Effects of running coupling on photons from jet-plasma interaction in relativistic heavy ion collisions

Lusaka Bhattacharya

HIGH ENERGY PHYSICS DIVISION SAHA INSTITUTE OF NUCLEAR PHYSICS

Plan of the discussion

Motivation

- Probes of QGP: Jet-Quenching, Di-leptons, Photons e.t.c.
- Sources of Photons
- Jet-photon production rate
 - Radiative and collisional energy loss of jet parton
 - Effects of running coupling of QCD
- Results
- Summary & Conclusions

Motivation

Quark Gluon plasma (QGP)

A system of thermalized matter where the properties of the system are governed by the quarks and gluons degrees of freedom.

Motivation

Quark Gluon plasma (QGP)

A system of thermalized matter where the properties of the system are governed by the quarks and gluons degrees of freedom.

Formation of QGP

Lattice QCD predicts QGP formation at very high temperature ($T \ge 170$ MeV) or equivalently at very high energy density (≥ 1 GeV/fm³).

イヨンイヨン

Motivation

Quark Gluon plasma (QGP)

A system of thermalized matter where the properties of the system are governed by the quarks and gluons degrees of freedom.

Formation of QGP

Lattice QCD predicts QGP formation at very high temperature ($T \ge 170$ MeV) or equivalently at very high energy density (≥ 1 GeV/fm³).

QGP is expected to be formed in relativistic nucleus nucleus collisions.

Probes of QGP & Advantages

Indirect probes for **QGP**

• J/ψ suppression

Jet quenching

• • = • • = • •

 Strangeness enhancement

- Dilepton
- Photon

Probes of QGP & Advantages

Indirect probes for **QGP**

• J/ψ suppression

• Jet quenching

 Strangeness enhancement

- Dilepton
- Photon

I am interested only on "Photons"

Advantages of Photons

- Weak final state interaction ⇒ Minimal re-scattering
- Large mean free path

Photon: Good probe of initial condition

Sources of Photon

- Decay photons: Decay product of long lived secondaries $(\pi^0 \rightarrow \gamma\gamma, \eta \rightarrow \gamma\gamma)$
- Hard or Direct photons:

Sources of Photon

- Decay photons: Decay product of long lived secondaries $(\pi^0 \rightarrow \gamma\gamma, \eta \rightarrow \gamma\gamma)$
- Hard or Direct photons:
 - Prompt photons: Initial hard scatterings
 - Pre-equilibrium photons: Produced before thermalization of the QGP
 - Thermal photons: From hot medium (Quark Matter & Hadronic Matter)
 - Jet-thermal photons: Photons from passage of jets through plasma.

伺い イヨン イヨン 二日

Jet-Photon production

Photons from jet plasma interaction are produced when a high energy jet interacts with the medium constituents via annihilation and Compton processes.

Jet-Photon production

Photons from jet plasma interaction are produced when a high energy jet interacts with the medium constituents via annihilation and Compton processes.

• The differential Photon production rate for these processes

$$\frac{dN}{d^4 x d^2 p_T dy} = \frac{\mathcal{N}(2\pi)^4}{2(2\pi)^3} \int \frac{d^3 p_1}{2E_1(2\pi)^3} \frac{d^3 p_2}{2E_2(2\pi)^3} \frac{d^3 p_3}{2E_3(2\pi)^3} f_{jet}(\mathbf{p}_1)$$

$$f_2(\mathbf{E}_2, T) \delta(p_1 + p_2 - p_3 - p) |\mathcal{M}|^2 [1 \pm f_3(\mathbf{E}_3, T)]$$

The phase space distributions of jet quark are given by,

$$f_{jet}(\mathbf{p_1}) = \frac{1}{g_q} \frac{(2\pi)^3}{\pi R'^2 \tau p_1} \frac{dN_{jet}}{d^2 p_{1T} dy} R(r) \times \delta(\eta - y) \Theta(\tau_f - \tau_i) \Theta(R' - r)$$

where

$$\frac{dN_{jet}}{d^2 p_{1T} dy}|_{y=0} = T_{AA} \frac{d\sigma_{jet}}{d^2 p_T dy}|_{y=0} = K \frac{a}{(1+p_1/b)^c}$$

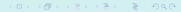
(For details see R. J. Fries, B. Muller and D. K. Srivastava, PRL. 90 132301 (2003))

Advantage of jet-photon as a signal

• The p_T distribution of the jet-photon $\propto p_T$ distribution of the jet quarks at an early stage of interaction (without any energy-loss).

