

Available online at www.sciencedirect.com

Atomic Data AND Nuclear Data Tables

Atomic Data and Nuclear Data Tables 87 (2004) 185-206

www.elsevier.com/locate/adt

A consistent set of nuclear rms charge radii: properties of the radius surface $R(N,Z)^{radia}$

Institute of Experimental Physics, University of Debrecen, H-4010 Debrecen, Pf. 81, Hungary

Available online 10 May 2004

Abstract

A set of 799 ground state nuclear charge radii is presented. Experimental data from elastic electron scattering, muonic atom X-rays, K_{α} isotope shifts, and optical isotope shifts have been taken into account that were available up to January 2004. Wherever possible, connections and constraints between the data were applied to make the data system consistent. Based on the resulting data set, the smooth global structure of the radius surface R(N,Z) was investigated by fitting simple empirical functions to the intersections with constant Z and N as well as with constant A plains. The simple behavior of the surface rendered it possible to apply a simple model, the two-liquid drop model to reproduce the main tendencies, and to predict the existence of a indentation along the line of stability on the radius surface. This indentation suggests a decrease of average nucleon density away from stability. The fine structure in the mass number dependence of rms charge radii is briefly presented.

^{*} Fax: +36-52-315-087.

 $^{^{*}}$ Supplementary data associated with this article can be found in the online version at doi:10.1016/j.adt.2004.04.002.

E-mail address: angeli@tigris.unideb.hu.

Contents

1. Introduction	186
2. Sources and treatment of data	186
2.1. rms radii from e^- and μ^-	187
2.2. Differences of rms radii from e^- and μ^- (not isotopes)	187
2.3. Application of constraints.	188
2.4. Radius differences between isotopes from e^- and μ^-	188
2.5. Radius differences between isotopes from K_{α} isotope shifts	188
2.6. Radius differences from optical isotope shifts	188
2.7. Adjusting OIS to $e^- + \mu^- + K_{\alpha}IS$	189
2.8. Fitting δR_{OIS} series to the backbone	189
3. Properties of the radius surface $R(N,Z)$	189
3.1. Global behavior of the radius surface along the valley of stability	189
3.2. Intersections of the radius surface	190
3.3. Application of constraints between the empirical parameters	190
3.4. The two-liquid drop model	191
4. Fine structure in the charge radii	192
Explanation of Tables	194
Tables	
1. Nuclear rms charge radii	195
2. Parameters of radius formulae for nuclei near the stability line	202
3. Empirical parameters characterizing the radius $R(N,Z)$	202
4. Annotated references for the Introduction and for the Tables	203

1. Introduction

The rms charge radius $\langle r^2 \rangle^{1/2}$ is a fundamental property of the atomic nucleus. It can be measured by two experimental methods: electron scattering (e^-) and muonic atom X-rays (μ^-) , while the difference $\delta_{1,2}\langle r^2 \rangle \equiv \langle r^2 \rangle_{A2} - \langle r^2 \rangle_{A1}$ between two isotopes of the same element is determined by the K_{α} isotope shift $(K_{\alpha}IS)$ and by the isotope shift of optical spectrum lines (OIS). Early compilations [1–8] contained separate tables of results from the four different methods. It is of importance to derive radius values using the results of all experimental methods. This is also for the benefit of data users, who generally prefer a single, unified data set to several separate tables.

In 1994, a compilation of rms charge radii was published [9] comprising 523 ground state and 75 isomer radius data for isotopes of 42 elements. It was followed by another compilation [10], where the main emphasis was laid on the simultaneous evaluation of two experimental methods: $e^- + \mu^-$. Moreover, for nine elements results from three methods were taken into account: $e^- + \mu^- + OIS$. In addition, this compilation contained an updated table of radius differences from $K_{\alpha}IS$. Since then, several experimental results have been published mainly containing $\delta \langle r^2 \rangle$ values from *OIS* along isotopic series.

Table 1 of the present paper contains rms radius data for 799 isotopes of 91 elements making use of results from the four methods: $e^- + \mu^- + K_{\alpha}IS + OIS$. Wherever possible, advantage was taken of constraints between directly measured radii and differences. Often, easy-to-use radius formulae with limited number of parameters are required, for example, for the extrapolation of the radius surface R(N,Z) or R(A,I) to unknown regions. In order to facilitate the global description of the smooth surface, simple empirical formulae were fitted to the resulting radius data (see Section 3 and Tables 2 and 3). These formulae may be useful to estimate the values of unmeasured radii, and especially in extrapolating charge radius values for nuclei far from the valley of stability or to perform analytic calculations with the continuous function R(N,Z). A simple two-component liquid-drop model is applied for the interpretation of the empirical results. Finally, in Section 4 a short survey on the fine structure is given.

2. Sources and treatment of data

First, $\langle r^2 \rangle^{1/2}$ data were obtained from e^- and μ^- measurements (from now on, the shorthand notation $R \equiv \langle r^2 \rangle^{1/2}$ is used). Then, differences δR between non-isotope pairs were taken into account. These improve

Fig. 1. Illustration of measured quantities and the links between them. Filled circles denote experimental rms radius data, continuous lines mark radius differences measured by electron scattering or muonic atom X-rays. These links are used as constraints to improve the input data and to search for inconsistencies (see Section 2). Broken lines denote differences from optical isotope shifts.

the links between different isotopic series, helping the study of isotonic and isobaric behavior. Then isotopic differences δR measured by e^- and μ^- were taken into account, followed by δR from $K_{\alpha}IS$. Finally, δR values from *OIS* are included in two steps: (1) differences between isotopes for which there exist data from the previous steps; these altogether form a backbone for the data system in the (N, Z) plot, Fig. 1, and (2) the remaining differences δR constitute the wings that are adjusted to the backbone. Some details of this multi-step task have been published in previous papers, which will be cited in the respective sections (Table 4).

2.1. rms radii from e^- and μ^-

In addition to the compilations, original papers and personal communications have also been taken into account up to January 2004. Of outstanding importance is the compilation [10]. It contains precise rms radius data evaluated model independently by combining e^- , μ^- , and OIS. The sources and treatment of data have been described in [11,12] together with a list of the references, e^- : 316, μ^- : 145. Therefore, this pre-1999 reference list for e^- , μ^- is not repeated here.

At this point, some remarks on the radius data for the proton and deuteron are appropriate. Worldwide data on elastic (el) electron-proton scattering have been re-analyzed taking into account corrections for Coulomb distortion and higher moments, resulting in an rms charge radius $R_{p,el} = 0.895(18)$ fm [13]. The evaluation of high accuracy data of the *IS* Lamb shift (LS) in hydrogen yielded $R_{p,LS} = 0.883(14)$ fm [14]. The weighted average (av) of these two independent data is $R_{p,av} = 0.887(11)$ fm. For the deuteron, the analysis of world data on elec-

tron scattering resulted in $R_{d,el} = 2.130(12)$ fm [15]. From the measurement of the hydrogen-deuterium isotope shift, the difference of deuteron-proton rms charge radii have been derived: $R_d^2 - R_p^2 = 3.8212(15)$ fm² [16]. Using this as a constraint between $R_{p,av}$ and $R_{d,el}$ in a weighted least-squares adjustment procedure, we have $R_p = 0.8791(88)$ fm and $R_d = 2.1402(91)$ fm as listed in Table 1.

The final database selected contains 460 radius values (from the 1367 data published) for 285 nuclides. In some cases, the error estimates did not contain all components of uncertainty, e.g., model dependence, nuclear polarization correction, etc. In these cases a further error component was added, estimated after reading the respective literature. Quite often, there are several measured radius values for the same nucleus. To find the average value R_{av} and its uncertainty ΔR_{av} of a data group, two different methods were used, an iteration procedure and a single-step one [11]. The results are more sensitive to the decision of which data are included in the procedure, and less sensitive to the way in which the individual data are weighted to form an average. The resulting data system contains 285 isotopes of 85 elements.

2.2. Differences of rms radii from e^- and μ^- (not isotopes)

There are 94 data for 91 pairs of nuclei [7,10,17–20]; some data are from e^- , others from μ^- , while most of them result from a simultaneous evaluation $e^- + \mu^-$. Results of μ^- measurements are often published as Barrett moment [21] differences $\delta R_{\rm B}$. Then the relationship [22]

$$\delta R = v(Z) \sqrt{\frac{3}{5}} \delta R_{\rm B}, \quad v(Z) = 1 + 0.0035 \times \ln(0.22 \times Z + 1)$$
(1)

was applied to derive the rms radius difference δR , where $Z = (Z_1 + Z_2)/2$. In the deformed region the coefficient v(Z) is somewhat modified: $v(Z)_{def} = v(Z) + 0.00054 \times \min(Z - 60, 77 - Z)$.

2.3. Application of constraints

In several cases, there are redundant, independently measured differences in a group of δR data, that is, in addition to $\delta R_{12}(\pm \Delta \delta R_{12})$ and $\delta R_{23}(\pm \Delta \delta R_{23})$ the radius difference $\delta R_{13}(\pm \Delta \delta R_{13})$ is also measured, e.g., ${}^{12}C^{-14}N, {}^{14}N^{-16}O, \text{ and } {}^{12}C^{-16}O.$ In these cases the relation $\delta R_{13}^0 = \delta R_{12}^0 + \delta R_{23}^0$ between the true values δR_{ik}^0 can be exploited to improve the accuracy. To do this, the method of weighted least-squares was used. This also made it possible to check the internal consistency of the data group by a χ^2/n' test. The new errors are less than the original ones, being always the least precise measurement that benefits most of the constraint. Some $\mu^$ data groups have already been conditioned during the evaluation of the experiment and so published. Naturally, for these groups the above procedure was not applied. Constraints of the type $R_2^0 = R_1^0 + \delta R_{12}^0$ were also applied.

2.4. Radius differences between isotopes from e^- and μ^-

The main source for δR data between isotopes from electron scattering was the compilation [7], but original papers were also taken into account. There are altogether 88 δR values for 66 isotope pairs. From multiple data a weighted average was formed. For δR values from muonic X-rays the main source was [10], but results from original papers were also included. Resulting in altogether 195 data for 184 isotope pairs. Most of these data are Barrett differences, so they had to be transformed to rms differences making use of Eq. (1).

2.5. Radius differences between isotopes from K_{α} isotope shifts

Most of the 89 $K_{\alpha}IS$ data are from Table II of [10], which is an extended version of [2]. Original papers have also been taken into account [23–25]. Two modifications were performed in Table II of [10]: (1) for uranium the correct mass interval is ^{233–238}U instead of ^{235–238}U, see [26] and (2) regarding the results of a χ^2/n' test [27], the shift for ^{121–123}Sb [28] was omitted and some error estimates increased. In the tables energy shifts δE_{Coul} are given, which can be expressed in terms of even moments of the charge distribution: $\delta E_{\text{Coul}} = C_1 \lambda$, where the nuclear parameter

$$\lambda = \delta \langle r^2 \rangle + \frac{C_2}{C_1} \delta \langle r^4 \rangle + \frac{C_3}{C_1} \delta \langle r^6 \rangle + \cdots$$
 (2)

contains information on the size of the nucleus. Seltzer [29] calculated the coefficients C_1 , C_2 , and C_3 . The ratios C_2/C_1 and C_3/C_1 have also been calculated by [30,31]. Dividing the measured energy shift δE_{Coul} by C_1 , one arrives at λ that contains the rms radius difference. Although a plot of λ_{KIS} from $K_{\alpha}IS$ against $\lambda_{e\mu}$ values formed from e^{-1} and μ^{-} shows a linear correlation for three isotope pairs of Pb (Fig. 1 of [10]), the validity of $C_1(Z)$ has not been tested experimentally for a wide range of atomic numbers. By 2000, the wealth of δR data from e^- and μ^- experiments made it possible to compare the C_1 value to experiment. In [27] 54 energy shifts δE_{Coul} of 18 elements and the respective radius differences δR from e^- and μ^- are used to determine the experimental coefficients $C_{1,exp} = \delta E_{Coul}/\delta E_{Coul}$ $\lambda_{e\mu}$ in the atomic number interval Z = 42-92. These experimental coefficients were then compared to the theoretically calculated C_1 values by a $\chi^2(f)$ minimization analysis, where $C_{1,exp} = f \times C_1$. The result is f =0.965(14), i.e., the experimental $C_{1,exp}$ values are, on the average, 3.5% lower than those calculated by Seltzer. It would be most desirable to have a new, more recent calculation of the momentum coefficients C_1, C_2 , and C_3 with up-to-date theoretical methods.

