Charged particle's p_T spectra and Elliptic flow in 200 GeV Au+Au Collisions: QGP vs Hadronic resonance gas

Victor Roy In collaboration with Dr. A.K. Chaudhuri Variable Energy Cyclotron Center

QGP better option

•The experimental observation which are providing a strong evidence for the creation of partonic matter at high collision energy at RHIC

- 1. The large azimuthal anisotropy of particle emission in non-central collisions . (Elliptic flow)
- 2. The scaling of this anisotropy with the constituent quark . (constituent quark scaling)
- 3. Suppression of high energetic particles traversing the medium. (Jet quenching)

•••••

BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A
757, 1 (2005).
PHOBOS Collaboration, B. B. Back et al., Nucl. Phys.
A 757, 28 (2005).
PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A
757 184 (2005).
STAR Collaboration, J. Adams et al., Nucl. Phys. A 757
102 (2005).

Problems with HRG

An old quest K.S.Lee, Heinz et. all PhysRevC.37.1452----1988

HRG initial state, ideal hydro ,initial temperature ~270 MeV

P. F. Kolb, P. Huovinen, U. W. Heinz and H. Heiselberg, Phys. Lett. B 500, 232 (2001)

Hadron density too large~ 4 fm⁻³ !!!

Our Intention: Using Viscous Hydro For Pure HRG

HRG EOS

Non interacting hadron resonances

Hadron resonances mass taken up to 2.5 GeV

$$P(T) = g \sum_{i} \int_{0}^{\infty} d^{3}p \frac{p^{2}}{3\sqrt{p^{2} + m^{2}}} f(E,T)$$

$$E(T) = g \sum_{i} \int_{0}^{\infty} d^{3}p \sqrt{p^{2} + m^{2}} f(E,T)$$

$$n(T) = g \sum_{i} \int_{0}^{\infty} d^{3} p f(E,T)$$

$$S(T) = \frac{E(T) + P(T) - \mu N(T)}{T}$$

QGP EOS

•We construct equation of state by combining entropy density of hadron resonance gas to the entropy density obtained from recent lattice data*.

Parameterization of entropy density for LATTICE $\frac{s}{T^3} = \alpha + [\beta + \gamma T][1 + tanh\frac{T - T_c}{\Lambda T}],$ $\alpha = 0.64, \beta = 6.93, \gamma = 0.55$ $T_{c} = 196 \,\mathrm{MeV}, \Delta T = 0.1 T_{c}$ pressure and energy density are $p(T) = \int_0^T s(T') dT'$ $\varepsilon(T) = Ts - p.$

We complement Lattice by HRG

A.K.Chaudhuri, Phys. Lett. B 681,418(2009)

 $x = \frac{T - T_c}{\Lambda T}$

*M. Cheng et al., Phys. Rev. D 77, 014511

Hydrodynamics Equation

ICPAQGP,Goa,India 6-10 Dec,2010

Ζ

Initial Condition, HRG

Initial Condition, QGP

 $\frac{\eta}{2}$ = 0.0, 0.08, 0.16, 0.24, 0.30

 $\frac{\eta}{2} = 0.0, 0.08, 0.12, 0.16$

11

Charged particles Elliptic flow

= 0.0, 0.08, 0.16, 0.24, 0.30

 $\frac{\eta}{2} = 0.0, 0.08, 0.12, 0.16$

S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C

How good is the two picture

Comments

•Shear Viscosity to entropy ration taken as independent of temperature.

•Cross-over temperature taken as 196 MeV.

Initial central temperature for HRG should not
 ~ 220 MeV

Summary & Conclusion

The possibility of QGP formation in initial state was studied in a viscous hydrodynamic model.

COP fluid initialization : Best description obtained for

 $\frac{\eta}{2} = 0.08 \qquad \varepsilon_0 = 29.1 \text{ GeV/fm}^3$

✤Hadron Gas initial state :

$$\frac{\eta}{s} = 0.24 \qquad \varepsilon_0 = 5.1 \text{ GeV/fm}^3$$

Both scenario explains the data quite well, If HRG be allowed to initialize at 220 MeV.

In view of recent lattice simulation predicted T_c ~170 MeV HRG only initial state should be abandoned in present viscous hydrodynamic scenario.

Thank You

Chi square

	0-10%		10-20%		20-30%		30-40%	
η/s	χ^2	χ^2/N	χ^2	χ^2/N	χ^2	χ^2/N	χ^2	χ^2/N
0.00	96.1	6.0	64.7	4.0	683.3	43.0	1989.8	124.3
0.08	146.6	9.1	38.1	2.3	29.2	1.8	213.0	13.3
0.12	175.8	10.9	169.5	10.5	116.0	7.2	33.1	2.0
0.16	208.4	13.0	435.4	27.2	548.4	34.2	489.4	30.5
HRG								
0.00	51.5	3.2	225.5	14.0	2587.9	161.7	6905.8	431.6
0.08	87.5	5.4	88.0	5.5	912.0	57.0	3093.7	193.3
0.16	130.0	8.1	33.7	2.1	185.2	11.5	1131.7	70.7
0.24	176.4	11.0	193.5	12.0	75.0	4.6	264.9	16.5
0.30	202.8	12.6	396.3	24.7	357.2	22.3	340.1	21.2