OAK Ridge National Laboratory
 operated ay
 UNION CARBIDE CORPORATION
 nuclear division

,
POST OFFICE BOX X
OAK RIDGE, TENNESSEE 37830
NS MEMO 1B/1 (82)
September 27, 1982

To: NSDD Network Evaluators
From: M. J. Martin
Subject: Reduced Gamma-Ray Matrix Elements, Transition Probabilities, and Single-Particle Estimates

For an electromagnetic transition of energy E_{γ}, the relationships among the reduced matrix elements, $B(\sigma L)$, and the partial γ-ray half-life, $\mathrm{T}^{\gamma}{ }_{1 / 2}$, are

$$
\begin{align*}
& \mathrm{T}_{1 / 2}^{\gamma}(E L) \mathrm{B}(E L) \downarrow=\frac{(\ell n 2) \mathrm{L}[(2 \mathrm{~L}+1)!!]^{2} \hbar}{8 \pi(\mathrm{~L}+1) \mathrm{e}^{2} \mathrm{~b}^{\mathrm{L}}}\left(\frac{\hbar c}{\mathrm{E}_{Y}}\right)^{2 \mathrm{~L}+1} \tag{1}\\
& \mathrm{~T}_{1 / 2}^{\gamma}(\mathrm{ML}) \mathrm{B}(M L) \downarrow=\frac{(\ell \mathrm{n} 2) \mathrm{L}[(2 \mathrm{~L}+1)!!]^{2} \hbar}{8 \pi(\mathrm{~L}+1) \mu_{\mathrm{N}}{ }^{2} \mathrm{~b}^{\mathrm{L}-1}}\left(\frac{\hbar c}{\mathrm{E}_{\gamma}}\right)^{2 L+1} \tag{2}
\end{align*}
$$

The Weisskopf single-particle estimates for the $B(\sigma L)$ are

$$
\begin{align*}
& B_{\text {s.p. }}(E L) \downarrow=\frac{1}{4 \pi b^{L}}\left(\frac{3}{3+L}\right)^{2} R^{2 L} \tag{3}\\
& B_{\text {s.p. }}(M L) \downarrow=\frac{10}{\pi b^{L-1}}\left(\frac{3}{3+L}\right)^{2} R^{2 L-2} \tag{4}
\end{align*}
$$

so that

$$
\begin{align*}
& T_{1 / 2}^{\gamma} \text { s.p. }(E L)=\frac{(\ell n 2) L[(2 L+1)!!]^{2} \hbar}{2(L+1) e^{2} R^{2 L}}\left(\frac{3+L}{3}\right)^{2}\left(\frac{\hbar c}{E_{Y}}\right)^{2 L+1} \tag{5}\\
& T_{1 / 2}^{\gamma} \text { s.p. }(M L)=\frac{(\ell n 2) L[(2 L+1)!!]^{2} \hbar}{80(L+1) \mu_{N}^{2} R^{2 L-2}}\left(\frac{3+L}{3}\right)^{2}\left(\frac{\hbar c}{E_{\gamma}}\right)^{2 L+1} \tag{6}
\end{align*}
$$

The relationship between a measured $\mathrm{B}(\sigma \mathrm{L})+$ to a level with spin J_{f} from a level with spin J_{i} connected by a transition γ_{K} is given by Eq. (1) or Eq. (2) with

$$
\begin{equation*}
T_{1 / 2}\left(J_{f}\right)=T_{1 / 2}^{\gamma}(\sigma L) \varepsilon\left(\gamma_{K}\right) \tag{7}
\end{equation*}
$$

and

$$
\mathrm{B}(\sigma \mathrm{~L}) \uparrow=\frac{\left(2 \mathrm{~J}_{\mathrm{f}}+1\right)}{\left(2 \mathrm{~J}_{\mathrm{i}}+1\right)} \mathrm{B}(\sigma \mathrm{~L}) \downarrow
$$

where $\varepsilon\left(\gamma_{K}\right)$ is the fraction of the decays of level J_{f} proceeding via the observed mode γ_{K} and is given by

$$
\varepsilon\left(\gamma_{K}\right)=\frac{\lambda_{K}^{\gamma}}{\sum_{i}\left(1+\alpha_{i}\right) \lambda_{i}^{\gamma}}=\frac{\operatorname{BR}\left(\gamma_{K}\right)}{\left(1+\alpha_{K}\right)}
$$

where $\lambda^{\gamma}{ }_{i}$ is the relative partial decay constant for gamma transition " $i, "$ α_{i} is the total conversion coefficient for transition " $i, "$ and $\operatorname{BR}\left(\gamma_{K}\right)$ is the total (i.e., $\gamma+c e$) branching ratio for transition "K."

If the transition " K " is of mixed multipolarity $L, L+1$, then a factor $\delta^{2} /\left(1+\delta^{2}\right)$ for $L+1$ or $1 /\left(1+\delta^{2}\right)$ for L must be inserted on the right-hand side of Eq. (7). δ^{2} is the ratio of the $L+1$ and L components.

