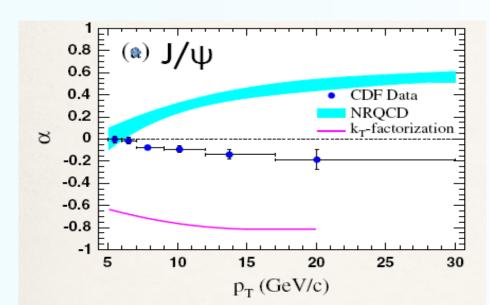
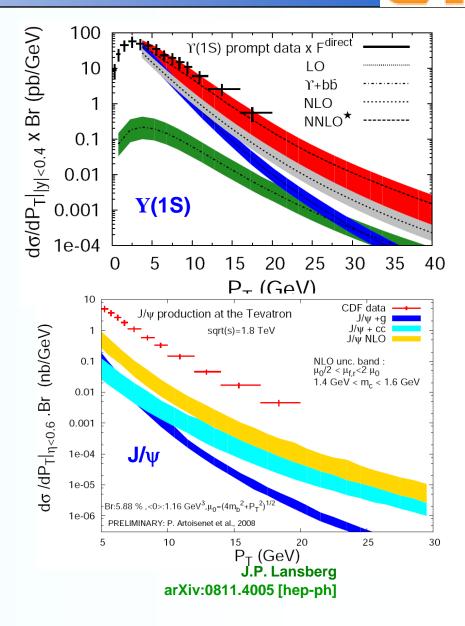


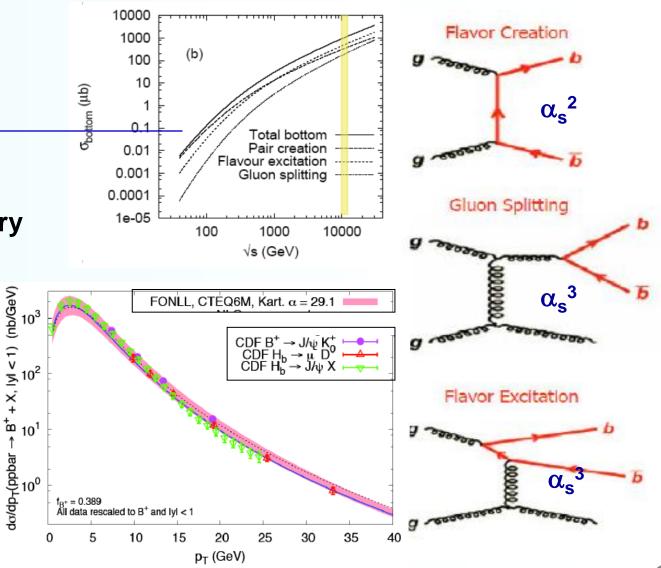
J/ ψ prompt and non-prompt cross sections in pp collisions at $\sqrt{s} = 7$ TeV


Zongchang Yang (University of Tennessee) on behalf of the CMS collaboration


VI International Conference on Physics and Astrophysics of Quark Gluon Plasma, Goa, 6-10/12/2010

Physics motivations (I)

- Prompt production:
 - − Including feed-down from (χ_{cJ} , ψ ' →J/ ψ)
- Several theoretical mechanisms :
 - Color Singlet (new developments in recent years, NLO, NNLO...)
 - Color Octet in NRQCD
- No model predicting successfully both J/ψ cross-section and polarization at TeVatron.



CMS

Physics motivations (II)

- bb cross-section:
 - LO: Flavor Creation
 - Large NLO contributions at LHC
 - Flavor Excitation
 - Gluon Splitting
- At TeVatron, good theory and data agreement:
 - FONLL approach
 - Improved bfragmentation function (LEP Z⁰ → bb data)

M . Cacciari et al., JHEP 0404, 068 (2004)

The CMS detector

Tracker:
60M pixels
10M strips
coverage: |η| < 2.4
Muon system:
Trigger detector
RPC+CSC, RPC+DT

