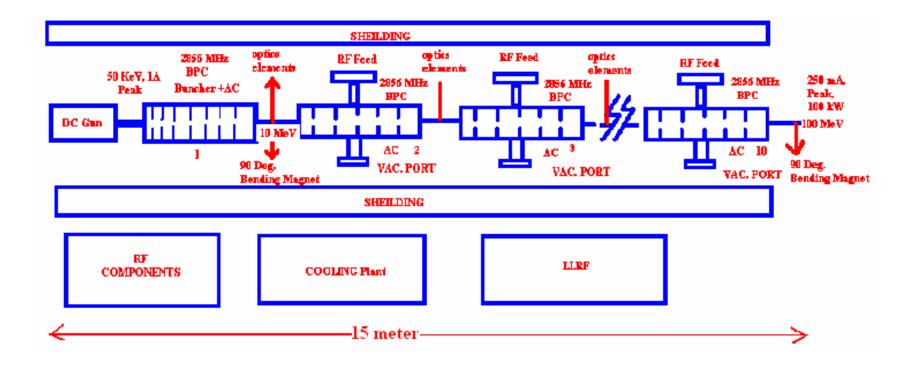
Phase-I: Linac comprising 10 modules of room temp 10MeV RF electron accelerators

Targeted parameters: 70-100MeV, 70-100 kW, pulsed normal conducting Linac (f = 2856 MHz),

Pulsed neutron flux ~ 10^{14} n/cm²/s.

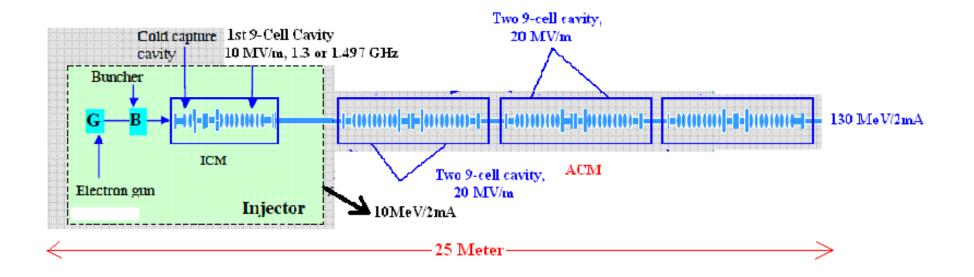
Phase –II: Superconducting cw electron Linac Target parameters : 100-150MeV, 200-400 kW, cw superconducting Linac (L-band, f = 1300 MHz), CW Neutron flux ~ 2X10¹² n/cm²/s

Specification of Normal Conducting 100 MeV LINAC


1.	Operating Frequency	: 2856 ± 2 MHz
2.	Beam Energy	: 100MeV
3.	Beam Current	: 250mA (peak)
4.	Beam Pulse Width	: 10 µsec
5.	Pulse Repetition Frequency	: 400Hz
6.	Beam Power	: 100 kW
7.	Total Microwave Power	: 50MW peak, 200 kW avg
8.	Photo neutron target	: Ta / W(H2O / D2O cooled)
9.	RF Source	: Klystron based
10.	Klystron modulators (each)	: 130 kV, 36 kW avg. (nominal)

Note: Considering the maximum LINAC efficiency (RF to beam conversion) of ~60%, 1 LINAC section can give maximum beam power output of ~ 20kW.

RF Electron Linac for Neutron Generation


PHASE I:

100MeV, 100 kW, pulsed normal conducting Linac (S-band, f = 2856 MHz), avg. neutron flux ~ 10¹³ n/cm²/s

RF Electron Linac for Neutron Generation -2 contd

PHASE II 150MeV, 200-300 kW, cw -superconducting Linac (L-band), neutron flux ~ 10¹⁵ n/cm²/s

Summary

- Electron Accelerators from 0.5 10 MeV are employed for Industrial Radiation Processing
- 9 MeV, 6 MeV and 9/6/3 MeV Dual Energy Linacs are used for Security Applications
- 50 MeV to 100 MeV Linacs are employed for Neutron Production and can have a role in energy multiplication in ADS Systems
- BARC is developing this technology for various applications

