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Outline

 Can we apply hydrodynamics  in HICs?

 Introduction

 Code for solving hydrodynamic equations.

 Effects of shadowing of Glauber Model on hydrodynamic 
evolution.

 Results

 Summary
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Initial State
Hard collision to 
deposit energy

Expansion of          
the fireball Hadronic Freeze-out

Glauber Model Hydrodynamics Cooper-Frye formula

Heavy Ion Collision

 Our intension is to understand  the initial state as well as the 
hydrodynamic evolution of the system. 3



Hydrodynamics

 “Hydrodynamics” is the theoretical framework for describing the 
motion of an expanding system.

 With specified initial conditions and the equation of state, the 
space-time evolution of the fluid can be directly derived from the 
dynamical equations.
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Hydrodynamics in HICs? 

 Mean free path << system size

 Collision rate between particles should be large  compare to 
expansion rate to make the system thermalized(locally).

 For a typical heavy ion collision, system size ~ 10-15 fm and the 
mean free path is of the order of ~ 0.2-0.3 fm.

 Thus we can apply hydrodynamics  for QGP in heavy ion 
collisions.
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Assumptions

 For ultra-relativistic heavy ion collisions (                  
for LHC), the system is dominated by gluons (in mid-
rapidity region).
 QGP can be considered as net Baryonless fluid.

 Baryonic chemical potential is zero.
 Temperature is the only thermodynamic variable to 
quantify the system

 Viscosities of the system is assumed to be zero.
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Ideal Hydrodynamics: Equations

and P  are energy density and pressure of the system.

 For the consideration of baryonless fluid we neglect the equation
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Ideal Hydrodynamics: Equations

 These are coupled partial differential equation.
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Bjorken hydrodynamics
 High-energy collisions, a flat dNch/dy , expected over a wide 
rapidity range.

 Bjorken hypothesized that thermodynamic variables are rapidity 
independent(mid rapidity range).

These are (2+1)D ideal 
hydrodynamic equations

 Cartesian coordinate   Transformation into Milne coordinate

Substitute Then Go back to cartesian coordinate
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Solution

General form of the equations are

 These are called initial value flux conservative equations.

 Initial values of                   are to be supplied as inputs.

Multi-dimensional Flux Corrected Transport (FCT) 
algorithm is used to solve iteratively.

10



Algorithm

 FCT algorithms can solve , kind of equation 

To solve we need to
 Discretize the space, time
 Define fluxes i.e f,g
 Define lower order fluxes (upwind / Lax-Friedrichs scheme) as 
well as higher order flux (Lax-Wendroff scheme)

 Upwind scheme:  

Where,
Lower order schemes are good for shock-wave solution but 
have numerical dissipation         conservation will be violated.11

Ref: Numerical Recipes in FORTRAN



Algorithm

 To make the solution stable we need to satisfy

 This is known as Courant-Lewy-Friedrich (CFL) criteria 
or simply the Courant condition.

 Lax-Wendroff schemes:

Higher order schemes do not have numerical dissipation but can 
not solve shock-wave problems.
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Algorithm

 FCT do the job with both the schemes to get accurate solution.
 Steps are 

 Transported and diffusive solution is defined as 

Anti diffusive flux are defined as

 To limit the Anti-diffusion Process is too lengthy
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Ref : Steven T. Zalesak, J. of Computational Physics 31(1979)



 Solution to be

Algorithm

 But we have solve equations like

 Solution:

 From the solution we can extract thermodynamic variables easily

14Ref : Richke et al, Nuclear Physics A 595 (1995)



Testing the code
Gubser solution:

Radial distance (r)
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Gubser result is 
successfully reproduced 

by the code.
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Ref : P. Houvinen et al, Computer Physics Communication 185(2014)
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Input of the code for HICs

 Thermalization time ,here for RHIC energy ,
 Initial energy density from  Optical Glauber Model or Monte-
Carlo Glauber Model (will be discussed later).
 Equation of state,

 Transverse velocities of expansion were taken to be zero.

 Boundary Condition:  Open boundary condition.

. Lattice QCD EoS will be used later.
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Initial conditions

 Important to study heavy ion physics. 
 Two types of initial conditions are available to get fairly good  
results HICs.             

Glauber Model (our main interest)
CGC based IP-Glasma Model.

Glauber Model :

Optical Glauber Model : 
a) Supplies smooth energy density profile.
b) Fails to study fluctuations where positions of individual nucleons are 

relevant.

Monte-Carlo Glauber Model : 
a) Supplies fluctuating energy density profile.
b) Quantum fluctuations of  positions of the individual nucleons are 

taken into account.

Characterize by number of wounded  
nucleons  and number of binary collisions
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Optical Glauber model: coding

Nucleon density: Woods-Saxon type without any deformation

 b is impact parameter

Au+Au collision

= 42 mb

Input of the code
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Optical Glauber model: coding

Thickness function:

 f = hardness parameter.
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Optical Glauber : Results

X

Y
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Monte-Carlo Glauber Model

 Individual nucleon positions are considered.
 Nucleons (for nucleus A and B) are generated by Monte-Carlo 
random number generator.
 Sampled from Woods-Saxon type of distribution.

 Distance between a nucleon of A to a nucleon of B

 Criteria for collision

Energy deposition for ith source at position 
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MCG: Results

X

Y
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Glauber model : Drawback

MCGM 
can not 
explain 

these plots
for  highly 

central 
events.
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Ref : PRC 89, 064908 (2014)
Bjorn Schenke et al



Shadowing effects on Glauber Model

All the collisions are not treated equally.
A nucleon staying behind another nucleon will be shadowed(in 
cross section sense) by the front one.
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Shadowing effects on Glauber Model

 and gets modified.
 Energy density will also change

 This effect can also be introduced on Optical Glauber Model. 
 Unlike MCGM, the nucleon density is continuous .

We use simple suppression factor as
 n is the number of nucleons ahead of a nucleon

Is the shadow parameter fit to experimental observations.
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Body-Body configuration

Tip-Tip configuration

High multiplicity: Configurations

MCGM

shMCGM
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Results: shMCGM

shMCGM
explains the 
data well

Ref : arXiv:1510.01311
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http://arxiv.org/abs/1510.01311�


Shadowed Optical Glauber: Results

X

Y

28



Results: Shadowed vs Unshadowed

 Impact parameter b = 7 fm.
 Shadow parameter      = 0.1
 Energy density for central contour values are considered.

Glauber

Optical 
Glauber

20.12 5.96 1.47 0.37

Optical 
Glauber with 
shadowing

14.6 4.47 1.21 0.24
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Summary

 Numerical code has been developed to solve hydrodynamic 

equations.

 Results of code have been contrasted with others.

 Effects of shadowing on initial conditions have been 

incorporated.

 Effects of shadowing are found to be very important.

 (3+1)D code with non-zero baryonic chemical potential is under 

development.
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