Applying now the modified Seltzer coefficients $C'_1 = f \cdot C_1$ (f = 0.965), we have the modified nuclear parameter $\lambda' = \lambda/f$, from which the difference of mean square radii can be determined by a rapidly converging iteration procedure. Starting with $\delta \langle r^2 \rangle_0 = \lambda'$,

$$\delta \langle r^2 \rangle_{i+1} = \lambda' - \frac{C_2}{C_1} \left[a_4 \left(\delta \langle r^2 \rangle_i \right)^2 + b_4 \delta \langle r^2 \rangle_i \right] \\ - \frac{C_3}{C_1} \left[a_6 \left(\delta \langle r^2 \rangle_i \right)^3 + b_6 \left(\delta \langle r^2 \rangle_i \right)^2 + c_6 \delta \langle r^2 \rangle_i \right],$$
(3)

where

$$\begin{aligned} a_4 &\equiv \frac{25}{14} \left(\frac{A_2 + A_1}{A_2 - A_1} \right), \quad b_4 &\equiv \frac{30}{7} (\pi a)^2, \\ a_6 &\equiv \frac{125}{48} \left(\frac{A_2 + A_1}{A_2 - A_1} \right)^2, \quad b_6 &\equiv \frac{275}{18} (\pi a)^2 \left(\frac{A_2 + A_1}{A_2 - A_1} \right), \\ c_6 &\equiv \frac{239}{9} (\pi a)^4 \end{aligned}$$

refer to a Fermi distribution with a constant surface diffuseness $a = t/(4 \ln 3)$ and a mass number dependence $c = r_0 A^{1/3}$ for the half-density radius c. Note that the value of c and r_0 does not appear in the expressions.

2.6. Radius differences from optical isotope shifts

The sources of λ or $\delta \langle r^2 \rangle$ data published before 1989 are the compilations [6,8]. More recent results are taken from original papers, they are listed among the references. Not

all of the data are included in the table. Preference was given to long, recently measured isotopic series. Sometimes, however, results from two different measurements had to be merged. Wherever possible, relative (experimental) and total (experimental + systematic) errors were separately treated. This is because the main motivation of the present work was the investigation of the radius surface R(N,Z). This necessitates the knowledge of absolute radii R. The procedure for the determination of λ and $\delta \langle r^2 \rangle$ values from the measured δv frequency shifts is described in detail in [6,10,32], together with the limitations of the procedure. Here only the main steps will be recalled. The isotope shift consists of a mass shift and a field (or volume) shift: $\delta v = \delta v_{MS} + \delta v_{FS}$. The latter term can be written in the form $\delta v_{FS} = F \lambda$, where the nuclear parameter λ has the same form as in the case of $K_{\alpha}IS$ (Eq. (2)). Although the values of $C_{i,Opt}$ for optical transitions are an order of magnitude less than those $C_{i,K}$ for K_{α} , the corresponding ratios are practically equal: $C_{2,\text{Opt}}/C_{1,\text{Opt}} \approx$ $C_{2,K}/C_{1,K}$ and $C_{3,Opt}/C_{1,Opt} \approx C_{3,K}/C_{1,K}$. Therefore, the iteration procedure described above can be utilized for those OIS results, where only λ values are given. In [8] and in some recent papers the measurements have already been evaluated by the so-called two-parameter model [33,34]. These $\delta \langle r^2 \rangle$ values were accepted without changes. A comparison of the two procedures (Table I of [35]) shows that the results are close to each other, the difference being an order of magnitude less than the total error. Radius differences $\delta R \equiv \delta \langle r^2 \rangle^{1/2}$ were calculated from $\delta \langle r^2 \rangle$ by the relation $\delta R = \delta \langle r^2 \rangle / (R_1 + R_2)$. For nuclei where no data for R_1 and R_2 existed, but there were R values for the neighbors on both sides, linear interpolation was used to estimate the missing radius. In the case of isotopic chains, the relation [36,37]

$$R(A) = R(A_0) \times \left(\frac{A}{A_0}\right)^{1/5} \tag{4}$$

was applied for extrapolation from the stable nucleus with mass number A_0 . For the elements Re, Po, Rn, Fr, Ra, and Cm there are no measured *R* values. In these cases, $R(A_0)$ was estimated by the expression [38]

$$R(A_0) = \left(r_0 + \frac{r_1}{A_0^{2/3}} + \frac{r_2}{A_0^{4/3}}\right) \times A_0^{1/3}$$
(5)

with $r_0 = 0.891(2)$ fm, $r_1 = 1.52(3)$ fm, and $r_2 = -2.8(1)$ fm. Note that these elements are used in Section 3 only for the investigation of relative $R_Z(N)$ dependence, but they were omitted while investigating the $R_N(Z)$ and $R_A(I)$ dependence, which necessitated the knowledge of absolute *R* values.

2.7. Adjusting OIS to
$$e^- + \mu^- + K_{\alpha}IS$$

The systematic errors arising from specific mass shift and electron factors can be reduced if δR values from other experimental methods are also available. Therefore, weighted averages $\delta R_{e\mu KO}$ were formed. In doing this, total errors $\Delta \delta R_{O,tot}$ were used. The uncertainty $\Delta \delta R_{e\mu KO}$ is significantly less than the original $\Delta \delta R_{O,tot}$. The reduction varies from element to element between 0.2 and 0.6. Using these improved rms differences $\delta R_{e\mu KO}$ and the respective absolute $R_{e\mu}$ radii, 32 data triplets $(2R, 1\delta R)$ and 63 quintets $(3R, 2\delta R)$ could be formed, and the respective constraints applied. This further improved the accuracy and rendered it possible to correct three inconsistencies. As a result, we have R and δR values that contain in a consistent way all of the experimental information from the four methods. These nuclei constitute the backbone along the valley of stability, onto which the wings, the isotopic series of δR values from *OIS*, will be fitted.

2.8. Fitting δR_{OIS} series to the backbone

As described in the foregoing, δR_{euKO} values were formed for those isotope pairs for which at least two of the four methods were available. Relating the δR_{euKO} differences to those measured by OIS, correction factors $\delta R_{euKO}/\delta R_{OIS}$ were formed, their values varied between 0.9 and 1.3. These factors were used to correct those δR_{OIS} differences for which only OIS measurements were available, thus correcting for the eventual common systematic error factor. The corrected δR_{OIS} differences, i.e., the wings were added to the respective backbone Rvalues obtained in the previous paragraph. In this way a set of rms charge radii was obtained, displayed in Table 1. As the correction factor has the same value for the element, this correction does not change the relative trend of $R_Z(N)$ isotopic dependence. However, it improves the absolute R values, which are important for the investigation of the radius surface R(N, Z).

3. Properties of the radius surface R(N,Z)

The set of data in Table 1 allows one to investigate the properties of the radius surface R(N,Z) or R(A,I). It is practical to consider this complicated set of points as the superposition of two structures: a smooth, slowly varying surface describing the global or rough structure, and a fine structure having valleys near magic nucleon numbers and mountains at deformations; odd–even staggering is also observed. The shell and deformation dependence has long been investigated [9,37,39–42]. On the other hand, the slow variations almost escaped attention, in spite of the fact that it may be a useful tool for extrapolation of R values to the limits of nucleon stability.

3.1. Global behavior of the radius surface along the valley of stability

First, following tradition, the mass number dependence along the valley of stability is examined using 299 isotopes of 74 elements. The radius parameter r_{LD} of the well-known liquid-drop (LD) model [43]

$$R_{\rm LD} = r_{\rm LD} A^{1/3} \tag{6}$$

was determined by a minimum- χ^2 procedure. The result is shown in Table 2 together with the standard deviation and the reduced χ^2 value χ^2/n' . It is interesting to see that the purely empirical function

$$R_e = r_e A^e \tag{7}$$

has its best fit with an exponent value e = 0.294(1), which significantly differs from 1/3. Taking into account the finite surface thickness, Elton [44] derived a threeparameter formula

$$R_s = \left(r_0 + \frac{r_1}{A^{2/3}} + \frac{r_2}{A^{4/3}}\right) \times A^{1/3},\tag{8}$$

which yields a better fit to the data. During the work it was found that the parameters r_1 and r_2 are strongly anticorrelated, which can be described by the simple linear relation $r_2 \approx -(1.4r_1 - 1)$. Hence, there remain only two free parameters in Eq. (8).

3.2. Intersections of the radius surface

The properties of the radius surface can be investigated by studying its different intersections by planes perpendicular to the (N,Z) plane, namely the $R_Z(N)$, $R_N(Z)$, and $R_A(I)$ dependencies. As the latter is redundant information, its result can be used to apply a constraint with the former two. Finally, the direction $\Delta Z/\Delta N$, for which $R(N,Z) \approx$ constant, is determined. For isotopic chains the radius formula

$$R_Z(N) = R_0 \left(\frac{A}{A_0}\right)^{k_Z}, \quad A = A_0 + \Delta N \tag{9}$$

was applied, where R_0 is the rms charge radius of the reference isotope (Z, A_0) . Results of a weighted least-squares fit $(k_Z, \text{ standard deviation (SD) and <math>\chi^2/n')$ are indicated in Table 3 under the column "From experiment." The procedure was also performed separately for proton-rich and neutron-rich nuclei. The Z-dependence along isotonic series was investigated by fitting the formula

$$R_{\rm N}(Z) = R_0 \left(\frac{A}{A_0}\right)^{k_{\rm N}}, \quad A = A_0 + \Delta Z.$$
 (10)

The resulting value of the parameter $k_{\rm N}$ is shown in Table 3. The simplified neutron and proton number dependence is illustrated schematically in Fig. 2, using rounded values of the exponents. It follows that the smooth component of the radius surface, around the nuclid $A_0 = Z_0 + N_0$, can be described by

$$R(N,Z) = R_0 \left(\frac{Z_0 + N}{A_0}\right)^{k_Z} \left(\frac{Z + N}{Z_0 + N}\right)^{k_N}$$
$$\approx R_0 \left(1 + \frac{\Delta N}{A_0}\right)^{k_Z} \left(1 + \frac{\Delta Z}{A_0}\right)^{k_N}, \tag{11}$$

Fig. 2. Schematic illustration of the smooth radius surface R(N,Z) around a reference nuclide $R(N_0,Z_0)$ (see Eqs. (9) and (10)). The exponents are rounded values of the empirical parameters shown in Table 3.

where $R_0 \equiv R(N_0, Z_0)$, $\Delta Z \equiv Z - Z_0$, and $\Delta N \equiv N - N_0 \ll N$.

Next, referring to Fig. 3, the surface R(N,Z) can be represented by the level lines corresponding to rms radii with intervals $\Delta R = 0.5$ fm (Fig. 3B). For comparison, contour lines of the liquid-drop formula, Eq. (6) are plotted in Fig. 3A.

Along isobaric series the dependence of rms radii on the symmetry parameter $I \equiv (N - Z)/A$ was studied by $R_A(I) = R_0[1 + f(I - I_0)], \quad I_0 \equiv (N_0 - Z_0)/A.$ (12)

The results for f are also shown in Table 3. They are close to those published earlier [45,46]. The search for the level lines R(N,Z) = constant was performed considering a formula similar to those above

$$R_L(\Delta N, \Delta Z) = R_0 \left(\frac{A}{A_0}\right)^{k_{\rm CR}}$$
(13)

 $(k_{CR} \text{ is the parameter for constant radius) but it was used$ $in a different way; during the fits the <math>|k_{CR}| \approx 0$ value was sought by choosing different directions in the (N, Z)plane. A direction can be characterized by the slope $\Delta Z/\Delta N$, and also by the value of the invariant *L*. For example, nuclei on the line with slope $(\Delta Z/\Delta N) =$ -(1/3) are characterized by $L = 3Z + N = \text{constant as}^{20}_{11} \text{N} - ^{22}_{10} \text{Ne}$. This means that, on the average, a decrease of rms charge radius caused by picking out a proton from the nucleus can be compensated by adding three neutrons to it.

3.3. Application of constraints between the empirical parameters

Having these experimental parameters, their values can be improved by using the relations between them.

1. Starting from $A_0 = N_0 + Z_0$ one can arrive at the isobar $A = N + Z = A_0$ by the isotopic chain of element Z_0 through $A_1(N, Z_0)$ followed by the isotonic series containing *N* neutrons. Alternatively, one can step directly from (N_0, Z_0) to (N, Z) by varying the symmetry

Fig. 3. (A) Level lines of the surface described by the liquid-drop model, Eq. (6) of Section 3. Broken lines show the region of nucleon stability. (B) Level lines of the surface described by the empirical formulae Eqs. (9) and (10) in Section 3. The slope -0.33 means that a decrease in *R* caused by removing a proton from the nucleus can be compensated by adding three neutrons to it. Broken lines show the region of nucleon stability. (C) Same as (B) but with separate parameter values for proton-rich and for neutron-rich nuclei (see Table 3). The indentation on the radius surface along the line of stability is clearly seen (see also Section 3).

parameter *I*. It can be shown that the relation for the true values of the parameters

$$f^{0} \approx \frac{1}{2} (k_{Z}^{0} - k_{N}^{0}) \tag{14}$$

is valid to a good approximation. The systematic error of this approximation ($\leq 1\%$) is much less than the experimental uncertainties of the parameters. The results for k_Z , k_N , and f derived by this constraint are shown in the last column of Table 3.

