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QCD Lagrangian

• Quantum Chromodynamics(QCD) is the theory of strong interactions

LQCD =
X

f=u,d,··

ψf (iγµDµ −mf )ψf − 1

4
Ga

µνG
µν
a ; f = 1, Nf

◦ covariant derivative Dµ = ∂µ − igs
λa

2
Aa

µ a = 1, 8

◦ gluon field strength tensor

Ga
µν = ∂µA

a
ν−∂νA

a
µ+gsf

abcAb
µA

c
ν ; fabc → SU(3)c structure constants

• Due to quantum effects (loops) the coupling αs = g2s/4π ‘runs’ with momentum
transfer Q

αs(Q) =
12π

(33 − 2Nf ) ln( Q2

Λ2 )

• Renormalisation introduces the QCD scale parameter, Λ ∼ 200 MeV
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’running’ coupling

• Q2 ∼ Λ2

• q’s and g’s confined within hadrons ⇒
degrees of freedom change to π, p, n etc.

• perturbative QCD does not work

• Lattice simulation (LQCD)

• Effective methods based on symmetries of
QCD → Chiral symmetry

• Q2 >> Λ2

• q’s and g’s essentially free

• perturbative region

• QCD well tested in DIS,
jet production etc.
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Chiral symmetry

• Consider LQCD for two massless light flavours u and d

• In terms of left and right handed fields ψR,L = 1
2
(1 ± γ5)ψ =

0

@

uR,L

dR,L

1

A

LQCD = iψ̄Rγ
µDµψR + iψ̄Lγ

µDµψL − 1

4
Gc

µνG
µν
c

• LQCD is invariant under chiral transformations i.e. separate flavour
transformations on left and right components of u and d

ψR → URψR UR = eiαa
Rτa/2 ∈ SU(2)R a = 1, 2, 3

ψL → ULψL UL = eiαa
Lτa/2 ∈ SU(2)L

• Under this global SU(2)R × SU(2)L symmetry, the conserved currents are

jµ a
R = ψ̄Rγ

µ τa

2
ψR & jµ a

L = ψ̄Lγ
µ τa

2
ψL with ∂µj

µ a
R = ∂µj

µ a
L = 0

Sourav Sarkar, ICPAQGP-2010, GOA, INDIA – p.5/40



Chiral symmetry

• Thus chiral symmetry of LQCD ⇒ left and right handed quarks do not
communicate ⇒ ’handedness’ is preserved in dynamical processes

• A mass term ‘mf (ψ̄RψL + ψ̄LψR)’ allows for L↔ R transitions;
chiral limit⇒mf = 0

• chiral currents can be expressed in terms of conserved vector and axialvector
currents

jµ a
V = jµ a

R + jµ a
L = ψ̄γµ τa

2
ψ

jµ a
A = jµ a

R − jµ a
L = ψ̄γµγ5 τa

2
ψ

• The corresponding charges generate the algebra of SU(2)V and SU(2)A

Qa
V =

Z

d3x j0 a
V (x) and Qa

A =

Z

d3x j0 a
A (x)

• They commute with the QCD Hamiltonian

[Qa
V , H

mf =0

QCD ] = 0 and [Qa
A, H

mf =0

QCD ] = 0
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Chiral symmetry

• So LQCD in the limit of massless quarks has global chiral symmetry
What about the vacuum (ground state) of QCD ?

• Essential criteria for a symmetry to be realised in terms of degenerate multiplets is:
Usym|0〉 = |0〉 ground state is invariant under symmetry transformation
Qsym|0〉 = 0 symmetry charges annihilate the vacuum

• This is the (normal) Wigner-Weyl mode of realisation of symmetry

• For the vector charges, Qa
V |0〉 = 0 Wafa & Witten NPB (1984)

=⇒ vacuum is symmetric under SU(2)V ; isospin singlet
=⇒ ’degenerate’ (isospin) doublet n, p triplets ρ+, ρ0, ρ− etc.
=⇒ operators generate transition within multiplets e.g. τ+|n〉 = |p〉 etc.

• But for the three axial charges, we can have two possibilities
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Chiral symmetry

• (a) Qa
A|0〉 = 0

• ⇒ unique vacuum

• degenerate multiplets of opposite parity

• (b) Qa
A|0〉 6= 0

• ⇒ degenerate vacua

• massless pseudoscalars → Goldstone bosons

• spontaneously broken symmetry

• We observe :
◦ no degenerate parity partners (∼ 600 MeV difference in mass)
mρ[JP = 1−] = 770 MeV/ma1

[JP = 1+] = 1260 MeV

mN [JP = 1/2+] = 940 MeV/m∗
N [JP = 1/2−] = 1535 MeV etc.

