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Quantum gravity

Processes in the very early
universe require
! general relativity

(expansion of space),
! quantum physics

(hot, dense).

Sometimes, this even involves quantum physics of gravity.

Described by the geometry of space-time; quantize space-time.

One possible consequence:
elementary constituents, “atoms of space.”
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Scales

Dimensional arguments to estimate direct effects:

Unique length parameter, the Planck length
`Pl =

p
G~=c3 � 10� 35m

and mass parameter, the Planck mass
M Pl =

p
~c=G� 1018GeV � 10� 6g.

Quantum gravity inevitable at
Planck density � Pl = M Pl =`3

Pl .

About a trillion solar masses in the
region of the size of a single proton.

(Current density of the universe:
about an atom per cubic meter.)
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Indirect evidence

1905, Albert Einstein: Analysis of Brownian motion as
convincing evidence for atoms.
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Indirect evidence

1905, Albert Einstein: Analysis of Brownian motion as
convincing evidence for atoms.

1955, Erwin Müller: First direct image of atoms using �eld ion
microscopy.
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Expansion
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An expanding discrete space
grows not continuously but atom
by atom.

Implications weak for a large
universe, but may be noticeable
by sensitive measurements.

Example: Abundances of light elements de-
pend on baryon-photon ratio during big-bang
nucleosynthesis (proton-neutron interconver-
sion by weak interaction).

Baryon-photon ratio depends on dilution be-
havior of radiation and (relativistic) fermions.

Quantum gravity – p.5



Standard model of cosmology

Big bang: Planckian density, classical singularity
(13.8 billion years ago).

In�ation: Accelerated expansion at energy scale � 10� 10� Pl .

Particle production (cosmological Schwinger effect).

Seeds for matter distribution as seen in cosmic microwave
background (CMB) and galaxies.

Baryogenesis: Baryons form, matter/antimatter asymmetry.

Nucleosynthesis: Nuclei form (about 75% hydrogen and
deuterium, 25% helium, trace amounts of other light
elements).

CMB release: Atoms neutralize, universe becomes translucent
(after 380,000 years).
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Big-bang singularity
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(scale factor a, energy density � , pressure P ) implies

_H = �
4�G

3
(� + 3P) � H 2

for Hubble parameter H = _a=a.

With strong energy condition � + 3P � 0:

_H � �H 2 or dH � 1=dt � 1 and H � 1 � H � 1
0 + t � t0.

If H � 1
0 negative, H � 1 positive at t1 = t0 � H � 1

0 ; H � 1 = 0 at some
time, when H ! 1 , � ! 1 . Past singularity if expanding.

Singularity theorems:
singularities generic in space-time dynamics.
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Shortcomings of the standard model

! Singularity unphysical.

! Initial vacuum state appropriate?
Matter/antimatter asymmetry dif�cult to explain.

! If there was a prehistory of the quantum universe before the
big bang, more time existed for asymmetry to build up.

! Matter equation of state important for some aspects of
transition.

Need more information about quantum gravity, space-time
structure.
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Constructing quantum gravity

Gravity is “strongly interacting” at a fundamental,
non-perturbative level.

Non-renormalizability: cannot
be quantized as weakly-
interacting theory of gravitons.

Well-known weak form of grav-
ity as long-range remnant of
more elementary theory.

Different approaches, no fully consistent version yet.

Quantization directly addressing structure of space and time:
loop quantum gravity. (Background independence.)
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Floating lattices

Theory can be constructed by means analogous to lattice QCD,
but with one crucial difference:

General covariance implies that all states must be invariant
under deformations of space (coordinate changes).

! Regular lattices too restrictive (instead “�oating”).
! No well-motivated restriction on valence of lattice vertices

(except simplicity).
! Lattice edges may be knotted and interlinked.
! Superpositions of different lattice states.
! States of continuum theory described by lattices;

no approximation, no continuum limit.

(Alternative viewpoint: Causal Dynamical Triangulations.)
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Interactions

Fundamental lattice theory for quantum geometry. Geometrical
excitations generated by creation operators for lattice links.

Near continuum: Highly excited many-particle states,
“interacting”.

Resulting physics
mainly analyzed in
model systems.
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Loop quantum gravity

Describe space-time geometry by su(2)-valued “electric �e ld” ~E i

and “vector potential” A
! i (Ashtekar–Barbero variables).

Electric �eld: triad, determines spatial distances/angles by three
orthonormal vectors ~E i , i = 1 ; 2; 3, at each point in space.

Vector potential: A
! i = �

! i + 
 K
! i with �

! i related to intrinsic
curvature of space, K

! i to extrinsic curvature in space-time
(
 : real parameter).

~E i as momentum of A
! i : f A

! i (x); ~E j (y)g = 8 �
G� ij
~�
!

� (x; y) .

Proceed by canonical quantization, observing special properties
due to symmetries of the theory: general covariance.
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Lattice states

Holonomies he = P exp(se d� A
! i � ~te� i ) for Ashtekar connection

A
!

i (curvature), spatial curves e; � j = 1
2 i� j with Pauli matrices.

De�ne basic state  0 by  0(A
! i ) = 1 : independent of connection.

Excited states, simpli�ed U(1)-example where
he = exp( i

R
e d� A

!
� ~te):

 e1 ;k1 ;:::;ei ;k i = ĥk1
e1

� � � ĥk i
ei

 0

General state labeled by graph g and integers ke as quantum
numbers on edges

 g;k(A
!