2. It can also be shown that for nuclei along iso-radius series ($R \approx \text{constant}$) the ratio $-k_Z/k_N$ is close to the slope $\Delta Z/\Delta N$. Therefore, this ratio can be regarded as an independent estimation of the slope. Here, the systematic error of the approximation (~10%) is about the same size as the experimental one. This is taken into account by choosing the weights accordingly. Then the weighted average of $-k_Z/k_N$ and $\Delta Z/\Delta N$ was formed. These are shown for $\Delta Z/\Delta N$ in the last column of Table 3.

3.4. The two-liquid drop model

The smooth behavior of the radius surface renders its interpretation possible by a simple model, which is a simple extension of the traditional liquid-drop approach. Here only the main characteristics and results are described and details will be published elsewhere. The model works with uniform density distributions (by sections) for protons and neutrons separately. Their sum $\rho_0 = \rho_{\rm P} + \rho_{\rm N}$ is assumed constant within a radius $R_0 = (3A/4\pi\rho_0)^{1/3}$. In the calculations an average nucleon density $\rho_0 = 0.128 \text{ n/fm}^{-3}$ was used, as obtained from fitting the liquid-drop formula (6) to stable nuclei. (The value $\rho_{0 \text{ F}} \approx 0.17 \text{ n/fm}^{-3}$, as often found in the literature, refers to the maximum density of a Fermi-like distribution fitted to measurements on the heaviest nuclei [44, p. 50].) It is assumed that in stable nuclei $\rho_{P,st}$ and $\rho_{N,st}$ both extend to R_0 . Away from stability the extension and ratio of ρ_P and ρ_N are different. In proton-rich nuclei there is a proton skin from R_N to R_0 ; in neutron-rich nuclei there is a neutron skin from R_p to R_0 . In the case of tin isotopes, rms radius values calculated by the model and by Eq. (9) are close to each other, the standard deviation being SD = 0.004 fm. The skin thickness formed by the majority nucleons depends almost linearly on $dA \equiv A - A_{stab}$: $dR = 0.008 \times dA$. Here the skin thickness dR is defined naturally as the difference between the radius parameters of the model, while

most experiments generally yield the difference of rms neutron and proton radii. For uniform density distributions with radius difference dR_{np} the simple relation holds: $d\langle r^2 \rangle_{np}^{1/2} = \sqrt{3/5} dR_{np}$. It should be noted that in the present simple form of the model it was postulated that at the line of stability the proton and neutron densities have the same radius, the skin thickness vanishes. This may not be true. There is evidence for a finite neutron skin, e.g. [47].

Small differences between the model and the empirical formula (9) suggested that different values for the empirical parameters should be used for protonrich and neutron-rich nuclei, respectively. Results of these parameter searches are shown in Table 3. The level lines of the surface R(N,Z) calculated with these parameters are plotted in Fig. 3C. It seems that there is an indentation in the radius surface along the stability line.

A possible interpretation for the indentation may be a decrease in ρ_0 as one moves away from the line of stability. Assuming a linear dependence on $|I - I_{st}|$, the nuclear density $\rho_0 = \rho_{0,st}(1 + g|I - I_{st}|)$ was introduced into the model by varying the value of the parameter g, so that the minimum SD was searched. In the case of the Z = 50 isotopic series the result is g = -0.12 (SD = 0.0021). That is, going away from the line of stability to $|I - I_{st}| = 0.1$, e.g., from A = 118 to 105, the density ρ_0 decreases by 1%.

4. Fine structure in the charge radii

Along the valley of stability radii of nuclei near or at magic nucleon numbers are significantly less than the average trend, while they deviate upwards in between. These deviations can be described by the nucleonic promiscuity factor [48] $P \equiv N_p N_n / (N_p + N_n)$ in the formula [45]

$$R_{\rm P} = R_{0,\rm P} + dR_{\rm P}$$

= $\left(r_{0,\rm P} + \frac{r_{1,\rm P}}{A^{2/3}} + \frac{r_{2,\rm P}}{A^{4/3}}\right) \times A^{1/3} + a\frac{P}{R_{0,\rm P}}$ (15)

where $R_{0,P}$ is the radius for closed-shell nuclei, while N_p and N_n are numbers of valence protons and neutrons (or holes), respectively. Values of the parameters $r_{0,P}$, $r_{1,P}$, $r_{2,P}$, and *a* are shown in Table 2. For the calculation of the factor *P* the following magic numbers produced the best fit: $Z_M = 2$, 6, 14, 28, 50, 82, (114), and $N_M = 2$, 8, 14, 28, 50, 82, 126, (184). It should be noted that in other investigations [42,49,50], too, the irregular magic numbers 6 and 14 proved to be present. Other semi-magic proton and neutron numbers at $Z_M = 40$, 64 and $N_M = 56$ [51] were also tested in several combinations but without positive result. The parameters of the formula vary somewhat with mass number; therefore, the

Fig. 4. R/R_{emp} values for sodium isotopes. R, Experimental rms charge radii from [52]; R_{emp} , radii calculated by the empirical formula Eq. (9) in Section 3.

parameter set for light nuclei ${}^{9}Be^{-27}Al$ is separately given in Table 2.

Along isotopic series the smooth function R(N,Z) may be used to divide the individual experimental R values. The resulting R/R_{emp} values (where R_{emp} is the value of the smooth empirical function for the given nucleus) along isotopic series follow nearly the same systematics as observed earlier [9,37,39–42], showing pronounced shell effects for neutron numbers N = 28, 50, 82, and 126. In the case of light nuclei $N \sim 14-16$ they seem to have magic character (see Fig. 4 regarding experimental data from [52]). (Figures for other elements can be obtained from the author.) A sudden increase at the transitional region $N \sim 88-90$ can also be clearly observed. Isotonic series are less accurate, but the main shell effects at Z = 28, 50, and 82 are clearly noticeable.

Acknowledgments

This work was supported by the International Atomic Energy Agency under Research Contract No. 9333. The author is indebted to Dr.G. Varga for his contribution to this work. Thanks are also due to Professor R. Boehm for helpful information.

References

- R. Hofstadter, H.R. Collard, in: H. Schopper (Ed.), Landolt-Börnstein, New series, Group I. Nuclear Physics and Technology, vol. 2, Nuclear Radii, Springer-Verlag, Berlin, 1967.
- [2] F. Boehm, P.L. Lee, At. Data Nucl. Data Tables 14 (1974) 605.
- [3] R. Engfer et al., At. Data Nucl. Data Tables 14 (1974) 509.
- [4] K. Heilig, A. Steudel, At. Data Nucl. Data Tables 14 (1974) 613.
- [5] C.W. deJager et al., At. Data Nucl. Data Tables 14 (1974) 479.
- [6] P. Aufmuth et al., At. Data Nucl. Data Tables 37 (1987) 455.
- [7] H. deVries et al., At. Data Nucl. Data Tables 36 (1987) 495.
- [8] E.W. Otten, in: Treatise in Heavy-Ion Physics, vol. 8, 1989, p. 604.

- [9] E.G. Nadjakov et al., At. Data Nucl. Data Tables 56 (1994) 133.
- [10] G. Fricke et al., At. Data Nucl. Data Tables 60 (1995) 177.
- [11] I. Angeli, Acta Phys. Hung. 69 (1991) 233.
- [12] I. Angeli, Table of Nuclear Root Mean Square Charge Radii, INDC(HUN)-033, September 1999 (IAEA Nuclear Data Section, Vienna). Available from http://www.nds.iaea.or.at/indc-sel.html>.
- [13] I. Sick, Phys. Lett. B 576 (2003) 62.
- [14] K. Melnikov, T. van Ritbergen, Phys. Rev. Lett. 84 (2002) 1673.
- [15] I. Sick, D. Trautmann, Nucl. Phys. A 637 (1998) 559.
- [16] A. Huber et al., Phys. Rev. Lett. 80 (1998) 468.
- [17] H.D. Wohlfahrt et al., Phys. Rev. C 22 (1980) 264.
- [18] H.D. Wohlfahrt et al., Phys. Rev. C 23 (1981) 533.
- [19] J. Herberz, Ph.D. thesis, University of Mainz, KPH 6/89 (1989).
- [20] G. Fricke et al., Phys. Rev. C 45 (1992) 80.
- [21] R.C. Barrett, Phys. Lett. B 33 (1970) 388.
- [22] I. Angeli, Acta Phys. Hung. New Series 15 (2002) 87.
- [23] P.L. Lee, F. Boehm, A.A. Hahn, Phys. Rev. C 17 (1978) 1859.
- [24] C.W.E. Eijk et al., J. Phys. G 5 (1979) 315.
- [25] S.R. Elliott et al., Phys. Rev. Lett. 76 (1996) 1031.
- [26] R.T. Brockmeier et al., Phys. Rev. Lett. 15 (1965) 132.
- [27] I. Angeli, Hyperfine Interact. 136 (2001) 17.
- [28] A.S. Rylnikov et al., J. Exp. Theor. Phys. 63 (1972) 53.
- [29] E.C. Seltzer, Phys. Rev. 188 (1969) 1916.
- [30] G. Torbohm et al., Phys. Rev. A 31 (1985) 2038.
- [31] S.A. Blundell et al., J. Phys. B 20 (1987) 3663.

- [32] K. Heilig, Hyperfine Interact. 38 (1987) 803.
- [33] S.A. Ahmad et al., Z. Phys. A 321 (1985) 35.
- [34] S.A. Ahmad et al., Nucl. Phys. A 483 (1988) 244.
- [35] I. Angeli, Acta Phys. Hung. New Series 17 (2003) 3.
- [36] J.P. Schiffer, Phys. Lett. 29B (1969) 399.
- [37] I. Angeli, M. Csatlós, Nucl. Phys. A 288 (1977) 480.
- [38] I. Angeli, AMCO-9, in: 9th Conference on Atomic Masses and Fundamental Constants, July 19–24, 1992, Bernkastel-Kues.
- [39] D.N. Stacey, Rep. Prog. Phys. 29 (1966) 171.
- [40] I. Angeli, M. Csatlós, ATOMKI Közlemények 20 (1978) 1.
- [41] W.D. Myers, K.H. Schmidt, Nucl. Phys. A 410 (1983) 61.
- [42] E. Wesolowski, J. Phys. G. 11 (1985) 909.
- [43] G. Gamow, Proc. R. Soc. Lond. A 216 (1930) 632.
- [44] L.R.B. Elton, Nuclear Sizes, Oxford University Press, Oxford, 1961.
- [45] I. Angeli, J. Phys. G. 17 (1991) 439.
- [46] I. Angeli, Acta Phys. Hung. New Series 13 (2001) 149.
- [47] A. Krasznahorkay et al., Phys. Rev. Lett. 82 (1999) 3216.
- [48] R.F. Casten et al., Phys. Rev. Lett. 58 (1987) 65.
- [49] M. Uno, M. Yamada, Progr. Theor. Phys. 53 (1975) 987.
- [50] M. Uno, M. Yamada, Progr. Theor. Phys. 65 (1981) 1322.
- [51] N. Zeldes, in: P.G. Hansen, O.B. Nielsen (Eds.), Proceedings of the 4th International Conference on Nuclei Far From Stability, vol. I, Geneva, CERN, 1981, p. 93.
- [52] F. Touchard et al., Phys. Rev. C 25 (1982) 2756.

Explanation of Tables

Table 1. Nuclear rms charge radii

Ζ	Atomic (proton) number of the element
El	Chemical symbol of the element
(El)	For six elements, designated by parentheses (El) there are only δR measurements; the
	reference R_0 values were estimated by Eq. (5)
Α	Mass number of the isotope
R (fm)	$\equiv \langle r^2 \rangle^{1/2}$. Experimental root-mean-square charge radius in fm = 10 ⁻¹⁵ m. For the neutron $\langle r^2 \rangle$
	is given in fm ² . For the proton, see also paragraph 3 in Section 2.
$\Delta_{\rm tot} R$ (fm)	Total error of <i>R</i> , including both experimental and systematic errors, in $fm = 10^{-15} m$. See
	Section 2
$\Delta_{\rm rel} R$ (fm)	Relative error of R with respect to the radius of the reference isotope; in $fm = 10^{-15}$ m. See
	Section 2
Parameters	of radius formulae for nuclei near the stability line

Table 2. ιy

Model	Model underlying the radius formula
Equation	Number of the equation of the radius formula in Section 1
Parameters	Best-fit parameter values of the formula
St. Dev. (fm)	Standard deviation of the experimental data from the formula
χ^2/n'	Reduced χ^2 value

Empirical parameters characterizing the radius surface R(N,Z)Table 3.

Equation	Number of the empirical formula
Parameter	Parameter of the formula
Region	Region of nuclei where the fit was performed
From experiment	Result of the best-fit procedure to the experimental data
St. Dev. (fm)	Standard deviation of the experimental data from the formula
χ^2/n'	Reduced χ^2 value
With constraint	Parameter values improved by the constraints, see Eq. (14) in Section 3.