◦ triplet of ’light’ pions ⇒ Goldstone bosons

• Assume : SU(2)R × SU(2)L sp. broken to SU(2)V
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Chiral condensate

• For any operator P , if 〈0|[Q,P ]|0〉 6= 0, this expectation value is an order
parameter

• with P b = ψ̄γ5τbψ, [Qa
A, P

b] = −δabψ̄ψ

• Qa
A|0〉 6= 0 implies 〈0|[Qa

A, P
b]|0〉 → 〈0|ψ̄ψ|0〉 6= 0

=⇒ chiral condensate is an order parameter for chiral symmetry breaking

• In addition, there is an explicit breaking due to mu,md 6= 0

• The symmetry breaking parameters are related to the pion mass through
Gell Mann-Oaks-Renner (GOR) relation

m2
πF

2
π = −(mu +md)〈0|ψ̄ψ|0〉 +O(m2

u,d)

in the chiral limit (mu,d = 0) mπ = 0

• For Fπ = 93 MeV (from π+ → µ+νµ decay)
〈0|ψ̄ψ|0〉 ∼ −(250 MeV)3
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Chiral condensate in the medium

• How does the chiral condensate change in a hot/dense medium
e.g. in Relativistic Heavy Ion Collisions?

• A first estimate can be obtained from linear density expansions

• approximate the thermal medium by non-interacting light hadrons;
pions at finite T and nucleons at finite µB

〈O〉 = 〈0|O|0〉 +

Z

d3p

(2π)32p0
nπ〈π|O|π〉 +

Z pF

0

d3p

(2π)32p0
〈N |O|N〉 + · · ·

◦ At lowest order

〈ψ̄ψ〉 ≃ 〈0|ψ̄ψ|0〉
„

1 − T 2

8F 2
π

− ρN

3ρ0

«

for mπ = 0 (chiral limit)

◦ this naive estimate predicts chiral
symmetry restoration at
T ∼ 250 MeV and/or ρN ∼ 3ρ0

<qq>(T,n)/<qq>(0,0)
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Chiral condensate in medium

• The pion decay constant Fπ is also an order parameter for chiral phase transition

• in pionic medium Fπ(T ) = Fπ

„

1 − T 2

12F 2
π

«

⇒ also decreases with T

• Lattice simulations of QCD thermodynamics:

〈ψ̄ψ〉T ∼ ∂P (T, V )

∂mq
where P = T

∂

∂V
lnZ

• The chiral condensate shows a rapid drop in the transition region

◦ For T > Tc, the condensate eventually
disappears =⇒ chiral symmetry is
realised in the Wigner-Weyl mode

◦ For three quark flavours the chiral
transition is expected to be of
second order 0.0

0.2
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p4fat3: Nτ=4
6
8

A. Bazavov et al PRD80 (2009) 014504
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Current Correlators

• The chiral condensate is not an experimentally measurable quantity

• Current correlators provide an useful framework to connect QCD with observables
(hadrons)

• These are expectation values of two-point functions of (local) currents

• Consider the correlators of vector currents (jµ
V ) and axial-vector currents (jµ

A) of
QCD

Πµν
V (q) = i

Z

d4xeiq·x〈0|Tjµ
V (x)jν

V (0)|0〉

Πµν
A (q) = i

Z

d4xeiq·x〈0|Tjµ
A(x)jν

A(0)|0〉

• ImΠ contains the spectral information → spectral density

• The currents (jµ) couple to individual hadrons as well as multi-particle states with
the same q. nos. ⇒ spectral densities contain peak and continuum structure
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Current Correlators in vacuum

• The V and A correlators are identical to all orders
in perturbation theory
Chiral symmetry implies : ImΠV (q) = ImΠA(q)

• ImΠV and ImΠA have been measured at LEP in
τ decays into even and odd number of pions
[τ → ντ + nπ] by ALEPH and OPAL
Collaborations

• the quantum numbers of ~jµ
V [IG(JP ) = 1+(1−)]

and ~jµ
A [IG(JP ) = 1−(1+)] coincide with those of

ρ and a1 mesons - peaks dominate at low q2

• very different spectral shape ⇒ broken chiral
symmetry in vacuum

EPJC 7 (1999) 571
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Current Correlators in medium