Advantage of jet-photon as a signal

- The p_T distribution of the jet-photon $\propto p_T$ distribution of the jet quarks at an early stage of interaction (without any energy-loss).
- Measured p_T distribution of hadrons $\propto p_T$ distribution of partons after leaving QGP medium.


Advantage of jet-photon as a signal

- The p_T distribution of the jet-photon $\propto p_T$ distribution of the jet quarks at an early stage of interaction (without any energy-loss).
- Measured p_T distribution of hadrons $\propto p_T$ distribution of partons after leaving QGP medium.
- Comparative study of both the spectra could provide the quantitative determination of energy loss of a parton within plasma.

Effects of running coupling of QCD

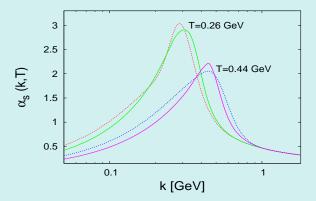
• Scales in high temperature effective field theory

Temperature, T **Parton momentum**, k

Effects of running coupling of QCD

• Scales in high temperature effective field theory

Temperature, T **Parton momentum,** k


QCD coupling depends on both **T** and **k**: $\overline{\alpha_s = \alpha_s(\mathbf{k}, \mathbf{T})}$

$$\alpha_{s}(k,T) = \frac{u_{1}(\frac{k}{T})}{1 + \exp(u_{2}\frac{k}{T} - u_{3})} + \frac{v_{1}}{(1 + \exp(v_{2}\frac{k}{T} - v_{3}))(\ln(e + (\frac{k}{\lambda_{s}})^{a} + (\frac{k}{\lambda_{s}})^{b})}$$

- $k = \sqrt{|\omega^2 q^2|}$ and the value of *a*, *b* and λ_s are 9.07, 5.90 and 0.263 GeV respectively.
- For the limiting behavior $(k \ll T)$, we choose, $u_1 = \alpha^*_{3d}(1 + exp(-u_3))$
- α^{*}_{3d} and α^{*}_s are the IR fixed point of SU(3) Yang-Mills theory in d = 3 and d = 4 dimensions respectively.
- The remaining four parameters (u₂ = 5.47, u₃ = 6.01, v₂ = 10.13 and v₃ = 9.27) fit the numerical results for pure Yang-Mills theory obtained from the RG equations.

(for details see J. Braun and H.-J. Pirner PRD 75, 054031, (2007))

Continued.....

Comparison of the fit of running coupling with the pure Yang-Mills theory

• Taking the running coupling of QCD into account, energy loss of an incident quark in the QGP medium is increased.

Photon rate due to jet plasma interaction

- Jet quarks are not thermalised ⇒ Undergo brownian motion ⇒ jet quarks loose energy by collision and radiation.
- Thermal distribution function can not be used.

w

• The evolution of the phase space distribution of quarks \implies Fokker-Planck eqn.

$$\frac{\partial f}{\partial t} = \gamma(t) \frac{\partial}{\partial \vec{p}} (\vec{p}f) + D(t) \frac{\partial^2 i}{\partial \vec{p}}$$
where
$$\gamma = \frac{1}{E} \left(\frac{dE}{dx}\right)$$

$$D = 2T \left(\frac{dE}{dx}\right)$$

 $dE/dx \implies$ differential (both collisional + radiative) energy loss of the jet parton