0.1

1200

1000

800

600

400

200 BPIX

0

0.3

Tracker

TOB

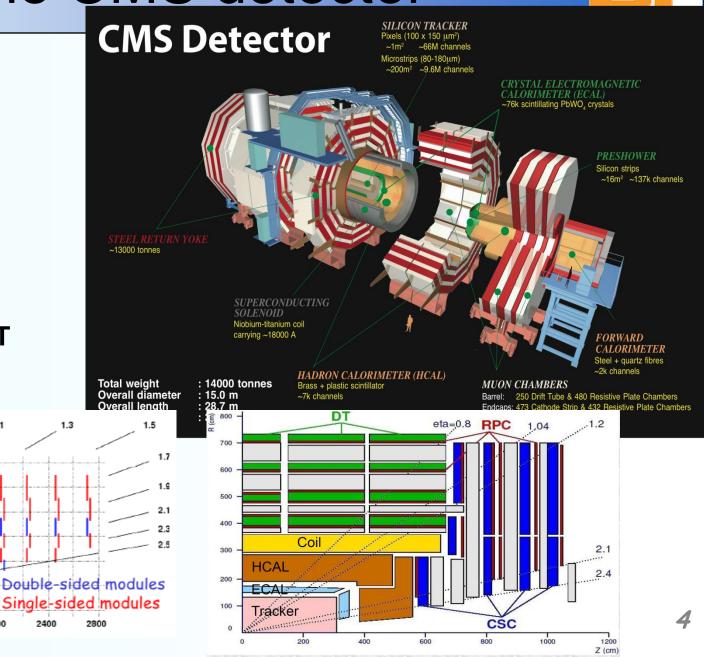
PTX

800

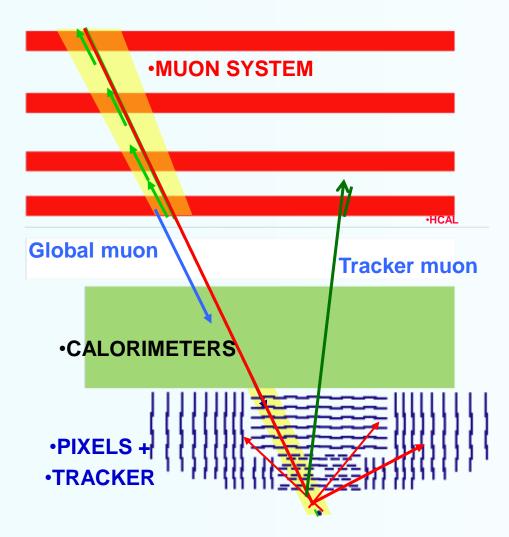
0.5

0.7

1200


0.9

1.1


2000

TEC

1600

Muon reconstruction

- Large rapidity coverage:
 - |η| < 2.4
- Excellent muon momentum resolution:
 - matching between μ -chambers and in the silicon tracker (only using the latter for momentum determination at low p_T)
 - strong magnetic field (3.8 T)

Two muon identifications:

- Global muon (outside-in):
 - High purity
 - Low efficiency for low momentum muon
- Tracker muon (inside-out):
 - Fake muon level high
 - Higher efficiency low momentum muon

Muon triggers

Two trigger levels

•L1: hardware

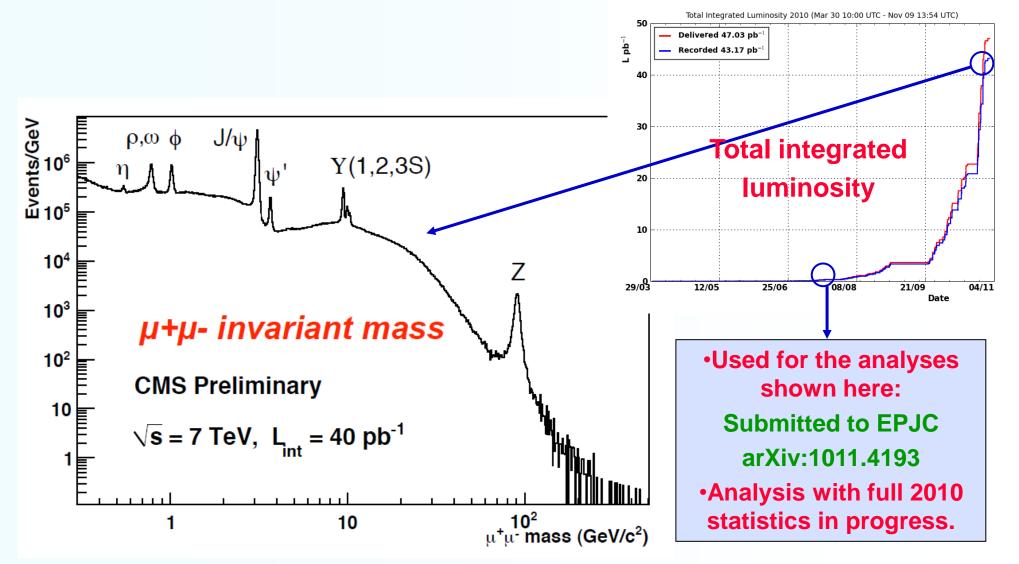
muon system and calorimeters only

•HLT: software

Matching of different sub-detectors.