•• In the strongly interacting medium the spectral density may change;
peaks could become broader and pole positions may shift

• ImΠV is accessible through EM probes in particular, the dilepton spectra from
heavy ion collisions

• However, it is difficult to measure ImΠA in the medium
⇒ final state interactions would modify the signal in the π±γ or 3π invariant mass
spectra

• Since a simultaneous measurement does not appear to be feasible it is essential
to put constraints on spectral densities

• QCD Sum Rules are useful for this purpose

• In addition, spectral densities can be related to chiral order parameters through
Weinberg Sum Rules
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QCD Sum Rules

• Hadron properties can be obtained in terms of QCD parameters through
QCD Sum Rules M. Shifman et al NPB 147 (1979) 385

• Using analyticity a dispersion relation is written for the correlation function

Π(q) =
1

π

Z

ImΠhad(s)

(s− q2)
ds + subtractions

• Π(q) is also obtained using Operator Product Expansion (for Q2 = −q2 >> 0)

• Matching the two expressions of Π(q) for large space-like momenta ⇒ Sum Rules

• In OPE, the correlator is expanded in terms of local operators composed of quark
and gluon fields of increasing dimension

i

Z

d4xeiq·xT [j(x)j(0)]
large Q2

−→ C1I +
X

n

Cn(q)On

• Cn → Wilson coefficients (can be found by taking appropriate matrix elements on
both sides)
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QCD Sum Rules

• The coefficients Cn fall off as powers of 1/Q2 =⇒ lower dimensional operators
e.g. mqψ̄ψ, GµνGµν , ψ̄Γψψ̄Γψ dominate the sum rule

• expectation values of these operators provide non-perturbative contributions

• Parametrize the vector spectral density as

ImΠV (s) = 2πm2
ρF

2
ρ δ(s−m2

ρ) +
1

4π

“

1 +
αs

π

”

θ(s− sth)

pole + continuum

• Vacuum Sum Rule

m2
ρF

2
ρ e

−m2
ρ/M2

− M2

8π2

“

1 +
αs

π

”

(1 − e−sth/M2

)

= 〈0|mψψ|0〉 + 〈0|αs

π
GµνG

µν |0〉 − 56αs

81M2
〈0|4 quark|0〉 + · · ··

• At T 6= 0 there are additional considerations for both the spectral and OPE sides
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In-medium correlators (spectral side)

• Lorentz invariance is not manifest due to existence of a preferred frame
⇒ Πµν become functions of q0 and ~q separately instead of q2

• restored by introducing uµ (the four-velocity of the medium)
⇒ q0 and ~q can be defined in terms of two scalars
ω = u · q [= q0 in the rest frame with uµ = (1, 0, 0, 0)]
q =

p

ω2 − q2 [= |~q| in rest frame]

• For ~q 6= 0 the correlation function splits into longitudinal and transverse
components

Πµν(q0, ~q) = PµνΠT (q0, ~q) +QµνΠL(q0, ~q)

where Pµν and Qµν are the corresponding projection tensors

• So, in the medium we have two components of the correlation function, each a
function of two variables
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Thermal QCD Sum Rules

• Additional scalar operators emerge from tensors by contracting with the velocity
vector uµ e.g. uµΘµνuν where Θµν is the stress tensor of QCD

• The vacuum condensates to be replaced by in-medium ones
〈0|O|0〉 −→ 〈O〉T = Tr[e−βHO]/Tr[e−βH ]

• one gets two sum rules; longitudinal and transverse S. Mallik et al PRD58, 096011

F 2
ρ (T )e−m2

ρ(T )/M2

+ IL(M2) =
M2

8π2
+

〈O〉T
M2

m2
ρ(T )F 2

ρ (T )e−m2
ρ(T )/M2

+ IT (M2) =
M4

8π2
− 〈O〉T

〈O〉T = m〈ψψ〉T +
〈G2〉T

24
+ 〈new operators〉

• calculate the spectral density from an effective theory and use sum rules to
constrain parameters
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Weinberg Sum Rules

• The difference of the vector and axial vector spectral densities are quantified by
the Weinberg Sum Rules

Z

ds

sπ
[ImΠV (s) − ImΠA(s)] = F 2

π

Z

ds

π
[ImΠV (s) − ImΠA(s)] = 0

Z

sds

π
[ImΠV (s) − ImΠA(s)] = 2π〈0|4 quark|0〉

• In thermal medium
◦ The integrals become energy (q0) integrals

◦ each sum rule applies for a fixed 3-momentum (~q) and must be obeyed at
each value of the momentum