Electron Linac Development for Radiation Processing and Neutron Production

K.C. Mittal

Electron Beam Center, APPD, BARC

kcm@barc.gov.in

IVS2012 February 17, 2012, VECC Kolkatta

ELECTRON BEAM APPLICATIONS

Application	Energy	Dose
•Cross Linking of PE	0.3-10 MeV	50-300 kGy
•Thermo Shrinkable Plastics	0.5-4	100-250
 Teflon Degradation 	2	
•Curing of Coatings on wood	0.15-0.5	20-500
•Exotic Colors in Diamonds	2-10	few MGy
oSewage & Sludge Treatment	0.5-4	0.5-1.0
•Food Preservation	5-10	5-10
Disinfestation of Grain	1	0,5-1.0
•Purification of Exhaust Gases	0.3-1.5	10-15
OSterilization of Medical Prodts	1-10	20-50
OVulcanization of Rubber	0.5-1.5	20-500
 Graft polymerization 	0.3-2.5	10-300

Industrial & Research Electron Accelerator Program Indigenous Technology Development

Accomplished

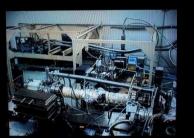
- DC Accelerator : 500 keV, 10 kW
- RF Accelerator : 10 MeV, 10 kW
- RF Accelerator : 9 MeV, 1 kW x-ray source (Technology demonstration)

In progress

- DC Accelerator : 3 MeV, 30 kW
- RF Accelerator x-ray source for cargo-scanning (dual energy) 6/3 MeV for production

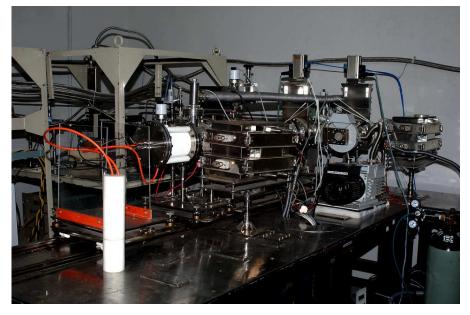
Projects

- DC Accelerator : 700 keV, 7 kW
- RF Accelerator : 30 MeV, 3.5 kW for neutron generation
- RF Accelerator : 100 MeV, 100 kW for exptl neutron facility


Future

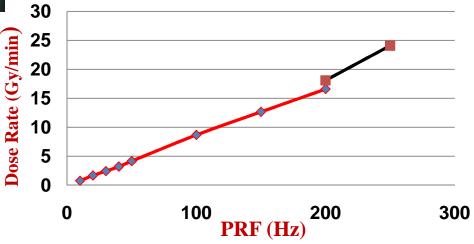
 DC & RF Accelerators : 150 kW and above

Electron Irradiation for Industry & Research with RF Linac


Dose Uniformity is ±5% over 100 cm length

10 MeV RF Linac Utilization

- Polyethylene o-rings for use up to 250°C
- Reverse recovery time (trr) of Diodes reduced from 15 us to 7us (BHEL production trials)
- Potato irradiation (Food Technology Division ,BARC)
- Cross-linking of heat shrinkable rubber (Raychem)
- Gelation of Polyvinyl acetate (Pidilite Industries)
- Fissile material detection development by measurement of neutron fraction (BARC)
- Photofission data for Mo-99 (BARC)
- Utilized for many more research projects of Universities


9 MeV RF Linac x-ray source at ECIL Linac Test Facility Demonstration for cargo-scanning

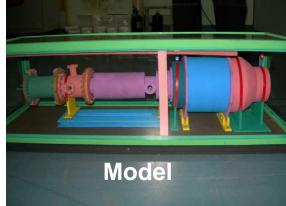
X-ray Spot diameter ~ 2.5 mm

X-ray measured = 24 Gy/min/m

Prototype Dual Energy (6/3 MeV) Compact Linac for Material Discrimination - Assembly & Testing

