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Stochastic dynamical model of fission 

We discuss only stochastic model, not the “Dynamical cluster decay 

model” of Greiner,Gupta (Int.J.Mod.Phys.E3,supp01(1994)3350) 
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Approximate form: (Assume little “a” and “I” shape 

independent) 

Level density (Fermi gas): combinatorial,  Bohr-

Mottelson, Nuclear Structure, Vol.I 
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For E*>>VB 
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   Note: when =E*-VB , integrand very 

small 
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Sadhukhan,Pal:PRC79,064606(2009) 
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Aproximate Gaussian by rectangle in obtaining x,p 

   Strutinsky corrected 
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Fission is slower than predicted by Bohr-Wheeler 

theory 

Collective dynamics of interacting particles-> 

dissipative 

When fission is slower, more time for particle 

evaporation  
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Fission  shape evolution shape variables  

dynamical coordinates  

Elongation (c) 

Neck (h) 

Asymmetry () 

Brack (funny hill)  

 

Nucleus 3A coordinates 

->a few shape (collective) variables(x)   

+ many intrinsic (almost 3A) coordinates ()  

Consider  effect of Vint on Hintr as a first-order 

perturbation and take average over all intrinsic states 

(Linear Response Theory) 
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dHintr/dt   (dX/dt)2     energy is pumped into 

intrinsic system (heating) 

energy is lost from collective motion Hcoll   (dissipative 

energy loss) 

Eqn. of motion of collective coordinates averaged over 

intrinsic states 

dP/dt= -(dU/dX)- (dX/dt)  

Gives average trajectory in deformation (collective 

coordinate) space 

• H.Hofmann & P.J.Siemens, Nucl. Phys. A 257 

(1976)165 

• S.E. Koonin & J.Randrup, Nucl. Phys. A 289 (1977) 

475 

Stochastic dynamics: 

 Consider an ensemble of fissioning compound 

nuclei. 

 Shape evolution not same for all CN (Had it been 

same, all CN would have reached the saddle point 

simultaneously and we would not have the law of 

radioactive decay, but same life-time for all CN). 

 Some reach saddle point earlier, some later. 
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 For a given time interval, average trajectory may 

or may not cross saddle. In reality, some 

trajectories cross saddle, some do not, the ratio 

gives the fission probability 

 Average trajectory not of much use in fission 

dynamics. We need to trace individual trajectories. 

 We need observables averaged over many 

trajectories and not observables for the average 

trajectory 

 We need eqn. of motion of individual trajectories  

Htot = Hcoll (x) + Hintr () + Vint (x,)  

The force on the collective dynamics due to 

Vint(X,) is random in nature essentially due to the 

large number of intrinsic degrees of freedom () 

Force= Force  +fluctuation (R) 

dP/dt= -(dU/dX)-(dX/dt) +R(t) 

Langevin equation of motion 

Fission->Brownian motion of a heavy particle in a 

viscous heat bath  
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Collective dynamics (large inertia) ->Brownian 

particle  

R(t) = 0 

R(t)R(t)=2D(t-t) 

R(t) is assumed to follow a Gaussian distribution 

Fluctuation-dissipation theorem: D=T 

Markovian Process (zero memory time) assumed  

How to solve a stochastic eqn. of motion? 

Start with uniform random no. generator (0,1) 

p(x)dx=dx  for 0<x<1, =0 otherwise 

y(x)-> prescribed function of x 

f(y)=? (prob. of y) 

f(y)dy=p(x)dx -> area under the curve for each 

transformed element must remain same (illustrate) 

dy

dx
xpyf )()(  ; p(x)=1:

dy

dx
yf )( ; dx=f(y)dy 






y

dyyfx )( =F(y) 

Make a table of (y,F(y)); F(y) numerically obtained 
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Take a uniform random number x, read from the 

table the corresponding y through interpolation 

{x1,x2,x3,……}->{y1,y2,y3,…….}, the y-sequence wil 

follow f(y) (Illustrate with Gaussian) 