◦ the spectral densities split into T and L modes

◦ Constrains both energy and momentum dependence of in-medium spectral
densities
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Correlators & chiral symmetry restoration

• Possible scenarios of approach to chiral symmetry restoration based on Weinberg
Sum Rules at T 6= 0 J.I.Kapusta & E. Shuryak, PRD49 (1994) 4694

◦ Thermal pions induce mixing of V and A correlators. To lowest order

ImΠV (T ) = [1 − ǫ(T )] ImΠvac
V + ǫ(T )ImΠvac

A ǫ =
T 2

6F 2
π

ImΠA(T ) = [1 − ǫ(T )] ImΠvac
A + ǫ(T )ImΠvac

V

Maximal mixing ⇒ CSR for ǫ = 1
2
⇒ Tc ∼ 164 MeV

◦ The peak positions of ImΠV and ImΠA may change with T
⇒ masses may shift towards each other or go to zero and become
degenerate at Tc

◦ Close to Tc the self energy of hadrons may increase and resonance structure
may become broad and merge with the continuum ⇒ a flat spectral shape in
both cases

• The sum rules by themselves cannot indicate the preferred scenario
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Detecting in-medium correlators

• Approach to CSR involves a reshaping of one or both correlators

• A simultaneous measurement of ImΠV and ImΠA is the best way to study CSR

• not possible due to difficulties in measurement of ImΠA

• Consideration of indirect approaches:
◦ Theoretical calculation of ImΠV and ImΠA correlators involving detailed

consideration of many-body effects in a thermal field theoretical framework
based on chiral effective interactions

◦ Using ImΠV to evaluate dilepton spectra and compare with data

◦ Using the V and A correlators in WSRs to obtain the temperature
dependence of order parameters e.g. Fπ and 4-quark condensate and
compare with LQCD results for those
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Dilepton emission rate

• Dilepton emission rate is given by the thermal expectation value of the correlator of
EM currents McLerran & Toimela PRD (1985)

dNl+l−

d4x d4q
= − α2

3π3 q2
gµν

eβq0 + 1
ImWµν(q)

Wµν(q) =

Z

d4x eiq·x〈T Jem
µ (x)Jem

ν (0)〉T Jem
µ =

X

f

ef ψ̄fγµψf

• At low invariant mass M , EM current is decomposed into vector currents

Jem
µ = Jρ

µ + Jω
µ + · · ·

I = 1 I = 0

• Vector currents converted to vector meson fields (VMD) e.g. Jρ
µ = Fρmρρµ

ImWµν −→
X

V =ρ,ω,φ

ImΠµν
V −→

X

V =ρ,ω,φ

ImDµν
V

• the essential quantity is the imaginary part of the in-medium vector propagator DV
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ρ spectral function

• The full propagator is obtained through a Dyson equation

= + + + · · · ·

D = D0 +D0Σ D0 +D0Σ D0Σ D0 + · · · ·

=
D0

1 + ΣD0
=

1

p2 −m2 + Σ

• spectral function

A = ImD =
ImΣ

(p2 −m2 + ReΣ)2 + (ImΣ)2

• Real part gives pole shift & Imaginary part leads to broadening

• For ρ meson (spin 1) Σµν = PµνΣt +QµνΣl

from which we get Σl =
Σ00

~q2
and Σt = −1

2
(Σµ

µ + q2Σl)

• Spin averaged spectral function: Aρ = 1
3
[2At

ρ +Al
ρ]
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ρ self energy

• Essential quantity to find is the ρ self-energy Σρ in the medium

• Linear density approximation

Σρ(q) =
X

h

Z

d3p

(2π)3
fh(p)Thρ(p, q) →

X

h

nhThρ

Thρ → forward scattering amplitude (h = π,N ) Eletsky et al PRC (2001)

• Field Theoretic approach using chiral effective interactions

◦ Massive Yang-Mills Song et al PRD (1996)

◦ Hidden Local Symmetry Bando et al PRL (1985)

◦ Chiral Perturbation Theory
with massive spin-1 fields Ecker et al PLB (1989)

◦ These approaches start with chiral pion Lagrangians and introduce vector
meson fields through ’gauging’
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Chiral effective theory (pions)