Egun

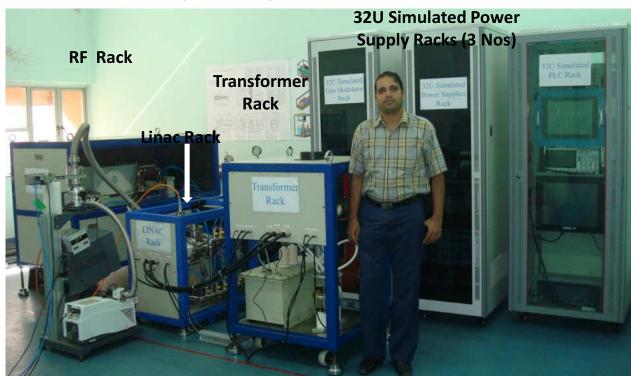
Linac

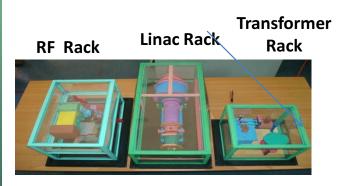

structure

Magnetron

Magnetron modulator

Egun modulator


X-ray target



X-ray collimator

6MeV/3MeV Dual Energy Compact Linac X-Ray Source for Container Cargo Scanning

Prototype System for Productionisation by M/S ECIL

Model of Compact Linac

Compact LINAC X-Ray Source System for Mobile Platform

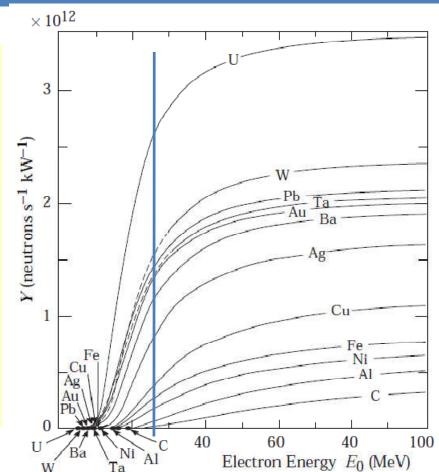
Dual energy for Z (material) discrimination

Cold Conditioning of Linac

Electron linac technology development for next 5 years

10 MeV, 10 kW Linac (at EBC, Kharghar) Utilization and Upgradation of Facility	2856 MHz	0.9 m
Compact Linac 9 MeV, 6/3 MeV X-Ray source for cargo scanning, research accelerators- productionization at ECIL	2856 MHz	0.9 m and 0.6 m
30 MeV, 7 kW neutron generator for shielding & nuclear physics (n-TOF) studies (IGCAR, Kalpakkam)	2856 MHz	2.5 m
100 MeV, 100 kW neutron generator for ADS and material related studies	2856 MHz	11 m
Superconducting linac	1497/ 1300 MHz	9 cavity cells

Electron Accelerators as Drivers for ADS


- **1. Electron accelerator technology is a mature technology**
- 2. Easily used for Bremsstrahlung / photoneutron source
- 3. Isotope production for medical diagnosis and therapy
- 4. Nuclear physics studies related to ADS spallation, higher energy neutron reactions
- 5. Less efficient than proton machines in neutron production but has lower capital cost and comparable energy cost
- 6. ADS application is reliable because of less beam trips

A thorough evaluation is required for ADS application on a larger scale; its suitability for experimental ADS studies is generally accepted.

Electron Beam as a neutron source

- neutrons are generated via photonuclear and photo fission reactions from Bremsstrahlung photons.
- In the photon energy range from threshold (few MeV) to about 30 MeV, neutron production is via the Giant Dipole Resonance (GDR) mechanism.
- For 5 MW, 100 MeV e- beam, in a dual zone reactor, power increases by 12 times for k=0.98
- Output Power will be ~ 5 x 12 = ~ 60 MW.

Ref:Swanson, IAEA Tech Rep 188 (1979)

Beam Energy (MeV)	Neutron Yeild (n s ⁻¹ kW ⁻¹)	Beam Current (mA)	Beam Power (MW)	Neutron Flux (n/s)
100 (U – Target)	3.25X10 ¹²	50-100	5-10	1.625-3.2X10 ¹⁶
100 (W –Target)	2.17X10 ¹²	50-100	5-10	1.085-2.17X10 ¹⁶
100 (Pb – Taget)	1.97X10 ¹²	50-100	5-10	0.985-1.97X10 ¹⁶
100 (Ta-Target)	1.91X10 ¹²	50-100	5-10	0.955-1.91X10 ¹⁶

