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Concept of Alternate Phase Focusing
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Alternate phase focusing (APF) is based on periodic changes of RF field synchronous
phase sign to maintain longitudinal and fransverse beam stability simultaneously for a
series of accelerating gaps. First discovered by Good[Phy. Rev. 92(1953)] and
Fayenberg [Zh. Tekh. Fiz. 29 (1959)]. Main types include

(a) Symmetric APF: N=2 (¢,, -b;)

(b) Asymmetric APF: N=2 (¢,, -0,)

(c) Modified APF: N> 2 and like in AAPF phases are not equal

where, N denotes number of accelerating gaps per focusing period.
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SAPF suffered from too small longitudinal acceptance.

Revisiting APF structure started after work by V. V. Khushin in 70’s on Asymetrical
Alternate Phase Focusing (AAPF) which have larger longitudinal acceptance.

L/

APF have been realized in multi-acceleration gaps essentially in long drift tube
structures (Design of APhF-IH Linac for a Compact Medical Accelerator, V Kapin
et,al, NIRS, Japan). Such period usually contains about 10 — 20 accelerating gaps

(Ng).

Square Wave Law: Neighboring gaps

have same synchronous phase. Every _ Square Wave Variation of ¢,

such gap - set can be formed into a W

separate resonator. spd 0%t % %
e t=z/Lf

Long multi-gap resonator converted - 1

info _chain _of short independently
phased resonators & APF still is as

L= focusing period length

effective gs in long structures

S.A.Minaev, Proc. EPAC 1990: Used resonators with 2 gaps

E.S.Masunov etf.al, Proc. EPAC 2004: Used resonators with 4 gaps

V.V.Kapin et.al, Proc. RUPAC 2010: Feasibility study of APF realised in short
independent resonator using stability diagram. Designed 0.5 MeV/u to 6 MeV/u,
a/A =1/8. Less number of independent resonators were required as compared to
studies carried out earlier.




PROPOSED ANURIB FACILITY vis-a-vis APF
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Design of A-APF Configuration

(/Selecﬁon of designed beta for QWRs

Desired energy gain

Forg/A~1/8:1.3MeV/uto7 MeV/u

160 (gavg ~ 6 after charge stripping @ 1.3 MeV/u): 1.3 MeV/u to 18 MeV/u
(keeping energy gain per unit charge state same)

Designed beta needs to be chosen to have TTF ~ 0.8 over 1.3 MeV/u to 18 MeV/u
range.

TTF of double gap QWR
resonating at 100 MHz,
aperture dia ~ 20mm & g/PA
ratio ~ 0.2 calculated using
formula described in

[J. R. Delayen, NIM 212
(1983) 73-79]
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Stability Analysis (Smith- Gluckstern diagram)

Step wise reference phase oscillation over one period: ¢ (r) =d+é(z), 7 =2/ L.

D

L/
L being the focusing period length over which the phase excursion completes

one cycle. Variable part of above function is constant within two accelerating

gaps of a QWR.

Mathieu Hill Equations in terms of phase deviation y = ¢ — g and dimensionless
radial parameter p =r [ Lt

dz;f +PR, (1) =0iR,(r)= 2B.sin[¢+@(7)] P,(7)=P,(z+1
32‘2’ + P, (0).p=0;Po() =-Bsin[g+4(0)+y]  FO=R D
T

with B as focusing parameter given by
B = (7qEm/ Amoc®)(L, / BA)* (A~ B7)*?

Solution to such equation can be carried out by employing well known matrix
multiplication technique.




Creating Smith- Gluckstern diagram

Particular focusing period consisting of say N number of QWRs obeying relation

for synchronous phase as@+ @, sin(r). Different random sets of @ & $,are
—econsideredDistance between QWRs & space for a solenoid in each focusing
period have been kept.

Electric field for a particular set of such phase has been kept same for all the
QWR's in a focusing period. Max. Ea considered is 6 MV/m. For each such set of
phase variation & electric field RMS & average value of R, (7) is calculated
creating a point in the space constituted by RMS and average value .

Matrices are obtained by multiplying in proper order the matrices of drift
lengths and electric field gap using MATHEMATICA. Transverse (w;) and
longitudinal phase advance () have been calculated using matrix
multiplication technique corresponding to each such set (points created in
above phase space).

Contours of Cos(y, ) and Cos(u;) having values 1, 0 and -1 are drawn . To
ensure stability the operating point is chosen at centre of stability diagram.