• The low energy effective theory of QCD is constructed in terms of fields of
observed particles by utilizing the underlying chiral symmetry

• First determine how Goldstone and non-Goldstone fields transform under chiral
transformations

• All terms built out of the observed fields and invariant under these transformation
rules form a piece in Leff

• The Goldstone bosons (pions) are collected in a matrix U(x) = exp[iτaπa(x)/Fπ]

which transforms as

U ′(x) = gRU(x)g†L gR,L ∈ SU(2)R,L

• Leff = Leff (U, ∂U, ∂2U · · · ·) ordered in increasing number of derivatives of U(x)

• The leading term involves two derivatives in U

L(2)
eff =

F 2
π

4
Tr[∂µU

†∂µU ] H. Leutwyler, arXiv:hep-ph/9409422
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Chiral effective theory

• The pion mass term due to explicit symmetry breaking is included as a
perturbation

• =⇒ Leff is an expansion in powers of momenta and mass of the pions (ChPT)

• Non-Goldstone fields e.g. the triplet of ρ fields transform as

ρ′µ = hρµh
† h ∈ SU(2)V

• Interaction terms are introduced through field combinations invariant under
appropriate representations of the symmetry transformations

• The lowest order interaction involving the ρ, π, ω etc

Lint = − 2Gρ

mρF 2
π

∂µ~ρν · ∂µ~π × ∂ν~π

+
g1

Fπ
ǫµνλσ(∂νωµ~ρλ − ωµ∂ν~ρλ) · ∂σ~π

+
g2

Fπ
(∂µ~ρν − ∂ν~ρµ) · ~aµ

1 × ∂ν~π
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ρ self-energy (mesons)

• The one-loop self energy (in vacuum) is given by

Σµν(E, q) = i

Z

d4k

(2π)4
NµνDπ(k) Dh(q − k)

D(k) =
1

k2 −m2 + iǫ

• To be evaluated in the medium using Thermal Field Theory

π

h

ρ ρ

• Imaginary Time Formalism T. Matsubara, PTP 14 (1955) 351

◦ replace propagators by
1

ω2
n + ~k2 +m2

with ωn =
2nπ

β

◦ replace
Z

d4k

(2π)4
by

1

β

X

n

Z

d3k

(2π)3
Matsubara sum

◦ self-energy Σµν obtained for discrete (imaginary) values of energy →
analytically continued to real continuous values
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ρ self-energy

• Real Time Formalism R.L.Kobes & G. Semenoff, NPB260 (1985) 714

◦ propagator D and self energy Σ become 2 × 2 matrices

◦ They can be diagonalised in terms of analytic functions

◦ The (diagonal) self-energy function Σ corresponds to the (continued) ITF
result

◦ can be obtained from the 11-component Σ11

ImΣ = tanh(βq0/2)ImΣ11

ReΣ = ReΣ11

◦ where Σ11
µν(E, q) = i

Z

d4k

(2π)4
NµνD

11
π (k) D11

h (q − k)

◦ with D11(k) =
1

k2 −m2 + iǫ
− 2iπnδ(k2 −m2)

vacuum + medium
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ρ self-energy

• Discontinuities in Σ =⇒ imaginary part

• Two regions (cuts) for E > 0 and q2 > 0

Re(E)

√

(mh −mπ)2 + ~q2

√

(mh + mπ)2 + ~q2

Im(E)
Landau Unitary

|~q|
0

ImΣ(E, ~q) = −π
Z

d3~k

(2π)34ωπωh
×

h

N1[(1 + nπ)(1 + nh) − nhnπ]δ(E − ωπ − ωh)

+N2[nπ(1 + nh) − nh(1 + nπ))]δ(E + ωπ − ωh)
i

−

ρ
π

h

π

h

ρ

π

h

π

h

ρ ρ
−

• δ-functions define non-zero regions ⇒ physical processes contributing to loss or
gain of ρ mesons in the medium

• Real part obtained from dispersion integral: ReΣ(E, ~q) = P
Z ∞

0

dω2

π

ImΣ(ω, ~q)

ω2 − E2
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ρ self energy
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• additional contributions from the π−ω,
π − h1 and π − a1 loops

S. Ghosh et al EPJC 70 (2010) 251
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Spectral Function

• For a hot meson gas, with h = π, ω, h1, a1 mesons
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• The ρ spectral function (for |~q| = 300 MeV) shows sizeable broadening with small
mass shift

S. Ghosh et al arXiv:1009.1260
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Dilepton rate (ρ only)
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• The individual contributions from the Landau and unitary cuts from the π − π,
π − ω, π − a1 self-energies
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Dilepton rate (ρ only)
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• Enhancement in the low mass dilepton rate due to spectral changes

• broadening in low mass region due to scattering processes involving heavy
mesons
⇒ Landau cut contributions

details in Sabyasachi’s talk on 8th
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Baryon Loops

• Baryon contribution is included through RN loops

• R ≡ ∆(1232), N∗(1520),∆(1650), N∗(1700) etc.