Table 4. Annotated references for the Introduction and for the Tables

Table 1 (continued)

El

A

37

 $R~({
m fm})$

3.3901

 $\Delta_{\rm tot} R$ (fm)

.0028

Ζ

 $\Delta_{\rm rel} R$ (fm)

.0013

.0099

.0006 .0032 .0057 .0003 .0004 .0020 .0013 .0014 .0017 .0016 .0017 .0004 .0007 .0005 .0009 .0008 .0007 .0019 .0009 .0049 .0008 .0009

Table 1

-

Nuclear rms charge radii. (For the neutron the entry is $\langle r^2 \rangle$ (fm²) and for the proton and deuteron, see Section 2.) See page 194 for Explanation of Tables

7	F 1	4	$\mathbf{D}(\mathbf{f}_{m})$		A D (C)			38	3.4020	.0017
Z	El	A	R (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel}R~({\rm fm})$			39	3.4085	.0105
0	n	1	-0.1149	.0024				40	3.4269	.0017
1	Н	1	0.8791	.0088				46	3.4363	.0068
		2	2.1402	.0091		19	К	38	3.4262	.0067
		3	1.7591	.0356				39	3.4346	.0017
2	He	3	1 9448	0137				40	3 4378	0027
2	110	4	1.6757	0026				41	3 4514	0030
3	Ti	6	2 5385	0267				42	3 4512	0074
5	LI	7	2.3303	0281				13	3 4551	0080
4	Da	,	2.4312	.0201				43	2 4559	.0089
4	DC	10	2.3160	.0114				44	2.4500	.0104
3	В	10	2.4278	.0492				45	3.4599	.0121
	a	11	2.4059	.0291				46	3.4552	.0129
6	C	12	2.4703	.0022		•	a	47	3.4529	.0141
		13	2.4614	.0033		20	Ca	40	3.4764	.0010
_		14	2.5037	.0081				41	3.4768	.0011
7	Ν	14	2.5579	.0068				42	3.5063	.0010
		15	2.6061	.0074				43	3.4928	.0008
8	0	16	2.7013	.0055				44	3.5155	.0009
		17	2.6953	.0073				45	3.4931	.0015
		18	2.7745	.0058				46	3.4925	.0009
9	F	19	2.8976	.0024				47	3.4771	.0022
10	Ne	17	3.0428	.0188	.0135			48	3.4738	.0009
		18	2.9719	.0084	.0048			50	3.5145	.0072
		19	3.0081	.0053	.0033	21	Sc	45	3.5443	.0023
		20	3.0053	.0021		22	Ti	46	3.6052	.0016
		21	2.9672	.0026				47	3.5944	.0018
		22	2,9541	0019				48	3 5912	0017
		23	2.9126	0105	0057			49	3 5735	0018
		24	2 9032	0104	0044			50	3 5704	0016
		25	2.9052	0133	0069	23	V	51	3 5994	0022
		25	2.9303	0153	.0005	23	Cr	50	3.6604	0022
		20	2.9200	.0135	.0001	24	CI	50	2 6424	.0022
11	No	20	2.9032	.0243	.0139			52	3.0424	.0021
11	INa	20	2.9/10	.0424	.0119			55	2.0388	.0021
		21	2.0150	.0287	.0064	25	Ma	54	3.0800	.0017
		22	2.9852	.0109	.0007	25	MIN	55	3.7057	.0022
		23	2.9936	.0021	00/7	26	Fe	54	3.6931	.0018
		24	2.9736	.0168	.0067			56	3./3/1	.0015
		25	2.9770	.0249	.0050			5/	3./534	.0017
		26	2.9928	.0327	.0030		~	58	3.7748	.0014
		27	3.0133	.0461	.0066	27	Co	59	3.7875	.0021
		28	3.0394	.0573	.0082	28	Ni	58	3.7748	.0014
		29	3.0915	.0718	.0131			60	3.8119	.0014
		30	3.1172	.0878	.0195			61	3.8221	.0017
		31	3.1702	.0891	.0113			62	3.8406	.0016
12	Mg	24	3.0568	.0017				64	3.8587	.0017
		25	3.0280	.0021		29	Cu	63	3.8823	.0017
		26	3.0334	.0020				65	3.9022	.0017
13	Al	27	3.0605	.0040		30	Zn	64	3.9286	.0014
14	Si	28	3.1223	.0024				66	3.9496	.0013
		29	3.1168	.0050				68	3.9665	.0014
		30	3.1332	.0040				70	3.9845	.0019
15	Р	31	3.1888	.0018		31	Ga	69	3.9973	.0017
16	S	32	3.2608	.0018				71	4.0118	.0018
		34	3.2845	.0021		32	Ge	70	4.0414	.0012
		36	3.2982	.0021				72	4.0577	.0012
17	Cl	35	3 3652	0145				73	4 0634	0014
- /	01	37	3 3840	0170				74	4 0744	0012
18	Δr	37	3 3467	0103	0057			76	4 0812	0012
10	F11	32	3 3402	0076	0031	33	Δc	75	4 0060	0012
		21	3 3640	00/2	.0031	24	Se	74	4 0700	0200
		54 25	2 2422	.0045	.0009	34	36	74 74	4.0700	.0200
		33	3.3032	.0000	.0039			70	4.139/	.0010
		36	5.3902	.0020	.0006			11	4.139/	.0017

Table 1 (continued)

Table 1	(continue	ed)				Table 1	(continue	d)			
Ζ	El	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)	Ζ	El	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)
		78	4.1407	.0018				90	4.2606	.0034	.0005
		80	4.1399	.0019				91	4.2747	.0043	.0004
		82	4.1399	.0020				92	4.2949	.0059	.0006
35	Br	79	4.1630	.0021				93	4.3062	.0067	.0005
		81	4.1599	.0021				94	4.3244	.0081	.0007
36	Kr	72	4.1635	.0071	.0022			95	4.3370	.0090	.0006
		74	4.1871	.0040	.0006			96	4.3612	.0108	.0007
		75	4.2097	.0041	.0008			97	4.3725	.0117	.0009
		76	4.2020	.0034	.0005			98	4.4578	.0178	.0008
		77	4.2082	.0035	.0006			99	4.4710	.0189	.0010
		78	4.2032	.0016	.0004	20		100	4.4874	.0206	.0019
		79	4.2034	.0029	.0005	39	Y	89	4.2417	.0020	000 <i>5</i>
		80	4.1976	.0013	.0008	40	Zr	87	4.2820	.0014	.0005
		81	4.1953	.0021	.0005			88	4.2812	.0013	.0005
		82	4.1922	.0015	.0004			89	4.2/15	.0011	.0006
		83	4.1860	.0018	.0004			90	4.2696	.0008	
		84	4.1882	.0014	.0001			91	4.2844	.0010	
		80	4.1840	.0014	.0005			92	4.3057	.0009	
		80 07	4.1830	.0012	0004			94	4.3312	.0009	
		8/	4.1980	.0021	.0004			90	4.3498	.0011	0006
		00 80	4.2174	.0040	.0003			97	4.3933	.0091	.0006
		09 00	4.2290	.0032	.0003			98	4.4165	.0109	.0006
		90	4.2428	.0070	.0012			100	4.4349	.0121	.0000
		02	4.2349	.0080	.0007			100	4.5220	0203	.0005
		92	4.2732	.0099	.0000			101	4.5487	.0203	.0006
		94	4.3014	0128	.0005	41	Nh	03	4 3241	0015	.0000
		95	4 3078	0135	0004	42	Mo	92	4 3156	0011	
		96	4 3282	0160	0012	72	1010	94	4 3518	0009	
37	Rb	76	4 2289	0092	0033			95	4 3617	.0009	
27	110	77	4 2380	0084	0008			96	4 3841	0008	
		78	4.2410	.0084	.0004			97	4.3877	.0008	
		79	4.2303	.0066	.0003			98	4.4088	.0011	
		80	4.2287	.0065	.0008			100	4.4458	.0013	
		81	4.2225	.0051	.0003	44	Ru	96	4.3927	.0047	
		82	4.2164	.0044	.0008			98	4,4232	.0055	
		83	4.2057	.0026	.0002			99	4.4346	.0042	
		84	4.1992	.0022	.0004			100	4.4536	.0031	
		85	4.2031	.0018	.0003			101	4.4616	.0020	
		86	4.2019	.0020	.0004			102	4.4818	.0018	
		87	4.1981	.0017				104	4.5104	.0020	
		88	4.2178	.0039	.0010	45	Rh	103	4.4942	.0023	
		89	4.2419	.0073	.0004	46	Pd	102	4.4839	.0044	
		90	4.2599	.0103	.0010			104	4.5086	.0025	
		91	4.2783	.0132	.0007			105	4.5158	.0025	
		92	4.2983	.0164	.0010			106	4.5322	.0028	
		93	4.3135	.0189	.0010			108	4.5563	.0028	
		94	4.3287	.0214	.0011			110	4.5776	.0031	
		95	4.3517	.0251	.0013	47	Ag	101	4.4712	.0093	.0003
		96	4.3637	.0271	.0014			103	4.4976	.0070	.0002
		97	4.4458	.0404	.0021			104	4.5069	.0062	.0002
		98	4.4577	.0424	.0022			105	4.5237	.0049	.0002
38	Sr	78	4.2550	.0040	.0010			107	4.5442	.0035	.0001
		79	4.2577	.0052	.0007	10	G 1	109	4.5647	.0029	00.15
		80	4.2550	.0048	.0008	48	Cd	102	4.4704	.0095	.0047
		81	4.2534	.0041	.0007			103	4.4860	.0088	.0045
		82	4.2457	.0037	.0007			104	4.5052	.0088	.0051
		83	4.2432	.0030	.0005			105	4.5157	.00/1	.0037
		84	4.2304	.0017	.0004			105	4.5340	.0045	.00004
		83 02	4.220/	.0015	.0004			10/	4.3438	.0057	.0032
		00 07	4.2203	.0011	.0002			108	4.3338	.0045	.00003
		0/ QQ	4.219/ 1 2100	.0009	.0002			109	4.3390	.0005	00044
		80	4 2380	0017	0001			111	4 5708	0023	00002
		07	7.2300	.0017	.0001			111	7.3/70	.0022	.00002

Та

able 1	(continue	rd)				Table 1	(continue	rd)			
Ζ	El	Α	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)	Ζ	El	Α	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)
		112	4.5950	.0020				126	4.7703	.0048	.0007
		113	4.6006	.0020	.00002			128	4.7755	.0048	.0004
		114	4.6137	.0019				129	4.7762	.0047	.0001
		115	4.6170	.0054	.0049			130	4.7832	.0046	.0003
		116	4.6284	.0021	.00002			131	4.7812	.0046	.0001
		118	4.6316	.0037	.0024			132	4.7866	.0047	.0002
		120	4.6379	.0059	.0045			134	4.7921	.0047	.0001
49	In	104	4.5168	.0119	.0016			136	4.7991	.0047	
		105	4.5298	.0105	.0015			137	4.8143	.0048	.0003
		106	4.5364	.0096	.0013			138	4.8359	.0054	.0003
		107	4.5487	.0082	.0011			139	4.8511	.0060	.0006
		108	4.5566	.00/1	.0005			140	4.8694	.0067	.0002
		109	4.5684	.0061	.0008			141	4.8845	.0075	.0004
		110	4.5742	.0056	.0009			142	4.9016	.0086	.0009
		111	4.5859	.0043	.0005			143	4.9137	.0092	.0004
		112	4.3911	.0039	.0007			144	4.9500	.0102	.0005
		115	4.0018	.0023	.00003	55	Ca	140	4.9373	.0119	.0003
		114	4.0000	.0027	.0002	55	Cs	110	4.7834	.0092	.0002
		115	4.0109	.0024	0001			120	4.7016	.0090	.0000
		117	4.6225	0030	.0001			120	4.7910	.0070	0001
		118	4.6353	0031	0007			121	4 7776	.0078	.0001
		110	4.6333	0038	0004			122	4.7823	.0070	0001
		120	4 6464	0040	0002			123	4 7831	0062	0001
		120	4 6527	0046	0003			121	4 7882	0062	0001
		122	4 6557	0050	0004			125	4 7875	0056	0001
		123	4 6619	0055	0003			127	4 7938	0055	0001
		124	4.6650	.0060	.0006			128	4.7923	.0052	.00004
		125	4.6696	.0063	.0005			129	4.7982	.0051	.0001
		126	4.6728	.0068	.0008			130	4.7993	.0049	.0001
		127	4.6761	.0071	.0008			131	4.8026	.0047	.0001
50	Sn	108	4.5607	.0027	.0004			132	4.8003	.0046	.0001
		109	4.5690	.0025	.0004			133	4.8041	.0046	
		110	4.5807	.0064	.0003			134	4.8031	.0046	.0001
		111	4.5859	.0061	.0003			135	4.8067	.0047	.0001
		112	4.5943	.0018	.0002			136	4.8058	.0052	.0001
		113	4.6038	.0047	.0001			137	4.8126	.0050	.0001
		114	4.6103	.0017	.0003			138	4.8251	.0050	.0001
		115	4.6167	.0038	.0001			139	4.8414	.0069	.0001
		116	4.6266	.0015				140	4.8545	.0088	.0001
		117	4.6318	.0012	.0001			141	4.8678	.0109	.0002
		118	4.6413	.0011	.0001			142	4.8812	.0132	.0001
		119	4.6450	.0010	.0001			143	4.8950	.0151	.0002
		120	4.6543	.0009	.0002			144	4.9039	.0162	.0002
		121	4.6589	.0013	.0001			145	4.91/1	.0191	.0002
		122	4.665/	.0010	.0003	50	D.,	146	4.9263	.0193	.0003
		123	4.0084	.0020	.0001	30	ва	120	4.8088	.0057	.0002
		124	4.0/39	.0012	.0004			121	4.8170	.0052	.0002
51	Sh	125	4.0779	.0027	.0003			122	4.0104	.0055	.0003
51	30	121	4.0802	.0023				123	4.8130	.0055	.0003
52	Те	123	4.0879	.0021				124	4.8170	.0051	.0002
52	10	122	4.7111	0023				125	4 8225	0049	.0002
		123	4 7178	0017				120	4 8207	0050	0002
		125	4 7198	0018				128	4 8260	0047	0001
		126	4.7269	.0021				120	4.8252	.0048	.0001
		128	4,7353	.0025				130	4.8288	.0047	.0001
		130	4,7426	.0025				131	4,8281	.0047	.0001
53	Ι	127	4.7500	.0038				132	4.8309	.0046	.0001
54	Xe	116	4.7113	.0084	.0010			133	4.8291	.0046	.0001
	-	118	4.7318	.0073	.0007			134	4.8298	.0048	.0001
		120	4.7461	.0066	.0007			135	4.8273	.0048	.0001
		122	4.7555	.0061	.0006			136	4.8327	.0048	.0001
		124	4.7621	.0046	.0005			137	4.8326	.0048	.0001