In Eqs. (1) through (6), $b=10^{-24} \mathrm{~cm}^{2} ; \cdot R=R_{Q} A^{1 / 3} \times 10^{-13} \mathrm{~cm}$; and $B(E L), B(M L)$ are expressed in units of $e^{2} b^{L}$ and $\mu_{N}^{2} b^{L-1}$, respectively.

For the constants appearing in the above expressions, we adopt the following values:

$$
\begin{aligned}
\text { 九c } & =1.9733 \times 10^{-8} \mathrm{keV}-\mathrm{cm} \\
\text { Ћ } & =0.6584 \times 10^{-18} \mathrm{keV}-\mathrm{s} \\
\mathrm{e}^{2} & =1.43998 \times 10^{-10} \mathrm{keV}-\mathrm{cm} \\
\mu_{\mathrm{N}}^{2} & =1.59234 \times 10^{-38} \mathrm{keV}-\mathrm{cm}^{3} \\
\mathrm{R}_{0} & =1.2
\end{aligned}
$$

Specific expressions for the above equations, along with that for
$B(\sigma L)($ W.u. $)=B(\sigma L) / B_{\text {s.p. }}{ }^{(\sigma L), ~}$
are given here for $L=1$ through $L=5 . E_{\gamma}$ is in $k e V$, and W.u. stands for Weisskopf units.

As noted above, if a transition under consideration is of mixed multipolarity, $L, L+1$, then the expressions below for $B(\sigma L)$ (W.u.) and $T_{1 / 2}(J) x$ $B(\sigma L)+$ should be multiplied on the right by $\delta^{2} /\left(1+\delta^{2}\right)$ for the $L+1$ and by $1 /\left(1+\delta^{2}\right)$ for the L-components.

E1 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(E 1) B(E 1) \downarrow=\frac{4.360 \times 10^{-9}}{\left(E_{\gamma}\right)^{3}} \\
& B_{\text {s.p. }}(E 1) \downarrow=6.446 \times 10^{-4} \mathrm{~A}^{2 / 3}\left(\mathrm{e}^{2} \times 10^{-24} \mathrm{~cm}^{2}\right) \\
& T_{1 / 2}^{\gamma} \mathrm{s} \cdot \mathrm{p} . \\
& (E 1)=\frac{6.764 \times 10^{-6}}{\left(E_{\gamma}\right)^{3} A^{2 / 3}}(\mathrm{~s}) \\
& B(E 1)(\text { W.u. })=\frac{6.764 \times 10^{-6} \mathrm{BR}}{\left(E_{\gamma}\right)^{3} \mathrm{~A}^{2 / 3} \mathrm{~T}_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(E 1) \uparrow=\frac{4.360 \times 10^{-9} \mathrm{BR}}{\left(E_{\gamma}\right)^{3}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

E2 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(E 2) B(E 2) \downarrow=\frac{5.659 \times 10^{1}}{\left(E_{\gamma}\right)^{5}} \\
& B_{s \cdot p .}(E 2) \downarrow=5.940 \times 10^{-6} A^{4 / 3}\left(e^{2} \times 10^{-48} \mathrm{~cm}^{4}\right) \\
& T_{1 / 2 \mathrm{~s} \cdot p .}^{\gamma}(E 2)=\frac{9.527 \times 10^{6}}{\left(E_{\gamma}\right)^{5} A^{4 / 3}}(\mathrm{~s}) \\
& B(E 2)(\text { W.u. })=\frac{9.527 \times 10^{6} \mathrm{BR}}{\left(E_{\gamma}\right)^{5} A^{4 / 3} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(E 2) \uparrow=\frac{5.659 \times 10^{1} B R}{\left(E_{\gamma}\right)^{5}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

E3 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(E 3) B(E 3) \downarrow=\frac{1.215 \times 10^{12}}{\left(E_{\gamma}\right)^{7}} \\
& B_{\text {s.p. }}(E 3) \downarrow=5.940 \times 10^{-8} A^{2}\left(e^{2} \times 10^{-72} \mathrm{~cm}^{6}\right) \\
& T_{1 / 2}^{\gamma}{ }^{6} \cdot p \cdot(E 3)=\frac{2.045 \times 10^{19}}{\left(E_{\gamma}\right)^{7} A^{2}}(\mathrm{~s}) \\
& B(E 3)(\text { W.u. })=\frac{2.045 \times 10^{19} \mathrm{BR}}{\left(E_{\gamma}\right)^{7} A^{2} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(E 3) \uparrow=\frac{1.215 \times 10^{12} \mathrm{BR}}{\left(E_{\gamma}\right)^{7}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

E4 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(E 4) B(E 4) \downarrow=\frac{4.087 \times 10^{22}}{\left(E_{Y}\right)^{9}} \\
& B_{S_{. p .}}(E 4) \downarrow=6.285 \times 10^{-10} A^{8 / 3}\left(e^{2} \times 10^{-96} \mathrm{~cm}^{8}\right) \\
& T_{1 / 2 ~ s . p .}^{\gamma}(E 4)=\frac{6.503 \times 10^{31}}{\left(E_{\gamma}\right)^{9} A^{8 / 3}}(\mathrm{~s}) \\
& B(E 4)\left(W . u_{0}\right)=\frac{6.503 \times 10^{31} \mathrm{BR}}{\left(E_{\gamma}\right)^{9} A^{8 / 3} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(E 4) \uparrow=\frac{4.087 \times 10^{22} \mathrm{BR}}{\left(E_{\gamma}\right)^{9}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

