Measurement of Transition Form Factor of η meson with WASA detector at COSY

Himani Bhatt
IIT Bombay
(for WASA-at-COSY Collaboration)
ICPAQGP-2010

Outline

$>$ Physics Motivation
$>$ Transition Form Factor
\Rightarrow Experimental Set-up
$>$ Analysis of $\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$

- Simulations
- Kinematic studies
- Suppression of $\eta \rightarrow \gamma \gamma$ background
- Preliminary Results
> Summary and outlook

Physics Motivation

- How quarks and gluons are confined inside the nucleon?
- The study of phenomenological characteristics of hadrons should lead to better understanding of QCD .
\longrightarrow Transition Form Factor
- Transition Form Factor $F\left(q^{2}\right)$ is defined as :

$$
\frac{d \Gamma}{d q^{2}}=\left|\frac{d \Gamma}{d q^{2}}\right|_{\text {pointike }}\left|F\left(q^{2}\right)\right|^{2}
$$

where, $\left|\mathrm{d} \Gamma / \mathrm{dq}^{2}\right|$ is experimentally measured and $\left|\mathrm{d} \Gamma / \mathrm{dq}^{2}\right|_{\text {pointike }}$ is the theoretically (QED) calculated mass spectrum for a point like meson.

- One can use the Dalitz decay of η meson $\left(\eta \rightarrow \gamma^{*} \gamma \rightarrow l^{+} l^{-} \gamma\right)$
to determine q^{2} which is equal to the invariant mass squared of the lepton pair
$\underline{\text { Probe : internal structure }} \quad q^{2}=m_{l^{+} l^{-}}^{2}$

Transition Form Factor

Leptonic pair mass spectrum :

$$
\frac{d \Gamma\left(\eta \rightarrow l^{+} l^{-} \gamma\right)}{d q^{2} \cdot \Gamma(\eta \rightarrow \gamma \gamma)}=\underbrace{\frac{2 \alpha}{3 \pi} \sqrt{1-\frac{4 m_{l}^{2}}{q^{2}}}\left[1+2 \frac{m_{l}^{2}}{q^{2}}\right] \frac{1}{q^{2}}\left[1-\frac{q^{2}}{m_{\eta}^{2}}\right]}_{\text {QED }}]^{3}\left|F_{\eta}\left(q^{2}\right)\right|^{2}
$$

\star Parameterized using the pole approximation

$$
F=\frac{1}{1-\frac{q^{2}}{\Lambda^{2}}} \approx 1+\frac{q^{2}}{\Lambda^{2}}
$$

\star Vector Meson Dominance Model (VDM)* describes the q^{2} dependency

$$
\begin{gathered}
V=\rho, \omega, \Phi \ldots \\
F^{V D M}\left(q^{2}\right)=\sum_{V} \frac{g_{P V \gamma}^{\prime}}{2 g_{V \gamma}} \frac{M_{V}^{2}}{M_{V}^{2}-q^{2}}
\end{gathered}
$$

*L. G . Landsberg, Phys. Rep. 128, 301(1985)
Fig: The diagram for Dalitz decay in the VDM

Physics Motivation...

Transition Form Factor

Earlier experimental results

Experiments	$\Lambda_{\eta} \mathrm{GeV}$		Reference	
Lepton-G	0.72	0.09	R. Djeliadin, et al., Phys. Lett B 94 548 (1980)	
TPC-2 γ	0.70	0.08	H. Aihara et al., Z Phys. C 49, 401 (1990)	
CLEO	0.774	0.0011	J. Gronberg et al., Phys. Rev. D 57, 33 (1998)	
NA60	0.716	0.031	0.009	

$V D M$ predicts $\Lambda_{\eta}=0.75 \mathrm{GeV}$

Hence the measurements also test the Models

Fig: Comparison of the experimental data with the results of calculations made in a number of theoretical models

Experimental Set up

> Experiment has been done with WASA-at -COSY.
$>$ WASA (Wide Angle Shower Apparatus) is an internal experiment at COSY (Juelich, Germany)
$>$ Cosy is a Cooler Synchrotron.
$>$ Provides a polarized and unpolarized proton and deuteron beam of momentum range $0.3-3.7 \mathrm{GeV}$.

Fig : Schematic view of COSY

Features:

- WASA at COSY is a 4π detector.
- Pellet Target : thickness $\sim 35 \mu \mathrm{~m}$

Reaction $\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\eta}$ @ $\mathrm{E}_{\text {beam }} 1.4 \mathrm{GeV}$.