オポン オラン オラン

Solution of Fokker-Planck equation

$$f(t,\vec{p}) = \int d^{3}\vec{p}_{0}G(t,t_{0},\vec{p};p_{0})f_{0}(\vec{p}_{0})$$

where

$$G(t, \vec{p}; p_0) = \left[\frac{1}{4\pi\Delta(t)}\right]^{\frac{3}{2}} exp\left[-\frac{(\vec{p} - \vec{p}_0 exp(-(\Gamma(t)))^2}{4\Delta(t)}\right]$$
$$\Delta(t) = exp\left[-2\Delta(t)\right] \int_0^t d\tau D(\tau) exp[2\Delta(\tau)]$$
and
$$\Gamma(t) = \int_0^t d\tau \gamma(\tau)$$

 $f_0 \rightarrow$ Initial distribution function. (For details see H. V. Hees and R. Rapp, PRC **71**, 034907 (2005))

Continued....

• The *p*_T distribution of quark is related to phase space distribution by

$$f_q = \frac{(2\pi)^3}{g_q V} \frac{dN}{d^2 p_T dy}$$

Using Fokker-Planck eqn we get the time evolution of p_T distribution of quark

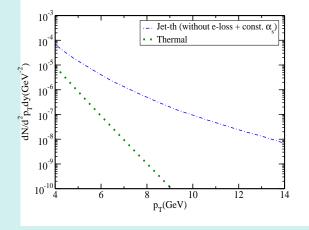
$$\frac{dN}{d^2 \rho_{1T} dy} = \int G(t, t_0, \vec{p}; \rho_0) \frac{dN}{d^2 \rho_{0T} dy} d^3 \rho_{0T}$$

ゆう くほう くほう

where $\frac{dN}{d^2 p_{0T} dy} d^3 p_{0T} \rightarrow$ initial p_T distribution of quark

Continued.....

p_T distribution of jet-photon

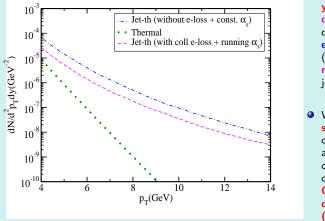

$$\begin{aligned} \frac{dN}{d^2 p_T dy} &= \int d^4 x \; \frac{dN}{d^4 x d^2 p_T dy} \\ &= \; \frac{(2\pi)^3}{\nu_q} \frac{\mathcal{N}_i}{16(2\pi)^7 E} \int_{t_i}^{t_c} dt' \int_0^R r dr \int d\phi \mathcal{P}(\vec{w_r}) \int d\hat{s} d\hat{t} |\mathcal{M}_i|^2 \\ &\times \; \int dE_1 dE_2 \frac{1}{p_{1T}} \frac{dN}{dp_{1T}^2 dy} (p_{1T}, t') \frac{f_2(E_2)(1 \pm f_3(E_3))}{\sqrt{aE_2^2 + 2bE_2 + c}} \end{aligned}$$

 $\mathcal{P}(\vec{w_r})$ is the initial jet production probability distribution at the initial radial position $\vec{w_r}$ in the plane $z_0 = 0$, where

$$|\vec{w}_r| = (\vec{r} - (t' - t_i)\frac{\vec{p}}{|\vec{p}|}).\hat{r} = \sqrt{(\textit{rcos}\phi - t')^2 + r^2 \textit{sin}^2\phi} \quad \text{for} \quad t_i \sim 0$$

and ϕ is the angle in the plane $z_0 = 0$ between the direction of the photon and the position where this photon has been produced.

p_T distribution of jet photon @ RHIC energy

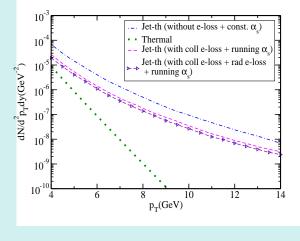


 Photon yield from the jet-plasma interaction (without eloss + const α_s) is higher than the thermal photon yield.