Fast local track reconstruction for muons

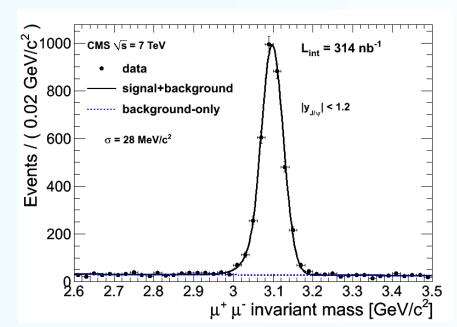
- Trigger requirements changing with increasing luminosity:
 - Single muons:
 - p_T > 3 GeV threshold at the startup
 - Gradually increasing ($p_T > 7 \text{ GeV}$ at L ~ 10^{31} Hz cm⁻²)

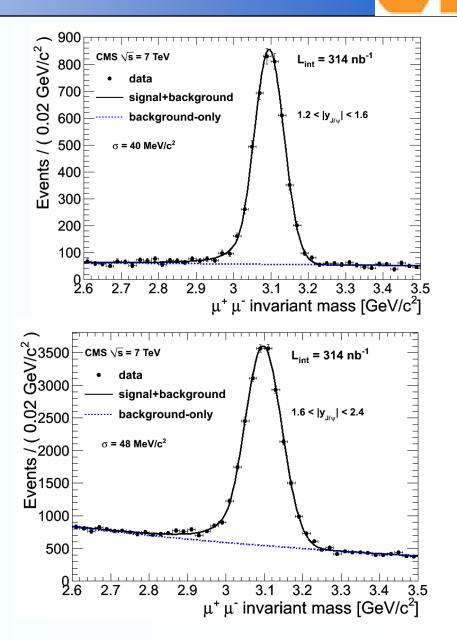

- Double muons:

 L1 requirements only at the startup, no p_T threshold

 \cdot allowing us to go down to 0 quarkonium p_T in the forward region

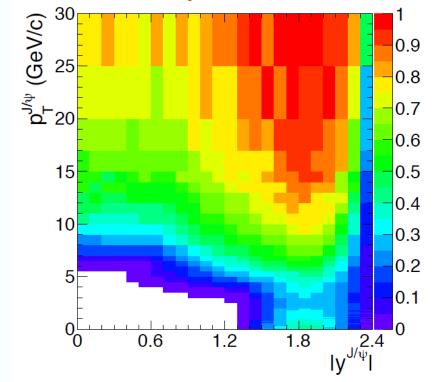
 At L ~ 10³¹ Hz cm⁻² new strategies adopted for quarkonia (combination of L1 and HLT muons, or HLT muon and track in specific invariant mass regions... etc.)


The di-muon mass spectrum



J/ψ selection and yields

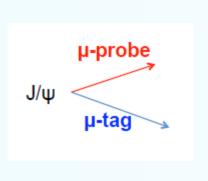
- Selections:
 - Muons in acceptance window
 - Track quality (n_{hits} , n_{hits} in pixels, χ^2 , $|d_{xy}|$, $|d_z|$)
 - Muon quality (global fit χ^2 , track-muon segment angular matching)
 - Di-muon vertex probability
- ~27000 events selected