Smith- Gluckstern Stability Diagram using MATHEMATICA
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Populating phase space with random sefts of¢ ,$y &Ea
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Smith- Gluckstern Stability Diagram using MATHEMATICA
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Smith- Gluckstern Stability Diagram using MATHEMATICA
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Results of stability Analysis

Optimized design consist of five focusmg perlods.
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Evaluation of Longitudinal acceptance for focusing period

Smooth approximation with acceleration (since we have SC Linac) has been
C/CIDD”ed [J. Qiang et.al, Nucl. Instrum & Methods A 496 (2003) 33]

Equation of motion in longitudinal dimension

" = 1oBs U 1o 53) w' = (@1 ) y357)(a ] Ame?) Y Ey(cos(at, (2) +6) —cos(wty (2) + 6, +))
-0 |

E.; and 6,denotes amplitude and phase for i cavity. Summation includes all

resonators in a focusing period.y and B are function of longitudinal co-ordinate.
Solving the following longitudinal equations one can find the z dependence

Y (@)= (V) )Y Eq(cos(@t, (2)+6),

t'(2) =1/ (cy1-77(2))
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Defining ¢ =723 one can re-write the equation as ¢ = F(p,2). Net force can be
seperated in two parts one for fast oscillation @ Jand other for slow smooth variable
(g/_ﬁ) with the cc/)/ndiﬂon (‘&L<< ‘475‘ ). So equation of motion can be for slow smooth
varying part ¢ =F(¢)+ f(p) and effective potential as

U (9) == [dx(F () + (X))
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The phase acceptance and the energy width calculated from effective potential
are

Focusing Period

Number

Phase
Acceptance 131 158 117 124 | 128

(deg)

Energy Width
(keV/u)

227 | 338 | 353 | 444 | 631

Solving the following longitudinal equation of motion as described by the set of
differential equations mentioned below with different initial conditions of t[z=0]

and y[z=0], one can also determine longitudinal acceptance.
Y D= (Y g En(c05(08,(2)+0)

t'(z) =1/ (cy1- 7 2(2))
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Energy of different g/A ratio
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CONCLUSION

A-APF structure finds its suitability for providing both longitudinal and tfransverse
//s’robili’ry and have appreciable phase acceptance.

A

1.3 MeV/uto 7 MeV/u (g/A~ 1/8) SC Linac booster have been designed invoking
the above advantages. Five such focusing periods are constituted with QWR of
designed beta 0.06, 0.1 and 0.15 with a reasonable electric field gradient.

FUTURE WORK

Re-visit the entire beam line consisting of five periods with particle tfracking code
(such as TRACK or ASTRA) using CST MWS simulated profile for QWRSs.
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The possibility that a linear accelerator could accelerate
particles with different charges simultaneously has been
known for some time. Notably, proton linacs have accel-
erated both positive and negative hydrogen ions using the
change in the sign of the rf accelerating field when 180°
out of phase [1]. With superconducting linacs, where the

The spread in charge states that can be accepted for
acceleration [3] depends primarily on the extent that the

phase of each cavity is controlled separately, this concept
can be generalized to accelerate a range of charge states

with the same mass. provided the phases of the bunches
can be controlled precisely. This concept can enhance the

focusing system can limit emittance growth in transverse
phase space. Consequently, the tolerable emittance growth
1s set by the intensity of lost energetic ions that can produce
residual activation of the accelerator components. There-
fore, in heavy-ion linacs at low intensity or low energy, a
wide range of Ag, about *=10%, can be accepted and ac-
celerated. However, in high intensity (~10"" uranium nu-
clei per second) and medium energy (~400 MeV /u) the
tolerable spread of charge states is significantly lower.
Standard periodic focusing theory can be used to ana-
lyze the simultaneous acceleration of the several charge
states. For example, a spread in charge states of *=2.6%
produces a total transverse emittance growth of 6%. This
1s caused by slightly mismatched conditions for different
charge states in the periodic focusing channel with a 60°
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TIER: www. tifr.res.in/~pell/
Average energy gain per cavity 0.4 MV/g
B=0.1,f =150 MHz

IVAC: www.ivsnet.org/ADS/proceedings/02/117.pdf

Average energy gain per cavity 0.4 MV/q
B=0.08, f = 97 MHz ('2C ¢* Energy gain 20MeV with 8 resonators)

Present Design

Ea(max) = 6 MV/m, 5.7 MV/m, 4.5 MV/m, 4.8 MV/m, 4.6 MV/m
B=0.04,0.04,0.1,0.1,0.15

Max energy gain/q:

(0.18 X6 X 6)+(0.18 X 7 X 5.7)+(0.3 X 7 X 4.5)+(0.3 X 8 X 4.8)
+(0.45 X 8 X 4.6)=51.2 MV/q

Our Case

(7-1.3) X 8 = 45.6 MV/q : Total Energy gain

Avg. Energy gain/cavity: 45.6/38 = 1.2 MV/q

Operating at 89% of maximum possible energy gain
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