Table 1 (continued)

Table 1	(continue	ed)				Table 1	(continue	rd)			
Ζ	El	Α	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)	Z	El	Α	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)
		138	4.8385	.0045				148	5.0059	.0176	.0024
		139	4.8523	.0048	.0001			149	5.0215	.0190	.0033
		140	4.8697	.0058	.0001			150	5.0308	.0199	.0039
		141	4.8823	.0068	.0001			<u>151</u>	5.0534	.0041	
		142	4.8973	.0082	.0002			152	5.1075	.0302	.0080
		143	4.9110	.0096	.0002			153	5.1127	.0037	
		144	4.9264	.0112	.0002			154	5.1213	.0317	.0063
		145	4.9375	.0124	.0002			155	5.1200	.0314	.0060
		146	4.9513	.0139	.0002			156	5.1236	.0320	.0063
		148	4.9773	.0168	.0004			157	5.1348	.0146	.0006
57	La	137	4.8492	.0060	.0029			158	5.1408	.0155	.0006
		138	4.8464	.0053	.0011			159	5.1493	.0169	.0007
		139	4.8549	.0049		64	Gd	146	4.9760	.0134	
58	Ce	136	4.8737	.0017	.0002			152	5.0819	.0030	.0001
		138	4.8735	.0017	.0002			154	5.1253	.0017	
		140	4.8770	.0017				155	5.1346	.0016	.00003
		142	4.9065	.0017				156	5.1458	.0014	.0001
		144	4.9308	.0024	.0002			157	5.1492	.0014	.0001
		146	4.9602	.0028	.0002			158	5.1617	.0018	.0001
		148	4.9911	.0035	.0002			160	5.1776	.0020	.0001
59	Pr	141	4.8919	.0050		65	Tb	147	4.9211	.1508	.0033
60	Nd	132	4.9168	.0038	.0029			148	4.9299	.1507	.0030
		134	4.9123	.0031	.0020			149	4.9429	.1506	.0027
		135	4.9080	.0040	.0032			150	4.9502	.1505	.0026
		136	4.9106	.0035	.0026			151	4.9633	.1504	.0023
		137	4.9075	.0029	.0015			152	4.9691	.1504	.0021
		138	4.9124	.0031	.0020			153	4.9950	.1502	.0016
		139	4.9071	.0028	.0013			154	5.0336	.1501	.0019
		140	4.9095	.0035	.0025			155	5.0391	.1500	.0010
		141	4.9052	.0028	.0013			15/	5.0487	.1500	.0009
		142	4.9118	.0024	0005	((D	159	5.0600	.1500	0002
		143	4.9231	.0024	.0005	66	Dy	140	5.0522	.2030	.0002
		144	4.9409	.0029	.0003			148	5.0538	.2030	
		145	4.9550	.0034	.0003			149	5.0042	.2035	.0012
		140	4.9080	.0027	.0004			150	5.0772	.2037	.0024
		140	4.9980	.0019	.0004			151	5.0800	2122	.0034
62	Sm	130	1 9528	.0021	.0005			152	5.1000	.2135	0058
02	5111	130	4.9328	.0003	.0011			153	5 1272	21/1	.0058
		140	4.9480	.0003	0011			155	5.1272	.2203	.0078
		141	4 9396	0065	0018			155	5 1630	2556	0117
		142	4 9438	0063	.0010			150	5 1712	2628	0126
		142	4 9396	0063	0011			158	5 1812	2720	0136
		143	4 9445	0062	.0011			159	5 1820	2728	0136
		145	4 9584	0063	0007			160	5 1938	2843	0146
		146	4 9746	0065	0010			161	5 1965	0061	10110
		147	4 9839	0010	.0010			162	5 2068	0027	
		148	5 0009	0016				163	5 2091	0025	
		149	5.0108	.0010				164	5.2207	.0024	
		150	5.0400	.0011		67	Но	151	5.0454	.0349	.0011
		151	5.0544	.0093				152	5.0660	.0339	.0009
		152	5.0842	.0055				153	5.0791	.0334	.0009
		153	5.0940	.0084				154	5.0893	.0329	.0006
		154	5.1112	.0058				155	5.1104	.0322	.0005
63	Eu	138	4.9850	.0175	.0057			156	5.1145	.0322	.0006
		139	4.9792	.0167	.0033			157	5.1549	.0312	.0003
		140	4.9716	.0163	.0012			158	5.1584	.0312	.0004
		141	4.9718	.0162	.0009			159	5.1684	.0310	.0002
		142	4.9628	.0163	.0010			160	5.1672	.0310	.0003
		143	4.9656	.0162	.0005			161	5.1791	.0309	.0002
		144	4.9632	.0162	.0006			162	5.1823	.0309	.0007
		145	4.9682	.0162	_			163	5.1909	.0308	.0006
		146	4.9807	.0164	.0009			165	5.2022	.0308	
		147	4.9954	.0170	.0017	68	Er	150	5.0388	.0287	_

Table 1	(continue	d)				Table 1	(continue	ed)			
Ζ	E1	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)	Z	El	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)
		152	5.0707	.0291	.0024			178	5.3855	.0306	.0002
		154	5.1016	.0303	.0048			179	5.3914	.0307	.0003
		156	5.1344	.0322	.0074	72	Hf	170	5.2876	.0056	.0007
		158	5.1707	.0353	.0106			172	5.3047	.0043	.0005
		160	5.2019	.0380	.0126			173	5.3123	.0039	.0004
		162	5.2242	.0042				174	5.3185	.0035	.0003
		164	5.2375	.0037				175	5.3175	.0037	.0011
		166	5.2505	.0031				176	5.3305	.0037	.0002
		167	5.2547	.0031				177	5.3331	.0038	.0001
		168	5.2673	.0037				178	5.3356	.0031	0001
60	Ŧ	170	5.2857	.0043	0000			179	5.3358	.0024	.0001
69	Im	156	5.1018	.0134	.0006			180	5.3422	.0024	.0002
		15/	5.1146	.00/4	.0009	72	т.	182	5.3481	.0037	.0011
		158	5.1239	.0069	.0007	/5	Ta W	181	5.3507	.0034	0008
		159	5.1590	.0060	.0004	/4	W	180	5.3493	.0023	.0008
		161	5.1507	.0033	.0004			102	5.3300	.0017	0005
		162	5.1019	.0030	.0005			105	5.3500	.1300	.0003
		162	5 1851	.0048	.0003			104	5.3070	.0017	.0008
		164	5 1008	.0042	.0002	75	Pa	185	5 3 2 8 6	.0019	.0007
		165	5 2006	.0042	.0000	75	ĸe	187	5.3286	.0120	0000
		165	5.2000	.0038	.0002	76	Os	18/	5 3820	.0127	.0009
		167	5 2130	0036	.0003	70	03	186	5 3908	0016	.0010
		168	5 2171	0036	0004			187	5 3934	0017	0005
		169	5 2256	0035	.0004			188	5 3994	0011	0009
		170	5 2304	0036	0005			189	5 3600	1500	0010
		171	5 2387	0037	0006			190	5 4061	0009	10010
		172	5.2408	.0052	.0030			192	5.4127	.0011	
70	Yb	152	5.0303	.0136	.0058	77	Ir	182	5.3809	.1061	.0006
		154	5.0790	.0132	.0056			183	5.3857	.1061	.0005
		156	5.1158	.0130	.0055			184	5.3881	.1061	.0005
		158	5.1427	.0091	.0006			185	5.3899	.1061	.0005
		160	5.1721	.0079	.0004			186	5.3943	.1061	.0005
		161	5.1832	.0075	.0003			187	5.3881	.1061	.0005
		162	5.2005	.0069	.0003			188	5.3890	.1061	.0005
		163	5.2112	.0066	.0002			189	5.3938	.1061	.0005
		164	5.2269	.0063	.0003			191	5.3981	.1061	
		165	5.2364	.0061	.0002			193	5.4019	.1061	.0005
		166	5.2496	.0059	.0001	78	Pt	178	5.3721	.0070	.0015
		167	5.2595	.0059	.00005			179	5.3915	.0055	.0020
		168	5.2678	.0059	_			180	5.3890	.0051	.0010
		170	5.2830	.0058	.0001			181	5.3998	.0044	.0014
		171	5.2891	.0060	.0001			182	5.3971	.0043	.0009
		172	5.2978	.0053	.0002			183	5.4033	.0037	.0007
		173	5.3041	.0046	.0002			184	5.4028	.0037	.0006
		174	5.3115	.0057	.0003			185	5.4155	.0029	.0006
	_	176	5.3228	.0069	.0003			186	5.4046	.0039	.0011
71	Lu	161	5.2313	.0112	.0006			187	5.4074	.0041	.0019
		162	5.2416	.0102	.0005			188	5.4059	.0035	.0007
		163	5.2582	.0087	.0004			189	5.4068	.0037	.0012
		164	5.2690	.0077	.0004			190	5.4117	.0032	.0007
		165	5.2841	.0064	.0003			191	5.4110	.0032	.0007
		100	5.2981	.0053	.0002			192	5.4181	.0029	.0009
		10/	5.3115	.0044	.0002			193	5.4201	.0027	.0006
		108	5.3233	.0038	.0001			194	5.4247	.0025	0004
		109	5 2260	.0050	.0001			193	5.42/8 5.4215	.0020	.0004
		171	5 2420	.0302				190	5 4402	.0032	0004
		171	5 2189	0302	0001	70	Δ.,	190	5 2877	.0005	0007
		172	5 3578	0302	0001	17	Au	103	5 4208	.0002	0012
		174	5 3635	0303	0001			184	5 4788	0040	0001
		175	5 3700	0300	0002			185	5 4345	0038	0007
		176	5 3738	0304	0002			187	5 4002	0058	0008
		177	5 3812	0305	0002			188	5 4037	0055	0008
		1//	5.5012	.0505	.0002			100	5.4057	.0055	.0000

Table 1 (continued)