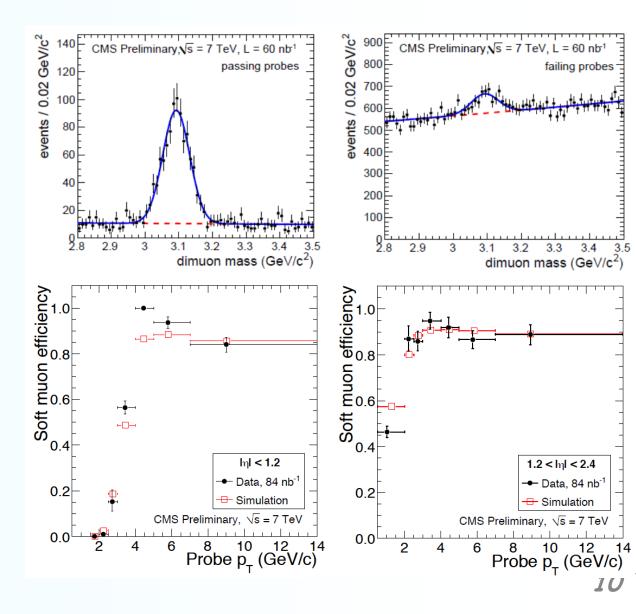


Acceptance is determined from MC:

$$A(p_{\mathrm{T}}, y, \lambda_{\theta}) = \frac{N_{\mathrm{det}}(p_{\mathrm{T}}, y, \lambda_{\theta})}{N_{\mathrm{gen}}(p_{\mathrm{T}}, y, \lambda_{\theta})}$$

- Strongly dependent on polarization assumptions for the prompt component (polarization not well known)
- Agreement to give result in 5 scenarios:
 - Isotropic
 - Extreme values of λ_{θ} (= ±1) in the helicity frame (along the QQ momentum)
 - Extreme values of λ_{θ} (= ±1) in the Collins-Soper frame (along the collision axis)
- Main systematic uncertainties coming from:
 - p_T smearing and calibration
 - uncertainty on final state radiation spectrum


J/ψ acceptance in isotropic scenario

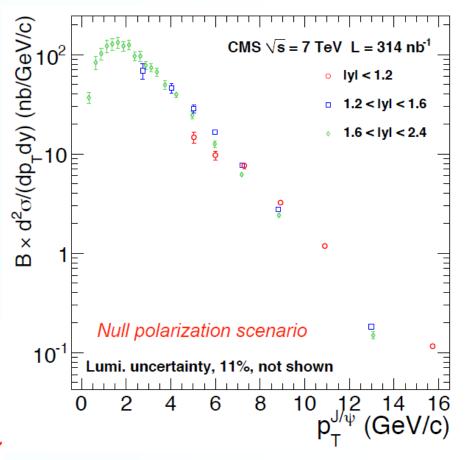


CMS

Muon efficiency using Tag&Probe

- Muon efficiency from data: the "tag-and-probe" method:
 - Require one well-identified muon in the event ("tag")
 - Another candidate muon, with looser criteria, is paired to it ("probe")
 - Compare resonance yields for tag-probe pairs where the probes pass or fail a given selection.

Inclusive J/w cross-section

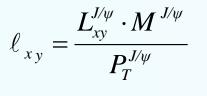

$$\frac{d^2\sigma}{d\mathbf{p}_{\mathrm{T}}dy} \times B(J/\psi \to \mu\mu) = \frac{N_{\mathrm{fit}} \left\langle \frac{1}{A \cdot \varepsilon} \right\rangle}{\int L dt \cdot \Delta \mathbf{p}_{\mathrm{T}} \cdot \Delta y}$$

 $\left< A \cdot \mathcal{E} \right>$ = average signal acceptance/efficiency in the bin *

Acceptance: from MC simulation
 Efficiency: determined with tag and probe method from J/ψ events

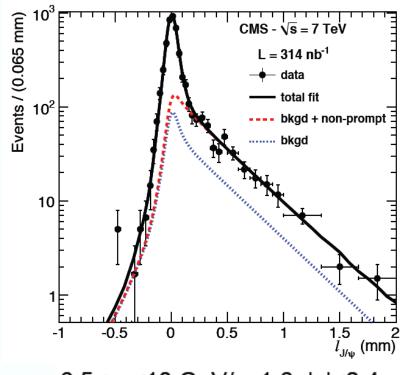
Systematic uncertainties

Source	Relative error (%)			
	y < 1.2	1.2 < y < 1.6	1.6 < y < 2.4	
FSR	0.8 - 2.5	0.3 - 1.6	0.0 - 0.9	
$p_{\rm T}$ calibration and resolution	1.0 - 2.5	0.8 - 1.2	0.1 - 1.0	
Kinematical distributions	0.3 - 0.8	0.6 - 2.6	0.9 - 3.1	
b-hadron fraction and polarization	1.9 - 3.1	0.5 - 1.2	0.2 - 3.0	
Muon efficiency	1.9 - 5.1	2.3 - 12.2	2.7 – 9.2	
ρ factor	0.5 – 0.9	0.6 – 8.1	0.2 - 7.1	
Fit function	0.6 - 1.1	0.4 - 5.3	0.3 - 8.8	