Now back to Langevin equation: 

                dP/dt = - (dU/dX) - (dX/dt) + R(t) 

     and     dX/dt = P/m 

             dP/dt = - (dU/dX) - P + gG(t)   where   

=/m   and    gG(t)=R(t) 

     or        dP/dt = H(P(t),X(t)) + gG(t)   and     

G(t)G(t)=2(t-t)   and   g=(T) 

Discretizing   

       P(t+) - P(t) = t
t+ dtH(t) + g t

t+dtG(t)    

H(t)+gG1(t)      

           X(t+) - X(t)    P(t)/m 

Here G1(t) = t
t+ dtG(t)  is also a Gaussian-

distributed random number 

How?   G1(t) = t
t+ dtG(t) = 0  and  

 G2
1(t) = t

t+ dt1 t
t+ dt2  G(t1)G(t2) = 2  
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       generate Gaussian numbers  with  2
 = 2  

and use  G1(t) =  ( t).  

Perform integration choosing the random force at 

each step from sampling a Gaussian distribution. 

Since random numbers are used at each time step, 

each Langevin   trajectory will be different though 

started with same initial condition (X0,P0). 

After each time step, check if X  Xsci  (scission 

point) or not. 

If YES,  

count the event as a fission event, record the 

instant, nCN = nCN -1.  

If NO,  

continue the process ( till some very large time tmax ).  

Repeat the procedure for a large number of events 

Show typical plot along with potential profile 



 

15 
 

 

At the end of a run  

we have a distribution of life-time of fission events 

nCN(t - t/2) = No. of CN at time  (t - t/2) 

nCN(t + t/2) = No. of CN at time  (t + t/2) 

Assuming law of radioactive decay, decay rate at time 

‘t’, 
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1.Y. Abe et al., Phys. Rep. 275 (1996) 49 

 2. P. Frobrich & I.I.Gontchar, Phys. Rep. 292 (1998)131 

Input for solving Langevin equation: 

• Collective potential U  LDM 

• Collective inertia m  hydro-dynamical model 

assuming no vortex 

• Dissipation coefficient   nuclear bulk property, 

one-body dissipation (sometimes treated as a 

parameter)  
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Potential   (Finite Range Liquid Drop Model 

potential)AJ Sierk, PRC33(1986)2039 

 double folding of Yukawa+exponential 

  )()()()(( 21212

3

1

3 rrvrrrdrdparametershapeXU eff   

Illustrate with figure 

Parameters of veff fixed by fitting fission barriers of 

heavy nuclei 

Add Coulomb + rotational 

 

Discuss only the lower plot 
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Collective inertia 

Nucleus  incompressible and irrotational  (no vortex) 

fluid  (Davies , Sierk & Nix, PRC13(1976)2385)  

 

 

qi  collective (shape) coordinate 

 

mij -> analytically obtained 

One-body dissipation 

Wall formula 

Particle hits moving wall (Brownian particle) 

Receives kick from wall 

Wall motion slows down 

Dissipation in wall motion results 
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Analytical form of  obtained 

J. Blocki et al., Ann. Phys.113 (1978) 330           

J.Randrup & W.J. Swiatecki, Ann. Phys.125 (1980)193 

Window dissipation      

Transfer of particles transfer of momentum 

Irreversible 

Net effect  dissipation 

Effective only when a window is open (neck is formed) 
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Classical expression     

 

U  relative speed between left and right pieces 

 

 

Blocki et al. Ann.of Phys.113,330(1978)  

Inertia, dissipation co-efficient depend on nuclear 

shape  
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Sadhukhan & Pal:Phys.Rev.C82, 021601(R)(2010) 

How to couple particle emission in a Langevin 

dynamical calculation? 

During each time-step of Langevin  integration, 

consider emission of particles also  

Algorithm for  compound nuclear  (CN) decay 

Fission-> Langevin dynamics; evaporation->statistical 
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Start with a CN(EX, l) 

Solve Langevin eqn. for time step t 

If fission occurs, stop (count as a fission event) 

If not, do a Monte-Carlo sampling to decide if the CN 

has decayed in t 

If YES, decide  decay type (n,p,,) by another Monte-

Carlo 

Re-adjust  (A, EX, l) of residual nucleus and continue 

Otherwise  go to the next time step and continue  

How  to Monte-Carlo a decay probability? 