Table 1	(continue	ed)				Table 1	(continue	ed)			
Ζ	El	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)	Z	El	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)
		189	5.4072	.0051	.0006			199	5.4500	.0085	.0012
		190	5.4095	.0049	.0006			200	5.4590	.0075	.0010
		191	5.4134	.0046	.0005			201	5.4610	.0075	.0009
		192	5.4166	.0044	.0005			202	5.4690	.0055	.0007
		193	5.4213	.0042	.0004			203	5.4710	.0055	.0007
		194	5.4239	.0040	.0002			204	5.4794	.0008	.0005
		195	5.4284	.0040	.0006			205	5.4820	.0035	.0005
		196	5.4318	.0038	.0004			206	5.4897	.0007	.0003
		197	5.4358	.0037				207	5.4942	.0013	.0002
		198	5.4386	.0038	.0002			208	5.5010	.0009	
0.0		199	5.4440	.0039	.0001			209	5.5110	.0025	.0002
80	Hg	181	5.43/3	.0032	.0003			210	5.5230	.0035	.0005
		182	5.3844	.0053	.0003			211	5.5330	.0055	.0007
		183	5.4415	.0031	.0003			212	5.5450	.0075	.0010
		184	5.3946	.0047	.0003	07	D:	214	5.5650	.0105	.0014
		185	5.4406	.0031	.0003	83	Bl D-	209	5.5211	.0020	0007
		180	5.4014	.0044	.0003	84	PO	200	5.4801	.0133	.0007
		10/	5.4040	.0043	.0003			202	5.4950	.0131	.0003
		100	5.4085	.0041	.0003			204	5.5025	.0130	.0002
		109	5.4098	.0040	.0003			205	5.5044	.0130	.0008
		190	5.4157	.0038	.0003			200	5.5125	.0129	.0001
		191	5 4233	.0037	.0003			207	5 5222	.0129	.0005
		192	5.4233	.0035	.0003			200	5.5264	.0129	0004
		195	5 4311	.0033	.0003			209	5 5336	0129	0003
		195	5 4347	0032	0003	86	Rn	202	5 5150	0136	0001
		196	5 4388	0032	0003	00	Rii	202	5 5197	0134	00009
		197	5 4415	0031	0003			204	5 5198	0134	00009
		198	5 4466	0031	.0005			205	5 5270	0132	00007
		199	5 4484	0031	0003			200	5 5282	0132	00007
		200	5 4 5 4 9	0023	0003			208	5 5354	0131	00005
		201	5.4583	.0025	.0003			209	5.5373	.0131	.00004
		202	5.4633	.0015	.0003			210	5.5442	.0130	.00002
		203	5.4687	.0035	.0003			211	5.5479	.0130	.00002
		204	5.4742	.0013	.0003			212	5.5545	.0130	
		205	5.4788	.0031	.0003			218	5.6172	.0144	.0001
		206	5.4851	.0031	.0003			219	5.6280	.0149	.0001
81	T1	188	5.3985	.0092	.0015			220	5.6363	.0153	.0001
		189	5.4235	.0063	.0007			221	5.6467	.0159	.0002
		190	5.4088	.0081	.0013			222	5.6549	.0164	.0002
		191	5.4138	.0070	.0003	87	Fr	207	5.5349	.0130	.00005
		192	5.4161	.0073	.0012			208	5.5358	.0130	.00005
		193	5.4302	.0058	.0008			209	5.5428	.0130	.00003
		194	5.4233	.0065	.0010			210	5.5448	.0130	.00002
		195	5.4303	.0055	.0003			211	5.5511	.0130	.00001
		196	5.4304	.0058	.0009			212	5.5545	.0130	
		197	5.4370	.0048	.0002			213	5.5606	.0130	.00002
		198	5.4376	.0048	.0001			220	5.6320	.0130	.0001
		199	5.4466	.0040	.0001			221	5.6422	.0131	.0002
		200	5.4477	.0039	.0001			222	5.6523	.0131	.0002
		201	5.4564	.0034	.0003			223	5.6584	.0131	.0002
		202	5.4587	.0033	.0003			224	5.6695	.0132	.0002
		203	5.4664	.0026	.0002			225	5.6747	.0132	.0003
		205	5.4763	.0026				226	5.6825	.0132	.0003
		207	5.4862	.0028	.0002			227	5.6972	.0133	.0003
0.0		208	5.4963	.0031	.0006	~~		228	5.7036	.0133	.0003
82	Pb	190	5.4210	.0026	.0011	88	Ra	208	5.5475	.0138	.0024
		191	5.4217	.0026	.0011			209	5.5478	.0137	.0022
		192	5.4287	.0025	.0011			210	5.5542	.0134	.0017
		193	5.4298	.0022	.0007			211	5.5554	.0133	.0015
		194	5.4359	.0022	.0009			212	5.5010	.0131	.0009
		190	5.442 5.4420	.0105	.0014			213	J.3040 5 5705	.0130	.0000
		19/	5.4420 5.4500	.0105	.0014			214	5.5/05	.0150	0042
		190	5.4500	.0065	.0012			220	5.0311	.01/8	.0002

Table 1 (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ζ	El	A	<i>R</i> (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			221	5.6423	.0195	.0073
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			222	5.6502	.0207	.0081
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			223	5.6602	.0222	.0091
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			224	5.6676	.0234	.0098
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			225	5.6781	.0252	.0109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			226	5.6841	.0263	.0115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			227	5.6911	.0276	.0123
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			228	5.7002	.0292	.0132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			229	5.7088	.0308	.0140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			230	5.7186	.0325	.0150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			232	5.7351	.0356	.0167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	Th	227	5.6654	.0516	.0061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			228	5.6738	.0512	.0049
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			229	5.6807	.0509	.0040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			230	5.6920	.0506	.0025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			232	5.7100	.0504	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	U	233	5.8138	.0074	.0043
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			234	5.8289	.0062	.0033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			235	5.8287	.0073	.0027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			236	5.8366	.0074	.0016
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			238	5.8507	.0072	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94	Pu	238	5.8248	.0378	.0012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			239	5.8311	.0378	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			240	5.8407	.0379	.0016
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			241	5.8451	.0379	.0019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			242	5.8523	.0380	.0024
95 Am 241 5.8929 .0035 243 5.9047 .0035 96 Cm 242 5.7851 .0149 .0049 244 5.7995 .0134 .0125 .0010 246 5.8127 .0138 .0020 248 5.8252 .0149 .0040			244	5.8643	.0382	.0032
243 5.9047 .0035 96 Cm 242 5.7851 .0149 .0049 244 5.7995 .0134 .0149 .0010 245 5.8040 .0135 .0010 246 5.8127 .0138 .0020 248 5.8252 .0149 .0040	95	Am	241	5.8929	.0035	
96 Cm 242 5.7851 .0149 .0049 244 5.7995 .0134 .020 245 5.8040 .0135 .0010 246 5.8127 .0138 .0020 248 5.8252 .0149 .0040			243	5.9047	.0035	
2445.7995.01342455.8040.0135.00102465.8127.0138.00202485.8252.0149.0040	96	Cm	242	5.7851	.0149	.0049
2455.8040.0135.00102465.8127.0138.00202485.8252.0149.0040			244	5.7995	.0134	
2465.8127.0138.00202485.8252.0149.0040			245	5.8040	.0135	.0010
248 5.8252 .0149 .0040			246	5.8127	.0138	.0020
			248	5.8252	.0149	.0040

Table 2	
Parameters of radius formulae for nuclei near the stability line. See page 194 for Explanation of Table	es

Model	Equation	Parameters	St. Dev. (fm)	χ^2/n'
Liquid drop	(6)	$r_{\rm LD} = 0.9542(13) {\rm fm}$	0.106	2894
Empirical exponent	(7)	$r_{\rm e} = 1.153(7) {\rm fm}$ e = 0.2938(12)	0.05	669
Finite surface	(8)	$r_0 = 0.9071(13) \text{ fm}$ $r_1 = 1.105(25) \text{ fm}$ $[r_2 = -0.548(34) \text{ fm}]$	0.04	467
Finite surface + P	(15)	$\begin{aligned} r_{0,\mathrm{P}} &= 0.8966(20) \mathrm{fm} \\ r_{1,\mathrm{P}} &= 1.128(35) \mathrm{fm} \\ [r_{2,\mathrm{P}} &= -0.58(05) \mathrm{fm}] \\ a &= 0.0809(19) \mathrm{fm}^2 \end{aligned}$	0.023	167
Finite surface + P (light nuclei)	(15)	$\begin{aligned} r_{0,\mathrm{P}} &= 0.982(10) \mathrm{fm} \\ r_{1,\mathrm{P}} &= 0.32(10) \mathrm{fm} \\ [r_{2,\mathrm{P}} &= +0.55(14) \mathrm{fm}] \\ a &= 3.93(42) \mathrm{fm}^2 \end{aligned}$	0.034	93

Table 3 Empirical parameters characterizing the radius surface R(N, Z). See page 194 for Explanation of Tables

Equation	Parameter	Region	From experiment	St. Dev. (fm)	χ^2/n'	With constraint
(9)	k_Z	All nuclids	0.149(15)	0.036	64	0.156(14)
		Proton-rich	0.131(25)	0.027	27	0.128(23)
		Neutron-rich	0.219(30)	0.025	35	0.240(27)
(10)	$k_{ m N}$	All nuclids	0.484(15)	0.027	29	0.478(14)
		Proton-rich	0.482(25)	0.027	23	0.485(23)
		Neutron-rich	0.484(30)	0.017	20	0.463(27)
(12)	f	All nuclids	-0.148(15)	0.032	38	-0.161(9)
		Proton-rich	-0.185(25)	0.027	17	-0.179(14)
		Neutron-rich	-0.070(30)	0.019	16	-0.112(17)
(13)	$\Delta Z/\Delta N$	All nuclids	-0.33(4)	0.035	34	-0.33(4)
		Proton-rich	-0.25(6)	0.029	18	-0.25(5)
		Neutron-rich	-0.67(10)	0.027	19	-0.62(8)

Table 4

Annotated ref	erences for the	e Introduction	and for t	he Tables.	See page	194 for	Explanation	of Tables
---------------	-----------------	----------------	-----------	------------	----------	---------	-------------	-----------

References fo	r the Introduction	
Compilations		
An99	I.Angeli: Table of Nuclear Root Mean Square Charge Radii,	$e^- + \mu^-, e^- + \mu^- + OIS,$
	INDC(HUN)-033, September 1999 (IAEA Nuclear Data Section, Vienna)	
	Web: http://www-nds.iaea.or.at/indc-sel.html.	
Au87	P.Aufmuth, et al.: At. Data Nucl. Data Tables, 37 (1987) 455	OIS
Bo74	F.Boehm, and P.L.Lee: At. Data Nucl. Data Tables, 14 (1974) 605	K _a IS
En74	R.Engfer, et al.: At. Data Nucl. Data Tables, 14 (1974) 509	
Fr95	G.Fricke, et al.: At. Data Nucl. Data Tables, 60 (1995) 177, Table V	Many; compilation.
He74	K.Heilig, and A.Steudel: At. Data Nucl. Data Tables, 14 (1974) 613	OIS
Ho67	R.Hofstadter, and H.R.Collard: Landolt-Börnstein, New series, Group I.:	$e^-, \mu^-, K_{\alpha}IS, OIS$
	Nuclear Physics and Technology, vol. 2, Nuclear Radii, ed. H.Schopper, Springer-Ver	rlag, Berlin (1967)
Ja74	C.W. deJager, et al: At. Data Nucl. Data Tables, 14 (1974) 479	e-
Na94	E.G.Nadjakov, et al: At. Data Nucl. Data Tables, 56 (1994) 133	$e^- + \mu^- + OIS$
Ot89	E.W.Otten: in: Treatise in Heavy-Ion Physics, Vol. 8 (1989) 604	OIS
Vr87	H.deVries, et al: At. Data Nucl. Data Tables, 36 (1987) 495	e ⁻
0.1		
Other papers		
Ah85	S.A.Ahmad, et al.: Z. Physik, A321 (1985) 35	Eu
Ah88	S.A.Ahmad, et al.: <i>Nucl. Phys.</i> , A483 (1988) 244	Ка
An//	I.Angeli, and M.Csatlos: <i>Nucl. Phys.</i> , A288 (1977) 480	Isotopic dependence $R_Z(N)$
An78	I.Angeli, and M.Csatlos: ATOMKI Kozlemenyek, 20 (1978) 1	Isotonic, isobaric dep.
An91	I.Angeli: J. Phys. G.: Nucl. Part. Phys., 17 (1991) 439	Fine structure in $R(A)$
An91a	I.Angeli: Acta Phys. Hung., 69 (1991) 233	Compilation
An92	I.Angeli: AMCO-9, 9th Conf. on Atomic Masses and Fundamental Constants;	
	July 19–24, 1992, Bernkastel-Kues	Mass number dependence $R(A_0)$
An00	I.Angeli: Acta Phys. Hung. New Series: Heavy Ion Physics, 13 (2001) 149	<i>I</i> -dependence
An01	I.Angeli: Hyperfine Interactions, 136 (2001) 17	$\dots K_{\alpha}IS: C_1$
An02	I.Angeli: Acta Phys. Hung. New Series: Heavy Ion Physics, 15 (2002) 87	μ^- : Barrett mom.
An03	I.Angeli: Acta Phys. Hung. New Series: Heavy Ion Physics, 17 (2003) 3	OIS: eval.
Ba70	R.C.Barrett: Physics Letters, B33 (1970) 388	Theory
B187	S.A.Blundell, et al: J. Phys., B20 (1987) 3663	$K_{\alpha}IS$, theory
Ca87	R.F.Casten, et al: Phys. Rev. Lett., 58 (1987) 658	P-factor
El61	L.R.B.Elton: Nuclear Sizes (Oxford University Press, 1961)	
Ga30	G.Gamow: Proc. Roy. Soc. London, A216 (1930) 632	
He87	K.Heilig: Hyperfine Interactions, 38 (1987) 803	Evaluation
He89	J.Herberz: Ph.D. thesis, Univ. Mainz, KPH 6/89 (1989)	O, F, Na, Ne, Mg, Al, Si
Hu98	A.Huber, et al.: Phys. Rev. Letters, 80 (1998) 468	D
Kr99	A.Krasznahorkay, et al.: Phys. Rev. Letters, 82 (1999) 3216	Neutron skin
Me00	K.Melnikov, and T. van Ritbergen: Phys. Rev. Lett., 84 (2002) 1673	H
My83	W.D.Myers, and K.H.Schmidt: Nucl. Phys., A410 (1983) 61	Formulae $R(N, Z)$
Sc69	J.P.Schiffer: Physics Letters, 29B (1969) 399	Isotopic dependence $R_Z(N)$
Se69	E.C.Seltzer: Phys. Rev. 188 (1969) 1916	Theory: C _{1,2,3} coeffs.
Si98	I.Sick, and D.Trautmann: Nucl. Phys., A637 (1998) 559	D
Si03	I.Sick: Physics Letters, B576 (2003) 62	H
St66	D.N.Stacey: Rep. Prog. Phys., 29 (1966) 171	Fine structure in $R_Z(N)$
To85	G.Torbohm, et al: Phys. Rev., A31 (1985) 2038	$K_{\alpha}IS$, theory
Un75	M.Uno, and M.Yamada: Progr. Theor. Phys., 53 (1975) 987	Fine structure in <i>E</i>
Un81	M.Uno, and M.Yamada: Progr. Theor. Phys., 65 (1981)1322	
We85	E.Wesolowski: J. Phys. G.: Nuc. Part. Phys., 11 (1985) 909	Formulae <i>R</i> (<i>NZ</i>)
Ze81	N.Zeldes: Proc. 4th Int. Conf. on Nuclei Far From Stability, Helsingor, Denmark,	
	Eds. P.G.Hansen, and O.B.Nielsen, Vol. I (Geneva, CERN, 1981) p.93	