E5 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(E 5) B(E 5) \downarrow=\frac{2.006 \times 10^{33}}{\left(E_{\gamma}\right)^{11}} \\
& B_{\text {s.p. }}(E 5) \downarrow=6.929 \times 10^{-12} A^{10 / 3}\left(e^{2} \times 10^{-120} \mathrm{~cm}^{10}\right) \\
& T_{1 / 2} \text { s.p. }(E 5)=\frac{2.895 \times 10^{44}}{\left(E_{\gamma}\right)^{11} A^{10 / 3}}(\mathrm{~s}) \\
& B(E 5)(\text { W.u. })=\frac{2.895 \times 10^{44} \mathrm{BR}}{\left(E_{\gamma}\right)^{11} A^{10 / 3} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(E 5) \uparrow=\frac{2.006 \times 10^{33} B R}{\left(E_{\gamma}\right)^{11}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

For ML transitions we have:

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(M L) / T_{1 / 2}^{\gamma}(E L)=9.043 \times 10^{3} \mathrm{~B}(E L) / \mathrm{B}(M L) \\
& \mathrm{B}_{\text {s.p. }}(M L) / \mathrm{B}_{\text {s.p. }}(E L)=2.778 \times 10^{3} \mathrm{~A}^{-2 / 3} \\
& T^{\gamma}{ }_{1 / 2} \text { s.p. }(M L) / T^{\gamma}{ }_{1 / 2} \text { s.p. }(E L)=3.256 \mathrm{~A}^{2 / 3} \\
& B(M L)(\text { W.u. }) / B(E L)(W . u .)=3.256 \mathrm{~A}^{2 / 3}
\end{aligned}
$$

M1 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(M 1) B(M 1) \downarrow=\frac{3.943 \times 10^{-5}}{\left(E_{\gamma}\right)^{3}} \\
& B_{\text {s.p. }}(M 1) \downarrow=1.791 \quad\left(\mu_{N}^{2}\right) \\
& T_{1 / 2}^{\gamma} \text { s.p. }^{2}(M 1)=\frac{2.202 \times 10^{-5}}{\left(E_{\gamma}\right)^{3}}(s) \\
& B(M 1)\left(W . u_{0}\right)=\frac{2.202 \times 10^{-5} B R}{\left(E_{\gamma}\right)^{3} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(M 1) \uparrow=\frac{3.943 \times 10^{-5} B R}{\left(E_{\gamma}\right)^{3}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

M4 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(M 4) B(M 4) \downarrow=\frac{3.696 \times 10^{26}}{\left(E_{\gamma}\right)^{9}} \\
& B_{\text {s.p. }}(M 4) \downarrow=1.746 \times 10^{-6} A^{2}\left(\mu_{N}^{2} \times 10^{-72} \mathrm{~cm}^{6}\right) \\
& T^{\gamma}{ }_{1 / 2} \mathrm{~s} \cdot \mathrm{p} \cdot \\
& (M 4)=\frac{2.117 \times 10^{32}}{\left(E_{\gamma}\right)^{9} A^{2}}(\mathrm{~s}) \\
& B(M 4)(\text { W.u. })=\frac{2.117 \times 10^{32} \mathrm{BR}}{\left(E_{\gamma}\right)^{9} A^{2} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(M 4) \uparrow=\frac{3.696 \times 10^{26} \mathrm{BR}}{\left(E_{\gamma}\right)^{9}(1+\alpha)}\left(\frac{2 J_{f}+1}{2 J_{i}+1}\right)
\end{aligned}
$$

M5 Transitions

$$
\begin{aligned}
& T_{1 / 2}^{\gamma}(M 5) B(M 5) \downarrow=\frac{1.814 \times 10^{37}}{\left(E_{\gamma}\right)^{11}} \\
& B_{\text {s.p. }}(M 5) \downarrow=1.925 \times 10^{-8} \mathrm{~A}^{8 / 3}\left(\mu_{N}{ }^{2} \times 10^{-96} \mathrm{~cm}^{8}\right) \\
& T_{1 / 2}^{\gamma} \mathrm{s.p.}(M 5)=\frac{9.426 \times 10^{44}}{\left(E_{\gamma}\right)^{11} A^{8 / 3}}(\mathrm{~s}) \\
& B(M 5)(\text { W.u. })=\frac{9.426 \times 10^{44} \mathrm{BR}}{\left(E_{\gamma}\right)^{11} A^{8 / 3} T_{1 / 2}(1+\alpha)} \\
& T_{1 / 2}\left(J_{f}\right) B(M 5) \uparrow=\frac{1.814 \times 10^{37} \mathrm{BR}}{\left(E_{\gamma}\right)^{11}(1+\alpha)}
\end{aligned}
$$