ロト イタト イヨト イヨト

The p_T distribution of jet-th photons at $T_i = 0.446$ GeV, $\tau_i = 0.147$ fm/c

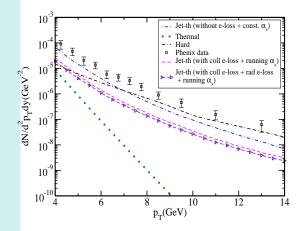
p_T distribution of jet photon @ RHIC energy


Jet photon yield decreases due to energy loss (collisional + running α_s) jet parton.

۲

The p_T distribution of jet-th photons at $T_i = 0.446$ GeV, $\tau_i = 0.147$ fm/c

p_T distribution of jet photon @ RHIC energy

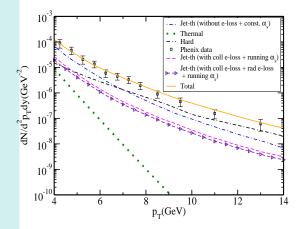

 Photon yield decreases due to both energy losses (collisional + radiative + running α_s) jet parton.

 We observe suppression of jet photon as a consequence of running of QCD coupling (α_s).

< 3 >

The p_T distribution of jet-th photons at $T_i = 0.446$ GeV, $\tau_i = 0.147$ fm/c

p_T distributions of photon compared with PHENIX data



The spectra computed with collisional energy loss and running α_s is depleted by 2 - 2.5 compared to constant α_s.

ヘロト 人間 とくほと くほと

 p_T distributions of photon at RHIC energy

p_T distributions of photon compared with PHENIX data

The total photon yield with jet-parton energy loss and running α_s describes PHENIX photon data well.

ヘロン 不良 とくほう くほう

 p_T distributions of photon at RHIC energy

Summary & conclusions

- QGP: New phase of matter where properties are governed by quarks and gluons.
- At very high temperature or energy density formation of QGP is possible.
- Direct detection of QGP is not possible.
- EM observables, like photon or dilepton, could be promising probes of plasma dynamics.
- Due to inclusion of both collisional and radiative energy losses photon yield from jet plasma interaction suppresses.
- Taking the running coupling of QCD into account, energy loss of an incident quark in the QGP is increased. Photon yield suppresses much.
- The spectra in the case of energy loss with running coupling is depleted by a factor 2 2.5 compared to the case where strong coupling is const.
- The total photon yield in our model described **PHENIX photon data** well.

List of publications

Refereed Journals

- Photons from anisotropic Quark-Gluon-Plasma; Lusaka Bhattacharya and Pradip Roy; Phys. Rev. C 78, 064904 (2008).
- Measuring isotropization time of Quark-Gluon-Plasma from direct photon at RHIC; Lusaka Bhattacharya and Pradip Roy; Phys. Rev. C 79, 054910 (2009).
- Rapidity distribution of photons from an anisotropic Quark-Gluon-Plasma; Lusaka Bhattacharya and Pradip Roy; Phys. Rev. C 81, 054904 (2010).
- Jet-photons from an anisotropic Quark-Gluon-Plasma; Lusaka Bhattacharya and Pradip Roy; J. Phys. G: Nucl. Part. Phys. 37; 105010 (2010).
- Photons from jet-plasma interaction in relativistic heavy ion collisions; Lusaka Bhattacharya and Pradip Roy; European Physical Journal C 69, Issue-3, 445 (2010).
- Effects of running coupling on photons from jet plasma interaction in relativistic heavy ion collision; Lusaka Bhattacharya and Pradip Roy; [Submitted for publication in Journal of Phys. G] (under review).

Conference Proceedings

 Electromagnetic probes ; Rupa Chatterjee, Lusaka Bhattacharya, Dinesh K. Srivastava; Published in Lect. Notes Phys. 785, 219-264 (2010); arXiv:0901.3610 (hep-ph).

Thank you

<ロ> (四) (四) (注) (注) (注) (注)