Gamma spectroscopic studies using deep-inelastic reactions

A.Goswami Saha Institute of Nuclear Physics, Kolkata - 700064, INDIA

The valley of stability in heavy nuclei proceeds, on an average, by adding more neutrons than Compound nucleus

The additional evaporation of several neutrons from the initial compound nuclear state increases the neutron deficiency.

(HI, xnγ) reaction lead to neutron deficient nuclei. Neutron rich nuclei are much more difficult objects to reach through in beam spectroscopic studies.

Apparent asymmetry of information in the chart of nuclei Neutron rich nuclei can be produced only with the use of complex nuclear reaction. Moderate size gamma detector arrays allows to initiate studies of nuclei produced in deep- inelastic heavy ion reactions. **Technique of gamma coincidence data** analysis is almost identical in deep-inelastic

heavy ion reactions

Weakly excited final nucleus: Coulomb excitation, nuclear inelastic scattering, few nucleon transfer reaction **Fusion reaction : compound** nucleus with high angular momentum: subsequent evaporation of particles and high multiplicity of gamma rays. At the limiting values of angular momentum the compound nucleus cannot sustain the rotation and undergoes fission.

Intermediate impact parameter between the peripheral and central collisions: large transfer of mass, energy, angular momentum takes place

Detailed analysis of the good statistics gamma coincidence data provides the only selective power.

Data analysis involves only discrete gamma lines: gamma lines that are emitted from the stopped product nuclei.

Consequence of thick target experiment: integration of initial beam energy : undesired enhancement of quasi-elastic process e.g. Coulomb excitation

Gamma cross coincidence identification

1988:	⁶⁰ Ni+ ⁹² Mo, E _{lab} = ²⁵⁵ M	1eV

Detector system: 12 Comptonsuppressed Ge detectors Target: Thick Pb backing

Apart from the fusion evaporation residues, the data were found to also include many events arising from inelastic and transfer reaction products.

13 binary reaction channels were identified.

Population of states in ⁹²Mo target and ⁶⁰Ni beam

MeV 6 5-4- $88 \text{ ns} 11^{-}$ $88 \text{ ns} 11^{-}$ 3^{-} $8^{+} 190 \text{ ns}$ $6^{+} 147$ 4^{+} 330 244 2^{-} 2^{+} 1509 0^{+} 9^{2}Mo_{50}

Cross coincidence between gammas from two excited nuclei in the exit channel

Possibility of deepinelastic reactions for yrast spectroscopy.

⁵⁴Fe+¹⁰⁶Cd; OSIRIS multi-detector

arrav

The variation of N/Z ratio extracted for each mass for all binary reaction products.

Very complete analysis of gamma coincidence data: path to study hard to reach nuclei Spectroscopic studies of

Experimental difficulties using deep inelastic reaction

Strong dominance of the fusion reaction channel in collisions involving beams of light nuclei produces a high background of undesired gamma coincidence events.

Use of gamma multiplicity filter: selection of low gamma fold events which reduces significantly high multiplicity coincidences arising from the fusion evaporation reaction products.

³⁷Cl+¹⁶⁰Gd, Beam energy ~¹⁷⁰ Mev

Neutron rich *sdf* shell nuclei

PRC 49,

Detector system:

2413(1994)

12 Compton suppressed HPGe

+ 50 element BGO array

Analysis of the lower multiplicity subsets of the γ-γ data and projectilelike reaction products.

For many product nuclei near ¹⁶⁰Gd, yrast gamma cascades were already known upto high spins, but much less was known about the gamma rays in the less accessible nuclei around ³⁷Cl.

Known ³⁹Cl γ-rays appeared in coincidence with the yrast cascade of γ rays of ¹⁵⁸Gd.

Gating on ³⁹Cl transitions sharply enhanced the prominence of the ³⁹Cl coincidence peaks.

Neutron rich Ni

Detector system: GASP

Phys. Rev. Lett 74, 868 (1995)

¹³⁰Te+⁶⁴Ni, Beam energy 275 M γ-γ coincidence data was stored without any restriction on the ultiplicity 0.86(5) ms gate: 2033 keV 550 814 keV 814 ke 10^{2} 4 keV 350 2033 ke 150 counts 0 2 3 white an and the series been and the time (ms) ¹³⁰Te + 275 MeV ⁶⁴Ni 2033 keV ke/ 1400 gate: 0 - 3 ms off-beam 0

Eur. Phys. J. A 24, 39

¹²¹Sb isotopes is produced as fission fragments obtained in the fusion reaction ³¹P+¹⁷⁶Yb at 152

Mall hoom anarow

Detector system: EUROBALL IV

15 Cluster germanium detector 26 Clover detector 30 tapered single crystal Ge detector 210 BGO inner ball

Indian National Gamma Array at VECC

Detector System: 8 Compton suppressed Clover Detectors

2 segmented LEPS detector.

⁴⁰Ar+¹²¹Sb, Beam energy ~ 280 MeV

All the known lines of ¹²¹Sb are clearly visible

Conclusion:

Deep in-elastic heavy ion reaction can be used to study hard to rich nuclei at beam energy of 5-10 MeV/A

A moderate size detector array, like INGA with 24 clover detector along with a BGO multiplicity filter will be suitable for such type of studies.

What is most depressing is the realization that everything we believe will be disproved in a few years

Thank You

