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Quantum gravity

Processes in the very early
universe require
→ general relativity

(expansion of space),
→ quantum physics

(hot, dense).

Sometimes, this even involves quantum physics of gravity.

Described by the geometry of space-time; quantize space-time.

One possible consequence:
elementary constituents, “atoms of space.”
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Scales

Dimensional arguments to estimate direct effects:

Unique length parameter, the Planck length
ℓPl =

√

G~/c3 ≈ 10−35m

and mass parameter, the Planck mass
MPl =

√

~c/G ≈ 1018GeV ≈ 10−6g.

Quantum gravity inevitable at
Planck density ρPl = MPl/ℓ

3
Pl.

About a trillion solar masses in the
region of the size of a single proton.

(Current density of the universe:
about an atom per cubic meter.)
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Indirect evidence

1905, Albert Einstein: Analysis of Brownian motion as
convincing evidence for atoms.
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Indirect evidence

1905, Albert Einstein: Analysis of Brownian motion as
convincing evidence for atoms.

1955, Erwin Müller: First direct image of atoms using field ion
microscopy.
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Expansion

e

ν

p

n

W

An expanding discrete space
grows not continuously but atom
by atom.

Implications weak for a large
universe, but may be noticeable
by sensitive measurements.

Example: Abundances of light elements de-
pend on baryon-photon ratio during big-bang
nucleosynthesis (proton-neutron interconver-
sion by weak interaction).

Baryon-photon ratio depends on dilution be-
havior of radiation and (relativistic) fermions.
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Standard model of cosmology

Big bang: Planckian density, classical singularity
(13.8 billion years ago).

Inflation: Accelerated expansion at energy scale ∼ 10−10ρPl.

Particle production (cosmological Schwinger effect).

Seeds for matter distribution as seen in cosmic microwave
background (CMB) and galaxies.

Baryogenesis: Baryons form, matter/antimatter asymmetry.

Nucleosynthesis: Nuclei form (about 75% hydrogen and
deuterium, 25% helium, trace amounts of other light
elements).

CMB release: Atoms neutralize, universe becomes translucent
(after 380,000 years).
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Big-bang singularity
(

ȧ

a

)2

=
8πG

3
ρ ,

ä

a
= −

4πG

3
(ρ+ 3P )

(scale factor a, energy density ρ, pressure P ) implies

Ḣ = −
4πG

3
(ρ+ 3P ) −H2

for Hubble parameter H = ȧ/a.

With strong energy condition ρ+ 3P ≥ 0:

Ḣ ≤ −H2 or dH−1/dt ≥ 1 and H−1 ≥ H−1
0 + t− t0.

If H−1
0 negative, H−1 positive at t1 = t0 −H−1

0 ; H−1 = 0 at some
time, when H → ∞, ρ→ ∞. Past singularity if expanding.

Singularity theorems:
singularities generic in space-time dynamics.
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Shortcomings of the standard model

→ Singularity unphysical.

→ Initial vacuum state appropriate?
Matter/antimatter asymmetry difficult to explain.

→ If there was a prehistory of the quantum universe before the
big bang, more time existed for asymmetry to build up.

→ Matter equation of state important for some aspects of
transition.

Need more information about quantum gravity, space-time
structure.
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Constructing quantum gravity

Gravity is “strongly interacting” at a fundamental,
non-perturbative level.

Non-renormalizability: cannot
be quantized as weakly-
interacting theory of gravitons.

Well-known weak form of grav-
ity as long-range remnant of
more elementary theory.

Different approaches, no fully consistent version yet.

Quantization directly addressing structure of space and time:
loop quantum gravity. (Background independence.)
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Floating lattices

Theory can be constructed by means analogous to lattice QCD,
but with one crucial difference:

General covariance implies that all states must be invariant
under deformations of space (coordinate changes).

→ Regular lattices too restrictive (instead “floating”).
→ No well-motivated restriction on valence of lattice vertices

(except simplicity).
→ Lattice edges may be knotted and interlinked.
→ Superpositions of different lattice states.
→ States of continuum theory described by lattices;

no approximation, no continuum limit.

(Alternative viewpoint: Causal Dynamical Triangulations.)
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Interactions

Fundamental lattice theory for quantum geometry. Geometrical
excitations generated by creation operators for lattice links.

Near continuum: Highly excited many-particle states,
“interacting”.

Resulting physics
mainly analyzed in
model systems.
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Loop quantum gravity

Describe space-time geometry by su(2)-valued “electric field” ~Ei

and “vector potential” A
→

i (Ashtekar–Barbero variables).

Electric field: triad, determines spatial distances/angles by three
orthonormal vectors ~Ei, i = 1, 2, 3, at each point in space.

Vector potential: A
→

i = Γ
→

i + γK
→

i with Γ
→

i related to intrinsic
curvature of space, K

→
i to extrinsic curvature in space-time

(γ: real parameter).

~Ei as momentum of A
→

i: {A
→

i(x), ~Ej(y)} = 8πγGδij
~δ
→

δ(x, y) .

Proceed by canonical quantization, observing special properties
due to symmetries of the theory: general covariance.
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Lattice states

Holonomies he = P exp(∫e dλA
→

i · ~teτ
i) for Ashtekar connection

A
→

i (curvature), spatial curves e; τ j = 1
2
iσj with Pauli matrices.

Define basic state ψ0 by ψ0(A
→

i) = 1: independent of connection.