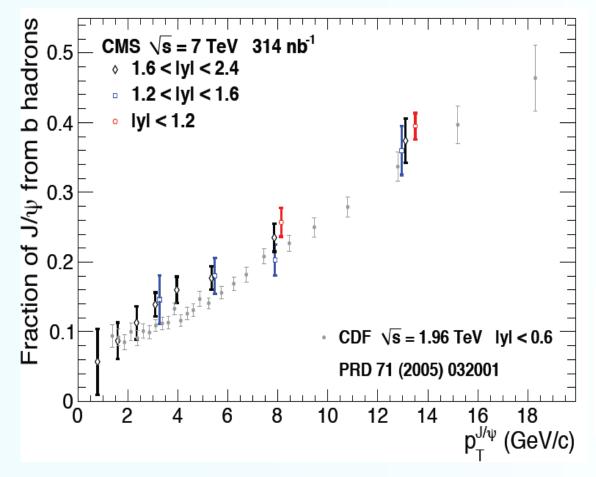
 $\sigma(pp \to J/\psi + X) \cdot BR(J/\psi \to \mu^+\mu^-) = 97.5 \pm 1.5(\text{stat}) \pm 3.4(\text{syst}) \pm 10.7(\text{luminosity}) \text{ nb}$

 Measurement of prompt/non-prompt component with a 2D fit to mass and "pseudo"-proper decay length

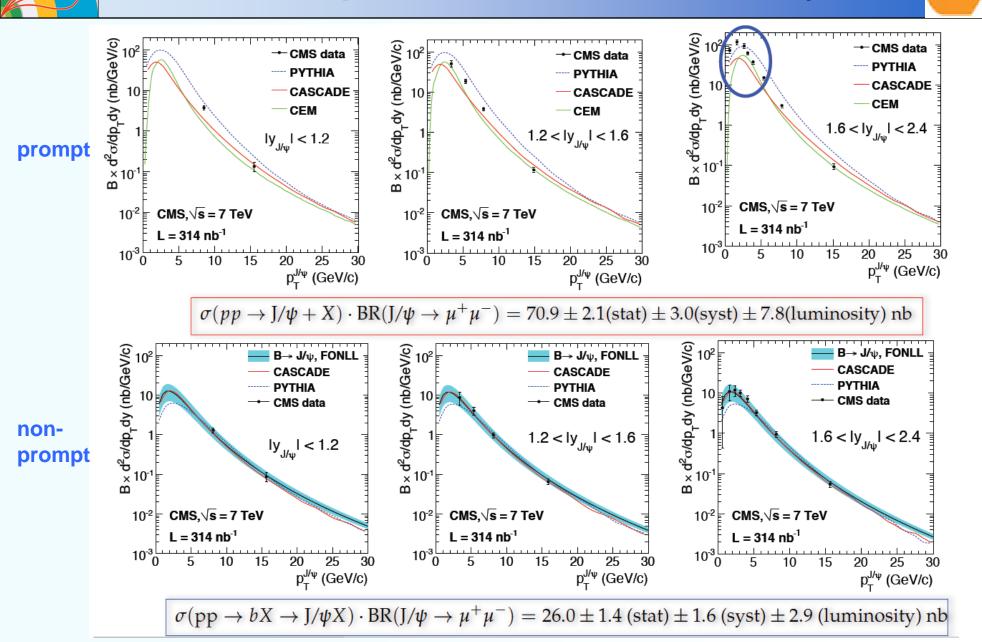

B

 $L_{xy}^{J/\psi}$ is the transverse component of decay length in lab system

- Decay length parameterization:
 - For prompt events, δ -function
 - For <u>non-prompt events</u>, MC templates
 - For <u>background events</u> a generic superposition of different contributions (symmetric + asymmetric with effective lifetimes)


all convoluted with 3-Gaussian resolution

6.5<p_T<10 GeV/c, 1.6<|y|<2.4


Non-prompt fractions and systematics

Systematics of the non-prompt fraction:

y < 1.2	1.2 < y < 1.6	1.6 < y < 2.4
0.5 - 0.7	0.9 - 4.6	0.7 - 9.1
0.0 - 0.1	0.5 - 4.8	0.5 - 11.2
0.3	1.0 - 12.3	0.9 - 65.8
0.1 - 4.7	0.5 - 9.5	0.2 - 14.8
0.8 - 2.8	1.3 - 13.0	0.4 - 30.2
0.1 - 1.1	0.3 - 1.3	0.2 - 2.4
	$\begin{array}{c} 0.5 - 0.7 \\ 0.0 - 0.1 \\ 0.3 \\ 0.1 - 4.7 \\ 0.8 - 2.8 \end{array}$	$\begin{array}{cccc} 0.0 & - 0.1 & 0.5 & - 4.8 \\ 0.3 & 1.0 & - 12.3 \\ 0.1 & - 4.7 & 0.5 & - 9.5 \\ 0.8 & - 2.8 & 1.3 & - 13.0 \end{array}$

Comparison with theory

Conclusion

 Measurements of prompt and non-prompt J/ψ production cross sections have been presented, using data collected until Summer 2010 (314 nb⁻¹):

> •Prompt J/ ψ , total and differential in p_T and |y|•Non-prompt J/ ψ , total and differential in p_T and |y|

- J/ ψ analyses allow first theory tests to be performed from p_T =0 to ~30 GeV/c at 7 TeV.
- Statistical accuracy of ~2%, but systematics ~12% limited by luminosity.
- Good agreement with theory models for prompt J/ ψ production.
- The proton LHC run has delivered ~43 pb⁻¹ data, which amounts to >1 Million J/ψ decays to dimuons, more analyses in the pipeline:
 - J/ ψ production polarizations in fine p_T-y bins
 - Ψ (2S) production and polarizations
 - $-\chi_c$ and X(3872) production studies

Thank you ! & Backup slides.