References for the Tables

Differences between radii of neighboring nuclei (not isotopes) from electron scattering and muonic atom X-rays

Fr92	G.Fricke, et al.: Phys. Rev. C45 (1992) 80, Table III	O, F, Ne, Na, Mg, Al, Si
Fr95	G.Fricke, et al.: At. Data Nucl. Data Tables, 60 (1995) 177, Table VII	Many; compilation
He89	J.Herberz: Ph.D. thesis, Univ. Mainz, KPH 6/89 (1989)	O, F, Na, Ne, Mg, Al, Si
Vr87	H.de Vries, et al.: At. Data Nucl. Data Tables, 36 (1987) 495, Table III	Many; compilation.
Wo80	H.D.Wohlfahrt, et al.: Phys. Rev. C22 (1980) 264	Ti, Cu Zn
Wo81	H.D.Wohlfahrt, et al.: Phys. Rev. C23 (1981) 533, Table VI	K,Ca,Sc,Ti,V,Cr,Mn,Fe
Differences betwee	en radii of isotopes, from electron scattering	
Ja74	C.W.de Jager, et al.: At. Data Nucl. Data Tables, 14 (1974) 479, Table II	Many; compilation.
Ro76	H.Rothhaas, Ph.D. Thesis, Univ. Mainz (1976). KPH 18/76	Zr
Vr87	H.de Vries, et al.: At. Data Nucl. Data Tables, 36 (1987) 495, Table II	Many; compilation.

Table 4 (continued)

Differences b	etween radii of isotopes, from muonic atom X-rays	
Ba80	G.Backenstoss, et al.: Physics Letters, 95B (1980) 212	0
En74	R.Engfer, et al.: At. Data Nucl. Data Tables, 14 (1974) 509, Table IV	Many; compilation.
Fr92	G.Fricke, et al.: Phys. Rev. C45 (1992) 80. Table III	O, Ne, Mg, Al, Si
Fr95	G.Fricke, et al.: At. Data Nucl. Data Tables, 60 (1995) 177, Table V	Many; compilation.
He89	J.Herberz: Ph.D. thesis, Univ. Mainz, KPH 6/89 (1989)	O, F, Na, Ne, Mg, Al, Si
Ho81	M.V.Hoehn, et al.: Phys. Rev. C24 (1981) 1667	Os
La83	D.B.Laubacher, et al.: Phys. Rev. C27 (1983) 1772	Gd
Ma89	P.Mazanek: Dipl. Th., Inst. f. Kernph. PKH 11/89, U. Mainz 1989	Zr, Mo
Ma92a	P.Mazanek, Ph.D. Th. Inst. f. Kernph. PKH 5/92, U. Mainz 1992	Pb
Po79	R.J.Powers, et al.: Nucl. Phys. A316 (1979) 295, Table 18	Sm
Sc80	L.Schellenberg, et al.: Nucl. Phys. A333 (1980) 333	Mo
Sc82	L.A.Schaller, et al.: Nucl. Phys. A379 (1982) 523	C
Sc85	L.A.Schaller, et al.: Phys. Rev. C31 (1985) 1007	S
Sh82	E.B.Shera, et al.: Physics Letters, 112B (1982) 124	Ba
Ta84	Y.Tanaka, et al.: Phys. Rev. C29 (1984) 1897	Eu
Ta84a	Y.Tanaka, et al.: Phys. Rev. C30 (1984) 350	Hf
Wo80	H.D.Wohlfahrt, et al.: Phys. Rev. C22 (1980) 264	
Wo81	H.D.Wohlfahrt, et al.: Phys. Rev. C23 (1981) 533, Table VI	Ca, Ti, Cr
D.00		
Differences b	etween radii of isotopes, from atomic K_{α} isotope shifts	
Bh68	S.K.Bhattacherjee, et al.: <i>Phys. Rev. Letters</i> , 20 (1968) 1295	Nd
Bh69	S.K.Bhattacherjee, et al.: <i>Phys. Rev.</i> , 188 (1969) 1919	Gd, Dy, Er, Hf+prev.:
		Sn, Nd, Sm, W, Hg, Pb, U
B187	S.A.Blundell, et al.: J. Phys., B20 (1987) 3663	Theory: S_4 , S_6 calc.
B081	G.L.Borchert et al: 4 th I. C. Nucl. far from Stab. L.O.Skolen, 1981, I. p.56	Pb
Bo83	G.L.Borchert, et al.: Nuovo Cimento, A73 (1983) 273	Pb
Br65	R.T.Brockmeier, et al.: Phys. Rev. Lett., 15 (1965) 132	U
Ch67	R.B.Chesler, et al.: Phys. Rev. Letters, 18 (1967) 953	Sn, Sm, W
Ch68	R.B.Chesler, and F.Boehm: Phys. Rev. 166 (1968) 1206	Sn,Nd,Sm,Gd,W,Hg,Pb
Ei70	C.W.E. van Eijk, and F.Schutte: Nucl. Phys, A151 (1970) 459	Dy
Ei70a	C.W.E. van Eijk, and M.J.C.Visscher: Phys. Lett., 34B (1970) 349	Ce
Ei79	C.W.E.Eijk, et al.: Journ. Phys. G5 (1979) 315	Cd
E196	S.R.Elliott, et al.: Phys. Rev. Lett., 76 (1996) 1031	U, see El96 er
El96er	S.R.Elliott, et al.: Phys. Rev. Lett., 77 (1996) 4278 (erratum)	U corrected.
Le73	P.L.Lee, and F.Boehm: Phys. Rev. C8 (1973) 819	Nd, Sm, Dy, Yb, Pb
Le78	P.L.Lee, F.Boehm, and A.A.Hahn: Phys. Rev. C17 (1978) 1859	Hg
Ry72	A.S.Rylnikov, et al.: Journ. Exp. Theor. Phys. 63 (1972) 53	Sb, Eu
Su65	O.I.Sumbaev, and A.F.Mezentsev: Journ. Exp. Theor. Phys. 49(1965)459	Mo
Su67	O.I.Sumbaev, et al.: Yadernaya Fizika, 5 (1967) 544	Nd, Sm
Su68	O.I.Sumbaev, "Nuclear Structure", IAEA Vienna, 1968, p.527	Mo,Ba,Nd,Sm
Su69	O.I.Sumbaev: Int. C. Prop. Nucl. St. Montreal, Aug. 25-30 1969. Contr. 2.67	Te
Su69a	O.I.Sumbaev, et al.: Yadernaya Fizika, 9 (1969) 906	Ba
To85	G.Torbohm, et al.: Phys. Rev., A31 (1985) 2038	Theory: C_i/C_1 calc.
G : 1		
Special case:	H-D isotope shift	
Hu98	A.Huber, et al.: Phys. Rev. Letters, 80 (1998) 468	H-D Isotope Shift
Pa94	K.Pachucki, et al.: Phys. Rev. A49 (1994) 2255	
Sc93	F.Schmidt-Kaler, et al.: Phys. Rev. Letters, $\sqrt{0}$ (1993) 2261	Re-anal in Pa94, We95
We92	M.Weitz: Ph.D. Thesis, Max-Planck-Institut fur Quantenoptik (1992)	Re-anal in Pa94, We95
We95	M.Weitz, et al.: Phys. Rev. A52 (1995) 2664	H-D Lamb-shift, IS.
Differences b	etween isotopes from ontical isotope shifts	
Ah85	S.A.Ahmad. et al.: Z. Physik. A321 (1985) 35	
Ah88	S.A.Ahmad, et al.: Nucl. Phys., A483 (1988) 244	Ra
A179	E Alvarez, et al : <i>Physica Scripta</i> 20 (1979) 141	Xe
A183	G.D.Alhazov, et al.: Zhurn Exp. Teor. Fiz. Letters. 37 (1983) 231	Eu
A185	G.D.Alhazov, et al.: <i>Izv. Ak. Nauk SSSR. Ser. Fiz.</i> , 49 (1985) 24	Sm Eu
A185a	G.D.Alhazov, et al.: Tez. Dok. XXXV. Sov Leningrad (1985)	
A186a	G D Alhazov et al : Yadernava Fizika 44 (1986) 1134	Sm Fu
A187	G D Alhazov, et al. Tez. Dokl. XXXVII Soneshch (1987) 96	Nd Sm
A188	G D Alkhazov et al : Nucl Phys A477 (1988) 37	Tm
A188a	G D Alkhazov et al : Pisma $n Z_S E T F 48 (1988) 373$	GA
A189	G D Alkhazov et al \cdot Nucl Phys A504 (1989) 549	
A190	G D Alkhazov, et al \cdot 7 Phys. A337 (1900) 367	ΠΟ Τϧ
A190a	G D Alkhazov, et al. Z. Phys. A337 (1990) 257	10 Fu
An82	A Andlet al \cdot Phys. Rev. C26 (1982) 2194	Lu Ca
1 11104	1 1.1 1101, VC 01.1 1 1/30. 1(CO., VAU (1904) 4197	Са

Table 4 (continued)