Excited states, simplified U(1)-example where
he = exp(i

∫

e
dλA

→

· ~te):

ψe1,k1;...;ei,ki
= ĥk1

e1
· · · ĥki

ei
ψ0

General state labeled by graph g and integers ke as quantum
numbers on edges

ψg,k(A
→

) =
∏

e∈g

he(A
→

)ke =
∏

e∈g

exp(ike ∫
e

dλA
→

· ~te)
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Discrete Geometry

Ashtekar connection has momentum ~Ei such that
∑

i
~Ei ⊗ ~Ei = (det q) · ~~q gives the spatial metric ~~q.

Flux
∫

S
d2yn

→

· ~Ei (n
→

co-normal to surface S) quantized as
derivative operator, measures excitation level:

∫

S

d2yn
→

· ~̂Eψg,k =
γG~

i

∫

S

d2yn
→

·
δψg,k

δA
→

(y)
= γℓ2P

∑

e∈g

neInt(S, e)ψg,k

with intersection number Int(S, e).

Discrete geometry: for gravity, flux represents spatial metric
(area, volume).
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Dynamics

Schematic Hamiltonian

Ĥ =
∑

v,IJK

ǫIJKtr(hv,eI
hv+eI ,eJ

h−1
v+eJ ,eI

h−1
v,eJ

hv,eK
[h−1

v,eK
, V̂ ])

summing over vertices v of graph and triples (IJK) of edges.

Gauge fields via independent type of holonomies.
Fermions as spinors in vertices. Matter Hamiltonian added to Ĥ.

Total Hamiltonian well-defined, no divergences.
But limit of classical space-time poorly understood.

Main challenge for space-time dynamics:
Understand discrete quantum geometry combined with general
covariance.
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Quantum corrections

−→ Corrections of inverse metric components in Hamiltonians:
flux with discrete spectrum containing zero.
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Correction function
(with quantization
ambiguities, e.g. r).

−→ Higher-order corrections:
holonomies

−→ Quantum back-reaction (generic)
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Harmonic cosmology

Isotropic cosmology: Friedmann equation
(

ȧ

a

)2

=
8πG

3
ρ

receives corrections by higher powers of ȧ (pa → sin(δpa)/δ).

Solvable model for free, massless scalar. Series can be
resummed to give

(

ȧ

a

)2

=
8πG

3
ρ

(

1 −
ρ

ρ0

)

with ρ0 of the order of ρPl.

(Based on sl(2,R) algebra [V̂ , Ĵ ] = i~Ĥ, [V̂ , Ĥ ] = −i~Ĵ ,
[Ĵ , Ĥ ] = i~V̂ with volume V̂ , J = V exp(iVH), Hamiltonian Ĥ.)
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Implications

Discrete space-time: finite capacity to store energy. Gravity
turns repulsive at high densities.

Bounce at about Planck density (probably less) can resolve
singularity problem.

Matter properties relevant throughout cosmic evolution.
Bounce cosmology: attempt to provide alternative to inflation to
explain nearly scale-free spectrum of anisotropies.

Scale-free for dust matter (vanishing pressure) during collapse.
Deviations when quation of state changes.

Exotic matter may help to prevent large anisotropy.

[M. Novello, S. Bergliaffa: Phys. Rep. 463 (2008) 127–213]
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Cosmology

With matter interactions and inhomogeneities: perturbation
theory around solvable model.

Indirect effects of atomic space-time: small individual
corrections even at high energies, might add up coherently.

−→ cosmology, high energy density, long evolution

−→ high energy particles from distant sources (GRBs).
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Big-bang nucleosynthesis

Quantum gravity:

Maxwell and Dirac Hamiltonians subject to different quantum
corrections. May change dilution behavior.

So far: equations of state change in the same way for photons
and relativistic fermions. (Related to general covariance.)

Effects not very strong, but close to being interesting: Upper
bound ρ < 3/ℓ3Pl for density of atoms of space.

However, precision of big-bang nucleosynthesis observations
difficult to improve.
More promising: details of cosmic microwave background.
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CMB with inverse-volume corrections
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Hamiltonians with corrections
α ∼ 1 + δ from inverse volume
in loop quantum gravity.

δ can be estimated by CMB
analysis, so far consistent with
zero.
(Combined analysis with slow-
roll parameter ǫV for behavior of
inflation.)
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Black holes

General relativity: impossible to stop collapse under very
general assumptions on equation of state.

Gravity always attractive, dominant force when matter
sufficiently dense.

Quantum gravity: space-time dynamics changes, repulsive
gravity at extremely high density.

Non-singular collapse, but still with horizon trapping light
(for finite time): black holes.

Horizon Hawking-evaporates, stellar explosion when horizon
disappears. Collapse models depend on matter behavior.
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Parity

Vector potential defined as

A
→

i = Γ
→

i + γK
→

i

where Γ
→

i parity-odd, K
→

i parity-even.

Unless γ pseudoscalar, non-trivial parity behavior of A
→

i.

Equations of motion parity invariant classically, but invariance
may be broken after replacing A

→
i with he(A

→
i).

May be relevant for baryogenesis.

Also: some bounce models show change of orientation
(universe “turns inside out”).
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Quantum gravity and the quark-gluon plasma

Still many orders of magnitude from quark-gluon plasma toward
the Planck scale, at best indirect consequences.

→ Matter equation of state important for collapse/bounce
scenarios:
development of anisotropy and evolution of structure.

→ Cosmological prehistory relevant for baryogenesis:
matter/antimatter-symmetric initial state or a more messy
one after the collapse of an entire universe?

→ Space-time symmetries fundamental?
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Summary

→ Quantum theory of space-time as gauge theory. Crucial
new feature: general covariance.
In loop quantum gravity, implies (irregular) lattice structure
even for continuum theory.

→ Direct effects important at extremely high density, but
indirect effects possible in intermediate regimes.

Then, equation of state of matter required for details.

→ No observation yet, but bounds on theory are becoming
interesting.
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