• The ∆ −N − ρ interaction e.g.

Lint =
g

Fπ
ψ̄µ

∆γ
νψNρµν JP =

3

2

+

ρ

N

R

ρ

• The relevant part comes the Landau-type discontinuity in the domain
E > 0 and q2 > 0

ImΣ(E, ~q) = −π
Z

d3~k

(2π)34ωNωR

h

(N1n
R
+ +N2n

R
−) − (N3n

N
+ +N4n

N
− )

i

δ(E+ωN−ωR)

where n+ =
1

eβ(E−µ) + 1
→ baryons

and n− =
1

eβ(E+µ) + 1
→ anti-baryons

• Contributes even at ρN = 0 because contributions from baryons and anti-baryons
appear additively

Sourav Sarkar, ICPAQGP-2010, GOA, INDIA – p.34/40



ρ spectral function in dense matter at T = 0
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• rho spectral function in dense matter at ρ = 0, ρ = ρ0/2 and ρ = ρ0 in a chiral
approach involving ∆(1230) and N∗(1520)

• New structure at low mass from Landau-type discontinuities in the N∗(1520) −N

self-energy
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ρ spectral fn in hot & dense matter

R. Rapp et al arXiv:0901.3289
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• rho spectral function in hot and dense matter calculated in a many-body approach
involving mesons and baryons

• substantial broadening ⇒ melting of ρ

Sourav Sarkar, ICPAQGP-2010, GOA, INDIA – p.36/40



Dilepton spectra

• More work needs to be done to obtain the low mass dilepton yield to be compared with
experimental data

• In addition to the ρ, the in-medium spectral functions of the ω and possibly φ are
required for the rate of emission from hadronic matter

• rate of emission from QGP

• convolution over the space-time history of the fireball using relativistic
hydrodynamics

• a realistic equation of state

• implementation of chemical and kinetic freeze-out

• fold over the Acceptance function of the detector, if any

More on this in Jan-e Alam’s talk on 9th
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Concluding remarks

• The study of hadrons in medium provides a handle to study non-perturbative
phenomena like chiral phase transition in QCD

• However, we should keep in mind that not every in-medium change in the
properties of hadrons is related to chiral symmetry restoration

• change due to purely hadronic many body effects like scattering and decay in the
medium

• It is not sensible to try to determine what part of the medium effect has a
’conventional’ origin and how much is related to chiral symmetry
breaking/restoration

• Essential to carefully and exhaustively evaluate the in-medium correlation
functions with chiral effective interactions in a Quantum Field Theoretic framework

• This needs to be corroborated with LQCD simulations as well as constraints
coming from the sum rules
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Real Time Formalism

−T

−T−i

ΤO

β

Re t

Im t

β /2  T−i

• The free propagator

D11 = −(D22)∗ = ∆(k0, ~k) + 2πinδ(k2 −m2)

D12 = D21 = 2πi
p

n(1 + n)δ(k2 −m2)

where ∆(k0, ~k) =
−1

k2 −m2 + iǫ

• The thermal propagator may be diagonalised in the form

Dab(k0, ~k) = Uac(k0)[diag{∆(k0, ~k),−∆∗(k0, ~k)}]cdUdb(k0)

with the elements of the diagonalising matrix as

U11 = U22 =
√

1 + n, U12 = U21 =
√
n
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Real Time Formalism

• From spectral representations, one can show that U diagonalises also the full
propagator

• As a consequence, the matrix Σab is also diagonalisable by (U−1)ab,

Σab(q) = [U−1(q0)]ac[diag{Σ(q),−Σ
∗
(q)}]cd[U−1(q0)]db

• The diagonal component can be obtained from the 11-component Σ11 as
ImΣ = tanh(βq0/2)ImΣ11

ReΣ = ReΣ11

• The diagonal components (barred quantities) satisfy the same Dyson equation as
the matrix form

D = D0 +D0 Σ D
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