1	M Angelment et al. Day Day C24 (10%) 1052	S.n.
Alloo	M.Anseiment, et al. <i>Phys. Rev.</i> , C34 (1960) 1052	
An86b	M.Anselment: Nucl. Phys. A451(1986)4/1 [Corrected in: KFK 4159 p.63.]	Pb
An87	M.Anselment, et al.: Z. Phys., A326 (1987) 493	Sr
An92	A.Anastassov, et al.: Hyperfine Interactions, 74 (1992) 31	Hf, U
An94	A. Yu. Anastassov, et al.: Zhurn, Exp. Teor. Fiz. 105 (1994) 250	Hf
An94a	A Anastassov et al Z Phys D30 (1994) 275	Ti
A 1179	D Aufmuth at al. 7. Dhusik A 395 (1078) 257	
Au/o	P.Aumuti, et al., Z. <i>Physik</i> , A265 (1978) 557	
Au83	P.Aufmuth, and M.Haunert: <i>Physica</i> , 123 C (1983) 109	Zr
Ba76	P.E.G.Baird: Proc. Roy. Soc. London, A351 (1976) 267	Pd
Ba79	P.E.G.Baird, et al.: Proc. Roy. Soc. London, A365 (1979) 567	Ba
Ba83	P E G Baird et al J Phys B16 (1983) 2485	Sn
Ba85	Boucha et al. 7 Physik A30 (1085) 157	Cd: eval of Br76
Da05	J. Daulin, et al. 2. Thysik, A320 (1965) 157	
Ba98	A.E.Barzakh, et al.: <i>Eur. Phys. J.</i> , A_1 (1998) 3	Yb
Ba00	A.E.Barzakh, et al.: <i>Phys. Rev.</i> , C61 (2000) 034304	Tm
Be79	K.Bekk, et al.: Z. Physik, A291 (1979) 219	Ва
Be80	E.Bergmann, et al.: Z. Physik, A294 (1980) 319.	Ca
Be84	D Bender et al : Z Physik A318 (1984) 291	Sr
D-95	A Demond et al. 7. <i>Hybrid</i> , 1522 (1995) 1	E.
Deas	A. Bernard, et al.: Z. Physic, A322 (1963) 1	
B18/	S.A.Blundell, et al.: J. Phys. B20 (1987) 3663	Theory: S_4 , S_6 calc.
Bo76	J.Bonn, et al.: Z. Physik, A276 (1976) 203	Hg
Bo79	J.Bonn, et al.: Z. Physik, A289 (1979) 227	Cs
Bo81	G Borghs et al. Z Physik A299 (1981) 11	Xe
Do81	G Bollon et al.: Prog. AMCO 7. Downstadt (1084) p. 247	A.u.
D004	G. Boneni, et al. 1707. AMCO-7, Darmstaat (1704) p . 547.	NI C
Bo8/a	S.K.Borisov, et al.: Zhurn. Exp. Teor. Fiz. 93 (1987) 1545	Nd, Sm, Gd
Br58	G.Breit: Rev. Mod. Phys., 30 (1958) 507	Basic OIS
Br58a	P.Brix: Rev. Mod. Phys., 30 (1958) 517	Basic OIS
Br76	M.S.W.M.Brimicombe, et al.: Proc. R. Soc. Lond., A352 (1976) 141	Cd: eval in Ba85
Br78	H-W Brandt et al. 7 Physik A288 (1978) 241	Ca
Dr70	H. W. Brandt, et al. 2. <i>I hysis</i> , A200 (1970) 241	
DI /9	nw. Brandt, et al. Z. Fhysik, A291 (1979) 97	Siii
Br80	H.Brand, et al.: Z. Physik, A296 (1980) 281.	Sm
Br81	H.Brand, et al.: Z. Physik, A302 (1981) 291	Eu
Bu85	F.Buchinger, et al.: Phys. Rev., C32 (1985) 2058	Sr
Bu87	F. Buchinger, et al.: Nucl. Phys. A462 (1987) 305	Cd
B1190	E Buchinger et al : Phys. Rev. $C41$ (1990)	Sr
Du02	1. Ducking C_1 , C_1 and T_1 and T_2 . Ref., C_2 (1997) (2002) 042004	л
Bu03	B.A.Bushaw, et al. Thys. Rev. Letters, 91 (2003) 043004	Li
Ca95	P.Campbell, et al.: <i>Physics Letters</i> , B346 (1995) 21	В1
Ca02	P.Campbell, et al.: Phys. Rev. Letters, 89 (2002) 082501	Zr
C179	D.L.Clark, et al.: Phys. Rev., A20 (1979) 239	Yb
C182	D L Clark and D W Greenlees: Phys. Rev. C26 (1982) 1636	Dv
Co85	A Coc et al : Physics Letters B163 (1985) 66	Fr
C085	A.C. $(1, 1)$ $(1, 2$	
08/	A.Coc, et al.: Nucl. Phys., A408 (1987) 1	Cs, Fr
Di87	U.Dinger, et al.: Z. Physik, A328 (1987) 253	Pb
Dö84	K.Dörschel, et al.: Z. Physik, A317 (1984) 233	Eu
Du89	H.T.Duong, et al.: Physics Letters, B217 (1989) 401	Pt
Du90	S B Dutta et al. Phys. $Rev. C42$ (1990) 1911	Gd
Du01	S. D. Dutte, et al. 7, <i>Phys.</i> A241 (1901) 20	Dh
Du91	S.B.Dutta, et al.: Z. Phys. A341 (1991) 39	PD
Ea84	D.A.Eastnam, et al.: J. Phys., GIU (1984) L 2/1	Sm
Ea84a	D.A.Eastham, et al.: Z. Physik, A318 (1984) 243	Sm
Ea86	D.A.Eastham, et al.: J. Phys., G12 (1986) L205	Sr
Ea87	D.A.Eastham, et al.: <i>Phys. Rev.</i> , C36 (1987) 1583	Sr
Eb87	I Eherz et al : Z Physik A326 (1987) 121	Çn
Eb87a	$I = \text{Eborr}, \text{ of al} \in \text{Nucl. Dhys. A 46A (1087) 0}$	
E00/a	J.EDEIZ, et al. <i>Nucl. Flys.</i> , A404 (1967) 5	
F1/5	W.Fischer, et al.: Z. Physik, AZ74 (19/5) 79	Ag
Fo02	D.H.Forest, et al.: J. Phys. G:Nucl. Part. Phys., 28 (2002) L63	Zr
Ga87	Yu.P.Gangrsky, et al.: Tez. Dokl. XXXVII. Soveshch. (1987) 103	Sm, Gd
Ga88a	Yu.P.Gangrsky, et al.: Zhurn, Exp. Teor. Fiz., 94 (1988) 9	
Ga89c	$Y_{\rm u}$ P Gangrsky et al: Yadernava Fizika 50 (1989) 1217	Ca
Ca70	I Conclusion y, of all Tautinuyu Liuw, 50 (1707) 1217	
G 01	11. Octimatul, et al. Z. Flysik, $A292$ (1979) 7	Kr
Ge81	H.Gerhardt, et al.: Hyperfine Interactions, 9 (1981) 175	Kr, Xe
Ge98	U.Georg, et al.: Eur. Phys. J., A_3 (1998) 225	Lu
Ge02	R.W.Geithner, CERN-Thesis, 2002-030	Ne
Go85	A.T.Goble, and C.W.P.Palmers; J. Phys. B18 (1985) 2181.	
Gr82	P Grundevik et al: 7 Physik A 306 (1982) 195	Do
U102	V Hailer Humanfing Internations 74 (1005) 240	
neos	K.H.Chig. Typerfine Interactions, 24 (1985) 349	Many. Keview.
He8/	K.Heilig: Hyperfine Interactions, 38 (1987) 803	Evaluation
Hi92	Th.Hilberath, et al.: Z. Phys., A342 (1992) 342	Pt

Table 4 (continued)

Ho84	B.Hoffmann, et al.: Z. Physik, A315 (1984) 57	Polarisation
Hö76	C.Höhle, et al.: Physics Letters, B62 (1976) 390	Ba
Hu78	G.Huber, et al.: Phys. Rev., C18 (1978) 2342	Na
Hü78	H.Hühnermann, et al.: Z. Physik, A285 (1978) 229	Xe
Is97	Y.Ishida, et al.: J. Phys. B30 (1997) 2569	Ce
Ji90	Wei Guo Jin, et al.: Journ. Phys. Soc. Jap., 59 (1990) 3148	Er
Ji91	Wei Guo Jin, et al.: Journ. Phys. Soc. Jap., 60 (1991) 2896	Yb
Ji97	W.G.Jin, et al.: <i>Phys. Rev.</i> , C55 (1997) 1545	Hf
Kä89	W.Kälber: Ph.D. Thesis, Univ. Heidelberg, KfK-4513 (Februar 1989)	Th
Ke95	M.Keim, et a.: Nucl. Phys., A586 (1995) 219	Kr
Ki84	W.H.King: Isotope Shifts in Atomic Spectra (Plenum Press, New York, 1984)	
K179	W.Klempt, et al.: <i>Physics Letters</i> , B82 (1979) 47	Rb
K196	A.Klein, et al.: Nucl. Phys., A607 (1996) 1	Ar
K058	H.Kopfermann: Nuclear Moments (Academic Press Inc., New York, 1958)	Basic OIS
K091	D.Kowalewska, et al.: <i>Phys. Rev.</i> , A44 (1991) R_1 442	Po
Kr88	U.Krönert, et al.: Z. Physik, A331 (1988) 521	Au
Kü77	T.Kühl, et al.: <i>Phys. Rev. Letters</i> , 39 (1977) 181	
La92	W.Lauth, et al.: <i>Phys. Rev. Letters</i> , 68 (1992) 1675	
LB97	F.LeBlanc, et al.: Rapport d'activité IPN Orsay, 1996-97, p. 33	Au
LB99	F.LeBlanc, et al.: <i>Phys. Rev.</i> , C60 (1999) 054310	Pt
Less	J.K.P.Lee, et al.: <i>Phys. Rev.</i> , C38 (1988) 2985	Pt
Le99	J.M.G.Levins, et al.: <i>Phys. Rev. Letters</i> , 82 (1999) 2476	HI
L191	P.Lievens, et al.: <i>Physics Letters</i> , B256 (1991) 141	Sr
L192a	P.Lievens, et a.: Europhysics Letters, Submitted, Personal Communication	Kr
L085	H.Lochmann, et al.: Z. Physik, A322 (1985) 703	In T
Lu94	P.Luc, et al.: Z. Phys., D31 (1994) 145	
Me89	R.Menges: Ph.D. Thesis, Univ. Mainz GSI-89-06 (Februar 1989)	11, Pb
ME92	K.Menges, et al.: Z. Phys., A341 (1992) 475	11
MII9/ Mu ⁸²	A C Musilan et al. Nuclear Division A 402 (1082) 224	
No77	A.C.Muener, et al.: Nuclear Physics, A405 (1985) 254	
No78	G. Novicki, et al.: <i>Phys. Rev. Letters</i> , $39 (1977) 552$	
0187	H Okamura and S Matsuki: Phys. Rev. C35 (1976) 1574	Ba Fr
Pa84	$C \le P$ Palmer et al : <i>Journ Phys.</i> B17 (1984) 2107	Ca
Pa94	G Passler et al. Nucl. Phys. $\mathbf{A580}$ (1994) 173	Ca A11
Re80	H Rebel et al: Nukleonika 25 (1980) 145	Ba
Ri92	I Rink: Dissertation Univ. Heidelberg KfK 4993 (Februar 1992)	Hf
Ri94	E Rijs et al · Phys Rev. A49 (1994) 207	(From Bu03) Li
Sa90	G Savard et al : Nucl Phys $A512$ (1990) 241	Au
Sa95	C.J.Sansonetti et al.: <i>Phys. Rev.</i> $A52$ (1995) 2682	
Sa00	J.Sauvage, et al.: Hyperfine Interactions. 129 (2000) 303	Rev: Ir. Pt. Au
Sc90	H.A.Schuessler, et al.: Phys. Rev. Letters, 65 (1990) 1332	Kr
Sc96	W.Scherf, et al.: Z. Phys., D36 (1996) 31	(From Bu03) Li
Si88	S.E.Silverans, et al.: Phys. Rev. Letters, 60 (1988) 2607	Śr
Sp89	G.D.Sprouse, et al.: Phys. Rev. Letters, 63 (1989) 1463	Yb
St80	A.Steudel, et al.: Z. Physik, A296 (1980) 189	Ni
St85	J.Streib, et al.: Z. Physik, A321 (1985) 537	Au
Th81	C.Thibault, et al.: Phys. Rev., C23 (1981) 2720	Rb
Th81b	C.Thibault, et al.: Nucl. Phys., A367 (1981) 1	Cs
Th83	R.C.Thompson, et al.: J. Phys., G9 (1983) 445 [KFK 3455 (Dez. 1982)]	Pb
To82	F.Touchard, et al.: Phys. Rev., C25 (1982) 2756	Na
To82b	F.Touchard, et al.: Physics Letters, B108 (1982) 169	K
To85	G.Torbohm, et al.: Phys. Rev. A31 (1985) 2038	
U175	S.Ullrich, and E.W.Otten: Nucl. Phys., A248 (1975) 173	Cs
U185	G.Ulm, et al.: Z. Physik, A321 (1985) 395	In
U186	G.Ulm, et al.: Z. Physik, A325 (1986) 247	Нд
Ve92	L. Vermeeren, et al.: Phys. Rev. Letters, 68 (1992) 1679	Ca
Ve99	D.Verney, et al.: Rapport d'activité IPN Orsay, 1998-99, p. 43	Ir
Wa87	K.Wallmeroth, et al.: <i>Phys. Rev. Letters</i> , 58 (1987) 1516	Au
Wa89	K.Wallmeroth, et al.: Nucl. Phys., A493 (1989) 224	Au
Wa90	M.Wakasugi, et al.: Journ. Phys. Soc. Jap., 59 (1990) 2700	Nd, Sm, Gd, Dy
Wa03	J. Walls, et al.: <i>Eur. Phys. J.</i> , D22 (2003) 159	(From Bu03) Li
We88	K.Wendt, et al.: Z. Physik, A329 (1988) 407	Ba
W158	L. whets: Handbook of Physics, 38/1 (1958) 96	Basic OIS
Z180 Z:04	D.Z.immermann, et al.: Z. Physik, A295 (1980) 30/	Lu
Z194	D.Zimmermann, et al.: Phys. Kev., A30 (1994) 1112	Ht