We shall assume the radioactive law of  CN decay 

i.e.  Probability of a CN to decay in t   t 

      = rt   = (/)t 
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Here,  is the total width of a CN decay given as 

  = n + p + +   etc.    

Underlying assumption: all the processes are 

independent 

Particle/gamma decay widths (Feshbach formula) 

(Puhlhofer;NPA280,278(1977))  

All the decay widths depend upon excitation energy 

and spin of the CN  

                i= i (Ex,l ) 

Probability of a CN to decay in t = p= (/)t  < 1 and 

constant 

So we do a uniform sampling 

We call a subroutine which generates uniformly 

distributed random numbers in the range 0 to 1 , 

output r 

If  r  p  CN has decayed in t 

If  r > p  CN has survived t 

If it decays, the type of decay ( i.e. f or n or p or  or ) 

can also be decided by uniform sampling of partial 

widths (i/) 
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Frobrich,Gontchar;NPA563(1993)326 
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Karpov et al.,J.Phys.G.Nucl.Phys.29,2365(2003) 
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3-D results 

Karpov et al. PRC63,054610(2001) 
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Frobrich et al.(1993) 
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Karpov et al.(2001) 

Wall formula too strong to reproduce experimental  

data:  

A reduction factor seems necessary  

Why a reduction factor?  

WFCWWF    

Magnitude of  is an open problem 

 Often used as a fit parameter 
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Alternative approach to stochastic dynamics   

Fokker-Planck equation 

 Consider the total ensemble of Langevin 

trajectories 

The evolution of the ensemble with time can be 

viewed as a diffusion process 

In stead of individual trajectories, we can discuss 

in terms of a probability distribution function 

(X,P,t) 

(X,P,t)dXdP  probability of finding a CN with 

collective coordinate and  momentum in the range 

 X  X+dX  and P  P+dP at time ‘t’. 

Fokker-Planck equation from Langevin equation 

Liouville’s theorem: 

0
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Remembering time-average->ensemble average 
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Substituting,  



 

33 
 

m

tPX
P

TmP
PdX

dU

Pm

P

X
tPX

t

t

ttFt
P

ItF
t

ttt

t
P

tItFtFtt

R

R

















































































),,(),,(

0

.....)(
2

1
)(

2

1
)(

)()(

)(....
2

1
)(

2

1
1)(

2

2

2

2

2
22

 

Fokker-Planck eqn., 

Kramers,Physica(Amsterdam)7,284(1940) 

Generalized Liouville’s eqn. to include dissipation 

Diffusion eqn. in phase space 

Kramers’ analytical solution of Fokker-Planck equation: 

Fokker-Planck equation in one-dimension  
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• Ensemble of large number of CN at A 

• Weak diffusion current at C (VB > T) density at A 

does not change 

• Steady state/t = 0  

Steady state F-P eqn. 
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Desired solution  

At A  Boltzmann   
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     satisfies F-P (Spl.soln) 

At C With modification 

At B Zero  

General solution  
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F(X,P) 1 at X=Xg 

           0 at X>>Xs 

Aim is to find F 

Re-define X=X-Xs 
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Solution exists if we assume =P-aX  (Zeta) 

F(X,P)=F() 
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Solution: 
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F()=0 for - implying a=+ve when X at far right 

of saddle 

F()=1 for  + implying a=+ve when X- at far 

left of saddle  (May not hold at large spin)  

‘a’ should be positive 
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          Defining eqn. 
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 Taking +root  
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Full solution: 






















T

XXm
m

P

ePXKF
ss

TVB

22
2

/

)(
2

1

2exp),(


  

 

 

With 

























 


 de
m

a

Tm
F m

a

Tm

2

2

1

2

1
)(

 

Our task is to calculate the fission rate  

Current across C  
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        integrating by parts 

No. of particles in pocket at ‘A’=  
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