1/10	1/10		12-				
$p_{T}^{J/\psi}$	$\langle p_{\rm T}^{J/\psi} \rangle$	$\frac{d^2\sigma}{dp_{\rm T}dy}$ · BR(J/ $\psi \rightarrow \mu^+\mu^-$) (nb/ GeV/c)					
(GeV/c)	(GeV/c)	$\lambda_{ heta}=0$	$\lambda_{\theta}^{CS} = -1$	$\lambda_{\theta}^{CS} = +1$	$\lambda_{ heta}^{HX} = -1$	$\lambda_{\theta}^{HX} = +1$	
			y < 1.2				
6.50 - 8.00	7.29	$7.63 \pm 0.30 \pm 0.97$	9.28 ± 1.20	6.99 ± 0.91	5.70 ± 0.74	9.14 ± 1.20	
8.00 - 10.00	8.91	$3.23 \pm 0.11 \pm 0.38$	3.81 ± 0.47	3.00 ± 0.37	2.45 ± 0.30	3.85 ± 0.48	
10.00 - 12.00	10.90	$1.18 \pm 0.05 \pm 0.14$	1.35 ± 0.17	1.10 ± 0.14	0.93 ± 0.12	1.37 ± 0.17	
12.00 - 30.00	15.73	$0.116 \pm 0.005 \pm 0.013$	0.130 ± 0.016	0.110 ± 0.013	0.096 ± 0.012	0.129 ± 0.016	
	1.2 < y < 1.6						
2.00 - 3.50	2.73	$68.8 \pm 6.3 \pm 13.0$	50.4 ± 9.9	84.6 ± 19.0	50.5 ± 9.9	84.5 ± 19.0	
3.50 - 4.50	4.02	$46.1 \pm 2.7 \pm 6.5$	37.3 ± 5.7	52.8 ± 8.4	33.9 ± 5.2	56.4 ± 8.8	
4.50 - 5.50	5.03	$28.6 \pm 1.3 \pm 3.9$	28.2 ± 4.1	28.7 ± 4.1	20.8 ± 3.0	35.0 ± 5.0	
5.50 - 6.50	5.96	$16.5 \pm 0.8 \pm 2.0$	17.8 ± 2.3	16.0 ± 2.0	12.3 ± 1.6	20.1 ± 2.6	
6.50 - 8.00	7.20	$7.64 \pm 0.30 \pm 0.87$	8.71 ± 1.10	7.19 ± 0.87	5.80 ± 0.71	9.19 ± 1.10	
8.00 - 10.00	8.81	$2.76 \pm 0.14 \pm 0.32$	3.11 ± 0.39	2.62 ± 0.33	2.18 ± 0.27	3.24 ± 0.41	
10.00 - 30.00	12.99	$0.182 \pm 0.010 \pm 0.021$	0.204 ± 0.026	0.173 ± 0.022	0.151 ± 0.019	0.202 ± 0.026	
		1	.6 < y < 2.4				
0.00 - 0.50	0.32	$36.8 \pm 2.2 \pm 6.0$	26.1 ± 4.5	46.5 ± 8.0	26.3 ± 4.5	45.6 ± 7.8	
0.50 - 0.75	0.63	$83.2 \pm 4.5 \pm 15.3$	59.5 ± 11.3	105.1 ± 19.9	60.4 ± 11.6	103.2 ± 19.3	
0.75 - 1.00	0.88	$102.3 \pm 5.0 \pm 16.9$	72.8 ± 13.3	128.9 ± 23.7	75.1 ± 13.4	125.0 ± 22.8	
1.00 - 1.25	1.13	$121.9 \pm 5.3 \pm 21.1$	87.1 ± 14.8	152.4 ± 27.1	91.11 ± 18.2	146.2 ± 25.6	
1.25 - 1.50	1.37	$127.7 \pm 5.6 \pm 21.6$	91.1 ± 15.6	160.1 ± 29.3	96.2 ± 17.7	152.9 ± 28.4	
1.50 - 1.75	1.62	$132.5 \pm 5.3 \pm 21.9$	94.7 ± 15.8	165.9 ± 27.7	101.3 ± 16	157.8 ± 25.4	
1.75 - 2.00	1.87	$121.9 \pm 6.2 \pm 17.9$	87.4 ± 13.6	152.1 ± 24.7	93.6 ± 14.9	143.9 ± 23.1	
2.00 - 2.25	2.12	$125.2 \pm 6.1 \pm 18.7$	89.8 ± 13.9	156.3 ± 24.7	97.1 ± 14.9	147.3 ± 23.6	
2.25 - 2.50	2.37	$96.3 \pm 4.2 \pm 14.1$	69.0 ± 10.2	120.5 ± 18.1	74.3 ± 11	114 ± 16.8	
2.50 - 2.75	2.63	$96.4 \pm 7.7 \pm 13.0$	69.8 ± 11.1	119.3 ± 18.6	74.8 ± 11.8	113.2 ± 18.1	
2.75 - 3.00	2.87	$77.9 \pm 3.7 \pm 10.7$	56.3 ± 8.0	96.4 ± 13.9	60.3 ± 8.5	91.6 ± 13.1	
3.00 - 3.25	3.12	$73.7 \pm 3.5 \pm 10.0$	53.8 ± 7.7	91.2 ± 13.0	57.6 ± 8.3	86.5 ± 13.0	
3.25 - 3.50	3.37	$66.7 \pm 3.2 \pm 8.8$	48.5 ± 6.9	82.8 ± 12.0	52.1 ± 7.3	78.3 ± 11.0	
3.50 - 4.00	3.74	$49.6 \pm 1.7 \pm 7.1$	37.0 ± 5.5	60.6 ± 9.0	39.0 ± 5.8	58.3 ± 8.6	
4.00 - 4.50	4.24	$39.7 \pm 1.4 \pm 5.0$	30.0 ± 4.0	47.3 ± 6.3	31.4 ± 4.2	46.0 ± 6.1	
4.50 - 5.50	4.96	$24.5 \pm 0.7 \pm 3.3$	19.3 ± 2.6	28.7 ± 4.0	19.6 ± 2.7	28.2 ± 3.9	
5.50 - 6.50	5.97	$12.6 \pm 0.4 \pm 1.7$	10.8 ± 1.4	14.0 ± 1.9	10.3 ± 1.4	14.3 ± 1.9	
6.50 - 8.00	7.17	$6.20 \pm 0.24 \pm 0.74$	5.70 ± 0.72	6.61 ± 0.84	5.13 ± 0.65	6.94 ± 0.88	
8.00 - 10.00	8.84	$2.41 \pm 0.11 \pm 0.28$	2.41 ± 0.31	2.44 ± 0.31	2.04 ± 0.26	2.64 ± 0.34	
10.00 - 30.00	13.06	$0.149 \pm 0.008 \pm 0.019$	0.155 ± 0.021	0.148 ± 0.021	0.132 ± 0.019	0.161 ± 0.023	

Table 3: Differential inclusive cross sections and average p_T in the bin, for each prompt J/ ψ polarization scenario considered: unpolarized ($\lambda_{\theta} = 0$), full longitudinal polarization ($\lambda_{\theta} = -1$) and full transverse polarization ($\lambda_{\theta} = +1$) in the Collins-Soper (CS) or the helicity (HX) frames [7]. For the unpolarized case, the first error is statistical and the second is systematic; for the others the total error is given.