) =
Y

e2 g

he(A
!

)ke =
Y

e2 g

exp(ik e s
e

d� A
!

� ~te)
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Discrete Geometry

Ashtekar connection has momentum ~E i such that
P

i
~E i 
 ~E i = (det q) � ~~qgives the spatial metric ~~q.

Flux
R

S d2yn
!

� ~E i (n
!

co-normal to surface S) quantized as
derivative operator, measures excitation level:

Z

S
d2yn

!
� ~̂E g;k =


G ~
i

Z

S
d2yn

!
�

� g;k

� A
!

(y)
= 
` 2

P

X

e2 g

neInt( S; e) g;k

with intersection number Int( S; e).

Discrete geometry: for gravity, �ux represents spatial metric
(area, volume).
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Dynamics

Schematic Hamiltonian

Ĥ =
X

v;IJK

� IJK tr( hv;eI hv+ eI ;eJ h� 1
v+ eJ ;eI

h� 1
v;eJ

hv;eK [h� 1
v;eK

; V̂ ])

summing over vertices v of graph and triples (IJK ) of edges.

Gauge �elds via independent type of holonomies.
Fermions as spinors in vertices. Matter Hamiltonian added to Ĥ .

Total Hamiltonian well-de�ned, no divergences.
But limit of classical space-time poorly understood.

Main challenge for space-time dynamics:
Understand discrete quantum geometry combined with general
covariance.
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Quantum corrections

�! Corrections of inverse metric components in Hamiltonians:
�ux with discrete spectrum containing zero.
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�! Higher-order corrections:
holonomies

�! Quantum back-reaction (generic)
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Harmonic cosmology

Isotropic cosmology: Friedmann equation
�

_a
a

� 2

=
8�G

3
�

receives corrections by higher powers of _a (pa ! sin(�p a)=� ).

Solvable model for free, massless scalar. Series can be
resummed to give

�
_a
a

� 2

=
8�G

3
�

�
1 �

�
� 0

�

with � 0 of the order of � Pl .

(Based on sl(2; R) algebra [V̂ ;Ĵ ] = i~Ĥ , [V̂ ;Ĥ ] = � i~Ĵ ,
[Ĵ ; Ĥ ] = i~V̂ with volume V̂ , J = V exp(iV H), Hamiltonian Ĥ .)
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Implications

Discrete space-time: �nite capacity to store energy. Gravi ty
turns repulsive at high densities.

Bounce at about Planck density (probably less) can resolve
singularity problem.

Matter properties relevant throughout cosmic evolution.
Bounce cosmology: attempt to provide alternative to in�ation to
explain nearly scale-free spectrum of anisotropies.

Scale-free for dust matter (vanishing pressure) during collapse.
Deviations when quation of state changes.

Exotic matter may help to prevent large anisotropy.

[M. Novello, S. Bergliaffa: Phys. Rep. 463 (2008) 127–213]
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Cosmology

With matter interactions and inhomogeneities: perturbation
theory around solvable model.

Indirect effects of atomic space-time: small individual
corrections even at high energies, might add up coherently.

�! cosmology, high energy density, long evolution

�! high energy particles from distant sources (GRBs).
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Big-bang nucleosynthesis

Quantum gravity:

Maxwell and Dirac Hamiltonians subject to different quantum
corrections. May change dilution behavior.

So far: equations of state change in the same way for photons
and relativistic fermions. (Related to general covariance.)

Effects not very strong, but close to being interesting: Upper
bound � < 3=`3

Pl for density of atoms of space.

However, precision of big-bang nucleosynthesis observations
dif�cult to improve.
More promising: details of cosmic microwave background.
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CMB with inverse-volume corrections
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� can be estimated by CMB
analysis, so far consistent with
zero.
(Combined analysis with slow-
roll parameter � V for behavior of
in�ation.)
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Black holes

General relativity: impossible to stop collapse under very
general assumptions on equation of state.

Gravity always attractive, dominant force when matter
suf�ciently dense.

Quantum gravity: space-time dynamics changes, repulsive
gravity at extremely high density.

Non-singular collapse, but still with horizon trapping light
(for �nite time): black holes.

Horizon Hawking-evaporates, stellar explosion when horizon
disappears. Collapse models depend on matter behavior.
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Parity

Vector potential de�ned as

A
! i = �

! i + 
 K
! i

where �
! i parity-odd, K

! i parity-even.

Unless 
 pseudoscalar, non-trivial parity behavior of A
! i .

Equations of motion parity invariant classically, but invariance
may be broken after replacing A

! i with he(A
! i ).

May be relevant for baryogenesis.

Also: some bounce models show change of orientation
(universe “turns inside out”).
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Quantum gravity and the quark-gluon plasma

Still many orders of magnitude from quark-gluon plasma toward
the Planck scale, at best indirect consequences.

! Matter equation of state important for collapse/bounce
scenarios:
development of anisotropy and evolution of structure.

! Cosmological prehistory relevant for baryogenesis:
matter/antimatter-symmetric initial state or a more messy
one after the collapse of an entire universe?

! Space-time symmetries fundamental?
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Summary

! Quantum theory of space-time as gauge theory. Crucial
new feature: general covariance.
In loop quantum gravity, implies (irregular) lattice structure
even for continuum theory.

! Direct effects important at extremely high density, but
indirect effects possible in intermediate regimes.

Then, equation of state of matter required for details.

! No observation yet, but bounds on theory are becoming
interesting.
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