Specifications of Linacs for Neutron Production

The Electron Linac facility specifications are

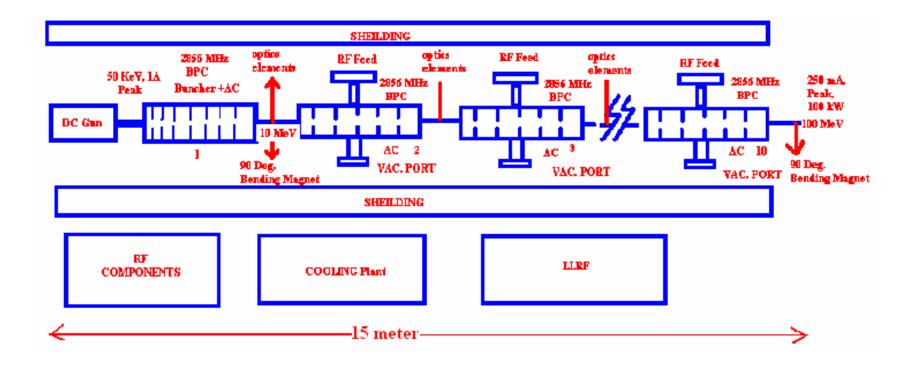
Phase-I: Linac comprising 10 modules of room temp 10MeV RF electron accelerators

Targeted parameters: 70-100MeV, 70-100 kW, pulsed normal conducting Linac (f = 2856 MHz),

Pulsed neutron flux ~ 10^{14} n/cm²/s.

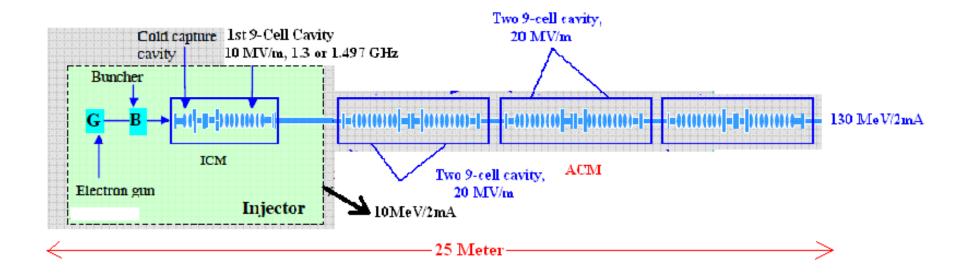
Phase –II: Superconducting cw electron Linac Target parameters : 100-150MeV, 200-400 kW, cw superconducting Linac (L-band, f = 1300 MHz), CW Neutron flux ~ 2X10¹² n/cm²/s

Specification of Normal Conducting 100 MeV LINAC


1.	Operating Frequency	: 2856 ± 2 MHz
2.	Beam Energy	: 100MeV
3.	Beam Current	: 250mA (peak)
4.	Beam Pulse Width	: 10 µsec
5.	Pulse Repetition Frequency	: 400Hz
6.	Beam Power	: 100 kW
7.	Total Microwave Power	: 50MW peak, 200 kW avg
8.	Photo neutron target	: Ta / W(H2O / D2O cooled)
9.	RF Source	: Klystron based
10.	Klystron modulators (each)	: 130 kV, 36 kW avg. (nominal)

Note: Considering the maximum LINAC efficiency (RF to beam conversion) of ~60%, 1 LINAC section can give maximum beam power output of ~ 20kW.

RF Electron Linac for Neutron Generation


PHASE I:

100MeV, 100 kW, pulsed normal conducting Linac (S-band, f = 2856 MHz), avg. neutron flux ~ 10¹³ n/cm²/s

RF Electron Linac for Neutron Generation -2 contd

PHASE II 150MeV, 200-300 kW, cw -superconducting Linac (L-band), neutron flux ~ 10¹⁵ n/cm²/s

Summary

- Electron Accelerators from 0.5 10 MeV are employed for Industrial Radiation Processing
- 9 MeV, 6 MeV and 9/6/3 MeV Dual Energy Linacs are used for Security Applications
- 50 MeV to 100 MeV Linacs are employed for Neutron Production and can have a role in energy multiplication in ADS Systems
- BARC is developing this technology for various applications