Table 6: Differential prompt J/ ψ cross sections for each polarization scenario considered: unpolarized ($\lambda_{\theta} = 0$), full longitudinal polarization ($\lambda_{\theta} = -1$) and full transverse polarization ($\lambda_{\theta} = +1$) in the Collins-Soper (CS) or the Helicity (HX) frames [7]. For the unpolarized case, the first error is statistical and the second is systematic; for the others the total error is given.

<i>p</i> _T	$BR(J/\psi \to \mu^+\mu^-) \cdot \frac{d^2\sigma_{\text{prompt}}}{dn_r d\mu} \text{ (nb/ GeV/c)}$							
(GeV/c)	$\lambda_{\theta} = 0$	$\lambda_{\theta}^{CS} = -1$	$\lambda_{\theta}^{CS} = +1$	$\lambda_{\theta}^{HX} = -1$	$\lambda_{\theta}^{HX} = +1$			
	y < 1.2							
6.5 - 10.0	$3.76 \pm 0.13 \pm 0.47$	4.63 ± 0.60	3.45 ± 0.45	2.63 ± 0.34	4.79 ± 0.62			
10.0 - 30.0	$0.134 \pm 0.033 \pm 0.016$	0.161 ± 0.044	0.123 ± 0.033	0.099 ± 0.026	0.164 ± 0.045			
1.2 < y < 1.6								
2.0 - 4.5	$50.6 \pm 3.6 \pm 8.4$	36.4 ± 6.5	63.6 ± 11.6	36.3 ± 6.5	63.1 ± 11.4			
4.5 - 6.5	$18.4\pm0.7\pm2.4$	17.3 ± 2.3	19.1 ± 2.6	13.3 ± 1.8	22.7 ± 3.1			
6.5 - 10.0	$3.85 \pm 0.15 \pm 0.44$	4.11 ± 0.49	3.74 ± 0.45	2.87 ± 0.34	4.67 ± 0.56			
10.0 - 30.0	$0.116 \pm 0.009 \pm 0.014$	0.127 ± 0.018	0.111 ± 0.015	0.093 ± 0.013	0.133 ± 0.019			
1.6 < y < 2.4								
0.00 - 1.25	$71.9 \pm 2.4 \pm 11.2$	49.7 ± 7.9	92.5 ± 14.7	51.0 ± 8.1	90.3 ± 14.3			
1.25 - 2.00	$116.2 \pm 3.5 \pm 16.8$	80.8 ± 11.9	149.1 ± 22.0	86.7 ± 12.8	140.7 ± 20.8			
2.00 - 2.75	$93.7 \pm 3.4 \pm 12.4$	65.8 ± 9.1	118.8 ± 16.3	72.7 ± 10.0	110.3 ± 15.2			
2.75 - 3.50	$62.6 \pm 2.0 \pm 7.9$	44.5 ± 5.7	78.8 ± 10.2	49.1 ± 6.4	72.7 ± 9.5			
3.50 - 4.50	$37.4 \pm 1.1 \pm 4.9$	27.4 ± 3.7	45.7 ± 6.2	29.9 ± 4.1	42.8 ± 5.8			
4.50 - 6.50	$15.2 \pm 0.4 \pm 2.0$	11.9 ± 1.6	18.0 ± 2.4	12.6 ± 1.7	17.1 ± 2.3			
6.50 - 10.00	$3.08 \pm 0.11 \pm 0.37$	2.79 ± 0.35	3.36 ± 0.42	2.64 ± 0.33	3.37 ± 0.42			
10.00 - 30.00	$0.093 \pm 0.007 \pm 0.012$	0.092 ± 0.014	0.096 ± 0.014	0.082 ± 0.012	0.100 ± 0.015			