Fig: Schematic view of WASA detector

Analysis of $\eta \rightarrow e^{+} e^{-} \gamma$

Event Selection for Dalitz decay ($\mathrm{pp} \rightarrow \mathrm{pp} \eta \rightarrow \mathrm{pp}^{+} \mathrm{e}^{-} \gamma$) :

- Two charged tracks in Forward Detector $\Rightarrow\left(3^{0}<\theta<20^{\circ}\right)$
- Two opposite charged tracks in Central Detector .
- One neutral track in Central Detector.

Invariant Mass in Central Detector

$\mathrm{IM}=$ sum of the decay products

Invariant Mass of $\mathrm{e}^{+} \mathrm{e}^{-} \gamma\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Missing Mass in Forward Detector

$M M_{p p}^{2}=\left(E_{\text {beam }}-E_{p_{1}}-E_{p_{2}}\right)^{2}-\left(\vec{p}_{\text {beam }}-\vec{p}_{p_{1}}-\vec{p}_{p_{2}}\right)^{2}$

Missing Mass ($\mathrm{GeV} / \mathrm{c}^{2}$)

Analysis of $\eta \rightarrow e^{+} e^{-} \gamma \ldots$

Simulations

10^{7} events generated using Pluto event generator.

Channel	Cross Section(mb)/ Branching Ratio
$\eta \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$	7×10^{-3}
$\eta \rightarrow \pi^{+} \pi^{-} \gamma$	4.68%
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	22%
$\eta \rightarrow \gamma \gamma$	0.39%
$p p \rightarrow p p \pi^{+} \pi^{-} \pi^{0}$	0.02
$p p \rightarrow p p \pi^{+} \pi^{-}$	1

Table: cross section of signal and background.
η production cross section @ $1.4 \mathrm{GeV} \sim 10 \mathrm{mb}$

Invariant Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Fig: Cocktail plot of Invariant Mass (2 charged and 1 neutral track in CD)

Analysis of $\eta \rightarrow e^{+} e^{-} \gamma$

Data taken in April, 2007

Invariant Mass of $\mathrm{e}^{+} \mathrm{e}^{-} \gamma\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Analysis of $\left.\eta \rightarrow e^{+} e^{-} \gamma\right) \ldots$

Kinematic studies

Conditions used to suppress the pion background

Analysis of $\left.\eta \rightarrow e^{+} e^{-} \gamma\right) \ldots$.

Suppression of $\eta \rightarrow \gamma \gamma$

$\Rightarrow \eta \rightarrow \gamma \gamma$ reaction contributes as background due to external conversion of one of the photon at beam pipe.
\Rightarrow An orientation angle $\left(\Phi_{\mathrm{V}}\right)^{*}$ of plane of e^{+}and e^{-}with respect to magnetic field has been calculated.

Shows different distribution for signal and $\eta \rightarrow \gamma \gamma$.

Analysis of $\left.\eta \rightarrow e^{+} e^{-} \gamma\right) \ldots$.

Kinematic Fitting
 (kfit)

- Use to improve the experimental resolution.
- Constraints : 4 (Energy -momentum balance)
- It helps to suppress the background

Analysis of $\left.\eta \rightarrow e^{+} e^{-} \gamma\right) \ldots$....

Preliminary Results

Criteria	Range
$M M_{p p}$	0.530 to 0.570 GeV
$E d e p / P$	>0.55
E_{γ}	$>180 \mathrm{MeV}$
ϕ_{V}	$>1.0 \mathrm{rad}$
$\mathrm{P}\left(\chi^{2}\right)$	>0.2

Table: Selection Criteria

Analysis of $\left.\eta \rightarrow e^{+} e^{-} \gamma\right) \ldots$.

Preliminary Results

In data:

$$
\begin{gathered}
91 \% \eta \rightarrow e^{+} e^{-} \gamma \\
6 \% p p \rightarrow p p \pi^{\gamma} \pi^{-} \\
\sim 3 \% \quad \eta \rightarrow \gamma \gamma \gamma \\
\text { S/B }=9.54
\end{gathered}
$$

$\sim 160 \quad 13 \eta$ Dalitz events reconstructed

Invariant Mass of lepton pair

Summary and outlook

Summary:

- Large amount of pion background has been removed successfully.

$$
\mathrm{S} / \mathrm{B}=0.0005 \quad \Longleftrightarrow \quad \mathrm{~S} / \mathrm{B}=9.54
$$

\Rightarrow ~160 $13 \quad \eta$ - Dalitz events have been reconstructed.
Future Work:
\Rightarrow Measurement of transition form factor needs to be done.
\Rightarrow To increase the statistics we are analyzing new pp data taken in Oct-2008.

Thank You

